
1 Modeling and Simulation 

A. Introduction 

Science and engineering is all about studying systems, be it natural or man-made, in order 

to understand them, to predict their behavior, or to design new systems and/or improve 

existing designs. There are many ways to study a system, and the traditional approaches 

are through theoretical analysis or physical experimentation on the systems themselves or 

physical models of the systems under study. With the development of digital computers 

around the second half of the previous century, a new and very powerful paradigm to 

study a system was introduced, that of modeling and subsequent simulation on a 

computer. With the ever increasing speed of computers, and introduction of new 

computing paradigms, such as parallel- and distributed computing, [1] the use of 

computers as an “experimentation environment” has become increasingly important in a 

wide area of applications. The field of Modeling and Simulation is now very broad, and is 

applied in many disciplines ranging from the social sciences (to e.g. study group 

behavior) to the natural sciences (e.g. fluid flow modeling, etc). 

The field of Scientific Computing provides the very important and necessary glue between 

on the one hand conceptual or mathematical models of a system under study, and on the 

other hand a simulation of such a model on a computer. Scientific Computing is the 

mapping between a model and an actually running simulation. As such, Scientific 

Computing is inherently interdisciplinary, joining application fields with numerical 

mathematics and computer science and is part of the larger field of Computational 

Science. This course, Parallel Scientific Computing and Simulation, gives an introduction 

to the fields of Scientific Computing and Simulation, with a strong focus toward parallel 

computing. The latter is because parallel and distributed computers have become the 

hardware of choice for large scale (i.e. compute intensive) simulations. Moreover, parallel 

computing includes the field of sequential computing (in the obvious limit of p, the 

number of processors, being equal to one). 

The lecture Simulation and Modeling [2] has given you an in-depth introduction into this 

very important field, and here it is assumed that you are familiar with the concepts and 

ideas as introduced in that lecture. Here we will just give a very condensed repetition of 

the most important concepts, and we strongly suggest that you go back to your lecture 

notes to refresh your memory. Moreover, the ideas and concepts as introduced in the 

lecture Introduction Parallel Computing [1] are assumed well known and are not repeated 

here. The main part of this chapter will cover a more in-depth discussion of a specific 

type of models, the Discrete Event models and discuss at length Parallel Discrete Event 

Simulations (PDES).  

B. Modeling and Simulation, a short review 

B.1. How to Study a System 
A system can be anything. It can be blood flow in the aorta, it can be the architecture of 

the internet, it can be the Golden Gate bridge, it can be the solar system. A system is an 

isolated part of reality
1
 that we wish to study through scientific inquiry. According to 

                                                           
1 Or may be even more than that, it may also be a construction of the mind, such as e.g. an 

abstract Mathematical theory. 
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Bernard Siegler „a system is a potential source of data‟ [3]. We study the system by 

experimenting with it, where, according to François Cellier, „an experiment is the process 

of extracting data from a system by exerting it through its inputs‟. [4] This sounds very 

theoretical, but you can easily come up with examples of systems and experiments to 

study them (do this, write down some examples!). Figure 1 provides a schematic 

overview of ways to study a system. 

System

Experiment with

the actual system

Experiment with a

model of the system

Physical ModelMathematical Model

Analytical Solution Simulation
 

Figure 1: Several ways to study a system through experimentation. 

First we may decide to experiment with the actual system. This may be possible for some 

systems (e.g. blood flow in the aorta may be measured with Magnetic Resonance 

Imaging, and we may study e.g. the influence of exercise of a person on the flow), but in 

other cases this may not be so obvious (how would you experiment with the solar 

system?). In many cases it is more natural to first construct a model of the system under 

study and next perform experiments on the model. So, you could study say the influence 

of a tornado on the mechanical vibrations in the Golden Gate bridge by actually building 

a small scale physical model of it and putting that in a wind tunnel to see what happens. 

However, you could also build a mathematical model of your system. For instance, for the 

Solar systems you could write down Newton‟s equation of motion for the main bodies in 

the solar system and then try to solve these equations. 

In general, according to Marvin Minski, „a Model (M) for a system (S) and an experiment 

(E) is anything to which E can be applied in order to answer a question about S‟. [5] So, it 

should be clear by now that a model is not necessarily a computer program. However, in 

this lecture we will only study models that can be expressed as computer programs, so-

called Mathematical Models. As the model replaces the original system we must always 

ask the question if this representation is accurate enough for our purposes. In other words, 

modeling always requires the act of validation, where model validation always relates to 

an experiment performed on the original system. 

Now, mathematical models allow theoretical investigation, and in some (unfortunately not 

too many) situations it turns out that the mathematical equations can be solved 

analytically. We will encounter some situations of mathematical models that can be 

solved analytically later in this reader. However, this is rare, and in many cases one must 

resort to the final possibility, i.e. Simulation, where we may define simulation as „an 

experiment performed on a mathematical model‟. [6] Again note the importance of 

validation. It is easy to perform an experiment on a model in a range of parameters where 

the model is no longer valid, i.e. where the model is no longer an accurate representation 

of the system under study. In that case the simulation will produce results, but they have 

no meaning whatsoever (garbage in, garbage out). 

So, within this framework, Modeling and Simulation provides a clear route through 

Figure 1 and currently is a well-established field in Science and Engineering. Let us now 

zoom in a little more on the modeling and simulation cycle, see Figure 2. A domain 
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specific problem (a system) is mapped on a conceptual model, which is then mapped on a 

solver layer. The solvers can be of different types (Numerical, Direct, or Natural) and in 

the following chapters you will encounter these different types in much detail (remember, 

Scientific Computing was the glue between the model and the actually running 

simulation). Next, the solvers are mapped on a virtual machine model. This can be e.g. a 

message passing parallel computing model (e.g. SPMD in MPI, see [1]), or the data 

parallel model, or the bulk synchronous parallel model, etc. Finally, the virtual machine 

model is mapped onto the actual hardware where the simulation is executed.  
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Figure 2: The Modeling and Simulation Cycle. 

In this cycle many feedback loops will exist, but in this lecture the most interesting one is 

how a specific virtual machine model (read, the assumption of parallel computing in the 

SPMD paradigm) influences the models and the solvers. Or, is it possible to find models 

and solvers that are inherently parallel, and therefore allow a straightforward mapping on 

a parallel computer. In this lecture we will study a large collection of models and solvers, 

and constantly address this question. 

B.2. Types of Mathematical Models 
Although many ideas exist on how to distinguish between different mathematical models, 

and although certainly no clear consensus exists as of today, a generally well accepted 

distinction is in the following three types: 

 Continuous time models; 

 Discrete time models; 

 Discrete event models. 

The main distinction lies in the way the state of the model changes as a function of time, 

see Figure 3. 
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Figure 3: Trajectory of a continuous time - (left), discrete time - (middle), and discrete 

event model (right). 

In continuous time models the state of a system changes continuously over time. These 

types of models are usually represented by sets of differential equations. With discrete-

time models, the time axis is discretised. The system state changes are commonly 
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represented by difference equations. These types of models are typical to engineering 

systems and computer-controlled systems. They can also arise from discrete versions of 

continuous-time models. The time-step used in the discrete-time model is constant. In 

discrete-event models, the state is discretised and "jumps" in time. Events can happen any 

time but only every now and then at (stochastic) time intervals. Typical examples come 

from "event tracing'" experiments, queuing models, Ising spin simulations, image 

restoration, combat simulation, etc. 

C. Discrete Event Simulation 

C.1. A Definition 
We have seen that in continuous systems the state variables change continuously with 

respect to time, whereas in discrete systems the state variables change instantaneously at 

separate points in time. Unfortunately for the computational scientist there are but a few 

systems that are either completely discrete or completely continuous, although often one 

type dominates the other in such hybrid systems. The challenge here is to find a 

computational model that mimics closely the behavior of the system, specifically the 

simulation time-advance approach is critical. 

If we take a closer look into the dynamic nature of simulation models, keeping track of 

the simulation time as the simulation proceeds, we can distinguish between two time-

advance approaches: time-driven and event-driven. 

1. Time-Driven Simulation 

In time-driven simulation the time advances with a fixed increment, in the case of 

continuous systems. With this approach the simulation clock is advanced in 

increments of exactly t time units. Then after each update of the clock, the state 

variables are updated for the time interval [t, t+ t]. This is the most widely known 

approach in simulation of natural systems. Less widely used is the time-driven 

paradigm applied to discrete systems. In this case we have to consider whether: 

 The time step t is small enough to capture every event in the discrete system. 

This might imply that we need to make t arbitrarily small, which is certainly 

not acceptable with respect to the computational times involved. 

 The precision required can be obtained more efficiently through the event-driven 

execution mechanism. This primarily means that we have to trade efficiency for 

precision. 

2. Event-Driven Simulation 

In event-driven simulation on the other hand, we have the next-event time advance 

approach. Here (in case of discrete systems) we have the following phases: 

Step 1 The simulation clock is initialized to zero and the times of occurrence 

of future events are determined. 

Step 2 The simulation clock is advanced to the time of the occurrence of the 

most imminent (i.e. first) of the future events. 

Step 3 The state of the system is updated to account for the fact that an event 

has occurred. 

Step 4 Knowledge of the times of occurrence of future events is updated and 

the first step is repeated. 

The nice thing of this approach is that periods of inactivity can be skipped over by 

jumping the clock from event time to the next event time. This is perfectly save since  per 

definition  all state changes only occur at event times. Therefore causality is guaranteed. 

The event-driven approach to discrete systems is usually exploited in queuing and 

optimization problems. The following sections will discuss in detail Discrete Event 

Simulation (DES) and Parallel Discrete Event Simulation (PDES). 
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C.2. A Prototypical DES example 
The prototypical DES example is a queuing system. Consider a store, with clients 

entering. The store has just one clerk that handles the clients. The clients enter at certain 

time intervals, and each client needs a certain (not constant) time with the clerk to finalize 

his shopping. In short, clients enter the store, they queue up, are serviced, and leave again. 

Depending on the amount of clients that enter the store per time unit and the handling 

times per client, a queue may or may not form. Interesting parameters are mean waiting 

times for each client, mean queue length, probability to have a certain number of clients 

in a queue, etc.  

We may formalize this example in terms of a single server queuing system, see Figure 4. 

Here we assume an infinite population of units, and according to some probabilistic 

model
2
 for arrival times, single units arrive in a waiting line (the queue). Units are 

serviced by a server, again assuming some probabilistic model for the service times, and 

after servicing the unit departs the system. 

Infinite

population
Waiting line

Server

arrivals

departures
 

Figure 4: A single server queuing system. 

We may distinguish a number of actions in the model: 

 arrival of a unit, 

 entry of a unit in the queue, 

 servicing of a unit, 

 departure of a unit. 

An event, which in the model takes zero time, is the moment at which an action starts or 

terminates. The minimal number of events needed to model the single server queuing 

system is two: an arrival event and a departure event, see Figure 5.  
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Figure 5: The arrival – and departure event in the single server queuing model. 

After arrival of a unit the event handler first checks if the server is busy. If so, the unit 

enters a queue, if not it is immediately serviced. Note that the arrival event again 

schedules new events. This is a important feature of discrete event models. So, upon 

arrival of a unit, the first thing that happens is scheduling of a new arrival event, 

                                                           
2 The appendix to this chapter gives a very short overview of probability distributions. 
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according to some probability distribution. Here arriving units can be modeled as a 

Poisson process
3
 (why?), so the inter arrival times are exponentially distributed. 

Furthermore, if servicing of a unit begins, a new departure event is scheduled, according 

to a probability distribution for service times (e.g. exponential or normal distributions). In 

the simulation pseudo random number generators are used to draw times from the 

distributions (see e.g. [7], appendix A). The departure event has a comparable structure. It 

first checks if a unit is waiting. If not it idles, if yes, a unit is removed from the queue and 

another departure event is scheduled.  

All scheduled events, with their associated times, are put on a list and sorted in increasing 

time. This future event list is the core of a discrete event simulation. The first event on the 

list, the imminent event, is taken from the list and handled, next the then imminent event 

is taken and handled, as so on. The time advance algorithm is shown in Algorithm 1. 

While not stop { 

1. Advance the simulation time to time of imminent event. 

2. Remove imminent event from event list 

3. Execute imminent event 

4. Generate (or cancel) future events (if necessary) and update 

event list. 

5. Update statistics and counters 

} 

Algorithm 1: The Time Advance Algorithm in DES. 

C.3. World Views in Discrete Event Simulation 
All simulations contain an executive routine for the management of the calendar and 

clock, i.e., the sequencing of events and driving of the simulation. This executive routine 

fetches the next scheduled event, advances the simulation clock and transfers control to 

the appropriate routine. The operation routines depend on the worldview, and may be 

events, activities, or processes. 

A worldview is the point of view from which the modeler sees the world or the system to 

be modeled. Most of the discrete event simulations use one of the three following 

perspectives [8]: event scheduling, activity scanning, or process interaction. 

In event scheduling each type of event has a corresponding event routine. The executive 

routine processes a time ordered calendar of event notices to select an event for execution. 

Event notices consist of a time stamp and a reference to an event routine. Event execution 

can schedule new events by creating an event notice and place it at the appropriate 

position in the calendar. The clock is always updated to the time of the next event, the one 

at the top of the calendar. In fact, the example of the single server queuing system was 

presented in this view. 

In the activity scanning approach a simulation contains a list of activities, each of which is 

defined by two events: the start event and the completion event. Each activity contains 

test conditions and actions. The executive routine scans the activities for satisfied time 

and test conditions and executes the actions of the first selectable activity. When 

execution of an activity completes, the scan begins again. The activities in the single 

server queuing model were mentioned. You could try yourself to write down the main 

loop of the DES in the activity scanning approach. 

The process interaction worldview focuses on the flow of entities through a model. This 

strategy views systems as sets of concurrent, interacting processes (objects). A process 

class describes the behavior of each class of entities during its lifetime. Process classes 

can have multiple entries and exits at which a process interacts with its environment. The 

executive routine uses a calendar to keep track of forthcoming tasks. However, apart from 

                                                           
3 See the appendix to this chapter. 



Modeling and Simulation  7 

recording activation time and process identity, the executive routine must also remember 

the state in which the process was last suspended.  

C.4. A Prototypical DES example, continued 
Let us continue the example of the single server queuing system by now taking the 

process interaction point of view. We can identify two processes in the model 

1. A unit generator process, which generates new units that enter the system. 

2. A unit process, which requests a service (i.e. queue until server is ready for this 

unit), will be serviced, and leaves the system. 

A simulation is now prepared by defining both processes and then starting a first instance 

of the unit generator process. Below we show a program for such a simulation, in the 

SIMSCRIPT II.5 language. SIMSCRIPT is a high-level simulation language that allows 

construction of models either in the event scheduling or process interaction worldview. 

Here we show a program in the process interaction worldview. It should be noted 

however that SIMSCRIPT, and all other high-level simulation languages for that matter, 

will translate the process interaction view into a execution based on event scheduling. As 

the process interaction view has a very intuitive feel and is amenable to object oriented 

programming, this worldview has become very popular. But, the message is that in the 

final execution the event scheduling view prevails. Anyway, as announced above, in 

Algorithm 2 the process interaction implementation of the single server queuing model in 

SIMSCRIPT is shown. 

Preamble 

 Processes include UNIT, 

 UNIT_GEN 

 Resources include SERVER 

 .. 

End 

 

Main 

 .. 

 Create SERVER 

 Create a UNIT_GEN 

 Activate this UNIT_GEN now 

 Start Simulation 

 .. 

End 

 

Process UNIT_GEN 

 .. 

 While not STOP 

  Do 

   Wait exponential(..) minutes 

   Create a UNIT 

   Activate this UNIT now 

 Loop 

End 

 

Process UNIT 

 .. 

 Request SERVER 

 Work exponential(..) minutes 

 Relinquish SERVER 

 .. 

End 

Algorithm 2: A SIMSCRIPT implementation of the single server queuing model in the 

process interaction worldview. 

In the preamble the two processes are requested, as well as a standard SIMSCRIPT 

resource (a SERVER). The SERVER is just a high level construct that implements the 

queue. Processes can request the SERVER, but must wait for servicing until it is their turn. 

When a unit is serviced, it blocks the SERVER for use by other units. The exact definitions 

of the UNIT_GEN and UNIT are given as well. The UNIT process requests service from the 

SERVER resource. When the SERVER is still busy, the UNIT process will wait. When the 

SERVER becomes available, a service time is established (the call to the 

exponential(..) minutes function, i.e. drawn from an exponential distribution) and 

during this period the SERVER is busy, after which the SERVER is relinquished (i.e. freed 

to service other units). The UNIT_GEN only injects UNIT processes into the system, with 

inter arrival times drawn from an exponential distribution. Finally, the .. are places for 

other useful code, like measuring all kinds of interesting statistics of the simulation. 

Finally, the main loop of the simulation first creates the SERVER and the UNIT_GEN and 

activates the later. Note that in the simulation just one UNIT_GEN is active, whereas many 

UNIT processes can be active. 
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One final note about this example. In the Kendall notation for queuing models (see e.g. 

[9]) our example of the single server queuing model is a M/M/1/ /  queue. This queue 

has analytical solutions for e.g. the expected waiting time, the expected queue length, etc.. 

Therefore, simulation of such a system is not really necessary (but a nice test case or 

practice). However, by making the model more complex (e.g. including rush hours in 

arrivals, having more servers with different statistics and possibility of breakdown, allow 

for priority clients, etc.) analytical solutions no longer exist and one must turn to 

simulations. 

C.5. Simulation Languages 
The paradigm of Discrete Event Simulation is very powerful and has a wide range of 

applications. Many special high level languages for DES have been developed. Typically, 

these languages contain constructs to express the entities of interest, such as events, 

objects, resources, etc, as well as random number generators to draw random numbers 

from a variety of distributions, statistical analysis routines, time advancement 

mechanisms providing an explicit representation of simulation time, and report generation 

tools. Over the years many languages were developed in all three worldviews, see Table 1 

for a small overview. 

Activity Scan Process Interaction Event Scheduling 

GSP GPSS Simscript 

Simpac Simula(76) Quickscript 

CSL Simscript SLAM 

ECSL SOL Simfactory 

Edsim APL Sim++ 

 COSMOS  

 ModSim III  

Table 1: Some high level languages for DES. 

As was already mentioned before, especially the process interaction gives many 

opportunities for object oriented programming. For instance, the ModSim III system is 

completely based on this programming paradigm. 

D. Parallel Discrete Event Simulation 

D.1. From Sequential to Parallel Discrete Event Simulation 
Discrete event models can become very large, requiring large-scale simulations on high 

end computing systems. It is therefore very important to study the possibility of Parallel 

Discrete Event Simulations (PDES). Before we dive into the fundamental problem in 

PDES, that of causility, we first examine another simple example of a discrete event 

model and investigate at what level we may expect parallelism that could be exploited. As 

the main entities in a discrete event model are the events, we may hope that large scale 

discrete event models contain many independent events (independent with respect to data 

dependencies, see [1]) that may be executed in parallel.  

Now consider a slightly more complicated queuing system, that of a traffic network as 

drawn in Figure 6. We have a roundabout with three stop signs, three entry roads and 

three exit roads. The roundabout and the entrance and exit roads are controlled by three 

traffic lights. We may now be interested in issues of capacity of the roundabout, the 

appearance of traffic jams, etc. This traffic network can now be modeled as three 

connected servers, each with two input queues and two output queues. One of the output 

queues connects to the input queue of another server. Each unit (car) departing from a 

server on such output queue will induce an arrival event at the other, connected server. As 

an exercise you could try to write down a simulation pseudo code in either the event 
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scheduling worldview or the process interaction worldview. We will not do that here. We 

will continue to analyze this model and to try to find parallelism on the level of events. 

 

Figure 6: A small traffic network. 

 

Figure 7: The traffic network of Figure 6 with closed interconnecting roads. 

Let us first suppose that the interconnecting roads between the traffic lights are blocked, 

as in Figure 7. All traffic entering on a entry road must take the exit road of the traffic 

light on which it enters the roundabout. This means that all three traffic lights are 

completely independent of each other and that every event scheduled for one traffic light 

can be handled completely in parallel from events scheduled at other traffic lights. Clearly 

this is not a very interesting situation, but now let us assume that the connection are again 

open, but that most traffic still takes the routes as drawn in Figure 7, and that just a small 

portion of the traffic enters the connecting roads. This is drawn schematically in Figure 8. 

 

Figure 8: Traffic network of Figure 6 with a small portion of the traffic on the 

roundabout. 

In this situation we still have many independent events, that can be handled in parallel and 

a relative small amount of dependencies that must be resolved. 

The main recipe now to introduce parallelism into DES is through the following steps: 

1. Indicate physical components in the model, 

2 Map physical components to a set of logical processes LPi, 

3. Run each LPi in parallel as a separate DES, 

4. Resolve dependencies between LP‟s. 
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The final point, resolving dependencies between Logical Processes is far from trivial and 

will be discussed in detail in the next sections. The first three steps will now be 

demonstrated in the framework the of example of the traffic network. 

In the example each traffic light can be identified as a physical component, connected 

through stretches of road. A “domain decomposition” splits the model into three 

components (see Figure 9) with their connections. These three components are now 

mapped to Logical Processes LPA, LPB, and LPC. Figure 10 shows the LP‟s and their 

connections. Each LP is executed as a DES, and may schedule events in the other LP‟s 

through the connections. 

LPA LPB

LPC

 

Figure 9: The traffic network decomposed in three LP’s. 
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Figure 10: The traffic network in terms of its Logical Processes and their connections. 

Each Logical Process LPi has its own internal state Si. It also has its own clock, so each 

LP has a local simulation time. We call this the Local Virtual Time (LVT). Furthermore, 

for each LP we can distinguish internal events that only affect the internal state Si and 

external events that may affect other states Sj. The interaction between LP‟s is through the 

external events. 

D.2. The Fundamental Problem in Parallel Discrete Event Simulation 
We are especially interested in parallelization of asynchronous system simulation, where 

events are not synchronized by a global clock, but rather occur at irregular time intervals. 

In these simulations few events occur at any single point in simulated time and therefore 

parallelization techniques based on synchronous execution using a global simulation 

clock performs poorly. Concurrent execution of events at different points in simulated 

time is required, but this introduces interesting synchronization problems. 

These problems become clear if one examines the operation of a sequential discrete event 

simulator. The sequential simulator typically uses three data structures: the state variables, 

an event list (the calendar), and a global simulation clock. For the execution routine it is 
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crucial that the smallest time stamped event (Emin) from the event list is selected as the 

one to be processed next. If it would depart from this rule and select another event with a 

larger time stamp (Ex), it would be possible for Ex to change the state variables used by 

Emin. This implies that one is simulating a system where the future could affect the past. 

We call errors of these kind causality errors. 

Let us next consider the parallelization of a simulation based on the above paradigm. 

Most parallel discrete event simulation (PDES) strategies adhere to a process interaction 

worldview that strictly forbids processes to have direct access to shared state variables. To 

this methodology some extensions have been made to support the parallel execution of 

the simulation [10]. The system being modeled is viewed as being composed of some 

number of physical processes that interact at various points in simulated time. The 

simulation is constructed as a set of logical processes LP0, LP1, , one per physical 

process, as explained in the previous section. All interactions between physical processes 

are modeled by time stamped event messages sent between the corresponding logical 

processes. Each logical process contains a portion of the state corresponding to the 

physical process it models, as well as a local clock that denotes the progress of the 

process. 

One can assure that no causality error occurs if one adheres to the local causality 

constraint: 

Local Causality Constraint: A discrete event simulation, consisting of logical 

processes that interact exclusively by exchanging time stamped messages, obeys the 

local causality constraint if and only if each logical process executes events in non 

decreasing time stamp order. 

LP1 LP2 LP1 LP2

simulated

time

simulated

time

10

20 20

10E1 E1

E2 E2

E3

 

Figure 11: Causality error. 

Consider two events; E1 at logical process LP1 with time stamp 10, and E2 at LP2 with 

time stamp 20 (see Figure 11). If E1 schedules a new event E3 for LP2 containing a time 

stamp less than 20, then E3 could affect E2, necessitating sequential execution of all three 

events. If one had no information what events could be scheduled by other events, one 

would be enforced to process the only save event, the one containing the smallest time 

stamp, resulting in a sequential execution. 

During the simulation we must therefore decide whether E1 can be executed concurrently 

with E2. But how do we know whether or not E1 affects E2 without actually performing 

the simulation for E1? It is this question the parallel discrete event simulation strategies 

must address. 

We classify parallel discrete event simulation strategies by two categories: conservative 

and optimistic. Conservative approaches strictly avoid the possibility of any causality 

error ever occurring. These approaches rely on some strategy to determine when it is safe 

to process an event. The optimistic approaches use a detection and recovery approach: 

whenever causality errors are detected a rollback mechanism is invoked to recover. We 

will describe some of the concepts behind conservative and optimistic simulation 

mechanisms. 
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D.3. Conservative Methods 
Conservative approaches to PDES strictly avoid the possibility of any causality error ever 

occurring. The conservative approaches were the first distributed simulation mechanisms 

to be developed for PDES. The basic problem conservative mechanisms must address is 

to determine which event is save to process. If an LP contains an event E1 with time 

stamp T1 and it can determine that it is impossible to receive another event with time 

stamp smaller than T1, then the LP can safely process event E1 without a future violation 

of the local causality constraint. LP‟s containing no safe events must block. This can lead 

to deadlock situations if no appropriate precautions are taken. 

Independently, Chandy and Misra [10], and Bryant [10] developed parallel discrete event 

simulation algorithms, where one statically specifies the links that indicate which process 

may communicate with which other processes. In order to determine when it is safe to 

process a message, it is required that messages from any process to any other process are 

transmitted in chronological order according their time stamps. Each link has a clock 

associated with it that is equal to either the time stamp of the message at the front of that 

link's queue or, if the queue is empty, the time of the last received message. The process 

repeatedly selects the link with the smallest clock and, if there is a message in that link's 

queue, updates its local clock to the link's clock and process the message. The order of 

event processing will be correct because all future messages received will have later time 

stamps than the local clock, since they will arrive in chronological order along each link. 

If the selected queue is empty, the process blocks. This is because the process may 

receive a message over this link with a time that is less than all the other input time 

stamps. Thus to insure correct chronology, the process is forced to wait for a message to 

update the clock on the link before the process can update its local clock. This protocol 

guarantees that each process will only process events in non-decreasing time stamp order, 

and thereby ensuring chronological integrity. 

To summarize, 

1. If LPi sends a message to LPj a link exists from i to j. 

2. A message contains an event and associated timestamp for that event. 

3. If a message arrives from LPi in LPj it is stored by LPj in a buffer associated 

with the link from LPi. 

4. LP‟s send messages in strict chronological order (and are assumed to arrive at 

their destination in this strict order) - this guarantees that if LPj receives a 

message from LPi with timestamp T that any other message received from LPi 

will have a larger timestamp. 

The algorithm for each LP can now be summarized as 

1. Look at all the buffers associated with links from other 

LP’s, to find the event with the minimal timestamp. 

2. Simulate up to this timestamp (it is guaranteed that no 

messages with events before this timestamp will arrive). 

Note that you handle all internal events on the event list 

and the event in the message with minimum timestamp. 

3. If a buffer is empty, block and wait until a message 

arrives (this new message may have a timestamp before the 

messages in other non-empty buffers). 

As an example, consider a LPi which has two links to other LP‟s, see Figure 12. On each 

link a number of events E have arrived. Furthermore, a number of internal events have 

been scheduled. The LVT starts at 1. In this starting situation, it is safe to handle events 

up to time 5, so, internal events E2 and E4 and external event E5 are safe events and are 

handled. This then brings us to the situation, with LVT = 5, as shown in Figure 13. One 

new internal event has been scheduled. Link 1 is now empty, causing the LP to block and 

waiting for a new event to arrive at link 1, see Figure 14. An event with timestamp 12 

arrived at link 1. Now it is safe to handle events up to time 11, etc. 
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LPi

Internal events: E2, E4, E8, E10

Link 2: E11, E9

Link 1: E5

Clocki = 1

 

Figure 12: An example of a conservative PDES, LPi has two links, with queued events E. 

Furthermore, the event list contains a number of internal events. The clock starts at 1, the 

subscript on the events their timestamp at which they are scheduled to be handled. 

LPi

Internal events: E8, E10, E13

Link 2: E11, E9

Link 1: empty

Clocki = 5

 

Figure 13: Example of Figure 12 continued. 

LPi

Internal events: E8, E10, E13

Link 2: E11, E9

Link 1: E12

Clocki = 5

 

Figure 14: Example of Figure 12 continued. 

Deadlock may occur if all LP‟s have an empty link, e.g. if message traffic is low, then 

this situation readily occurs. Deadlock occurs when there is a cycle of blocked processes 

and each process is blocked due to another process in the cycle. For example consider the 

network of Figure 15. Each process is waiting on the incoming link containing the 

smallest clock value because the corresponding queue is empty. All three processes are 

blocked, even though there are event messages in other queues that are waiting to be 

processed. 

18

20

25

12

8

10

 

Figure 15: An example of deadlock. (The numbers indicate time stamps.) 

Null messages are used to avoid deadlock. In this way LP‟s inform each other of their 

LVT. This scheme requires that there is a strictly positive lower bound on the lookahead 

for at least one process in each cycle. Lookahead is defined to be the amount of time that 

a process can look into the future. In other words, if the local clock of the process is any 

time T and the process can predict all messages it will send with time stamps less than T + 

L, where L is the lookahead. Thus, for a queueing network model, a strictly positive lower 

bound for the service time for some stations would be required. Intuitively, processes 

keep the clocks of their output links ahead of their local clocks by sending null messages. 
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A null message with time stamp Tnull from process LPA to LPB, tells LPB that there will be 

no more messages from process LPA with time stamp less than Tnull. Whenever a process 

finishes processing an event, it sends a null message on each of its output ports indicating 

the lower bound on the time stamp of the next outgoing message. The receiver of the null 

message can then compute new bounds on its outgoing links, send this information to its 

neighbors, and so on. 

Chandy and Misra [11] also presented a two-phase scheme where the simulation proceeds 

until deadlocked, then the deadlock is detected and resolved. The mechanism is similar to 

that described above, except no null messages are created. Instead the computation is 

allowed to deadlock. The scheme involves a controller process to monitor for deadlock 

and control deadlock recovery. Deadlock detection mechanisms are described in [12]. The 

deadlock can be broken by the observation that the message with the smallest time stamp 

is always save to process; or, with use of a distributed computation, obtain a lower bound 

to enlarge the set of safe messages. 

The degree to which processes can look ahead and predict future events; or more 

importantly, what will not happen in the simulated future critically determines the 

performance of conservative mechanisms. A process with lookahead L can guarantee that 

no events, other than the ones that it can predict, will be generated up to time Clock + L. 

This may enable processes to safely process forthcoming messages that they have already 

received. Fujimoto describes lookahead quantitatively using a parameter called the 

lookahead ratio and presents empirical data to demonstrate the importance of exploiting 

lookahead to achieve good performance [13]. 

D.4. Optimistic Methods 
In optimistic methods one (optimistically) handles events on the event list and in the 

message buffers. If an event arrives with a timestamp smaller than the local virtual time 

(causality error !) some mechanism must be started to recover from this error. So, an LP‟s 

LVT may run ahead of the timestamp of events arriving on its incoming links and if errors 

are made in the chronology a procedure to recover is invoked. In contrast to conservative 

approaches, optimistic strategies need not determine when it is safe to proceed. 

Advantages of this approach are that it has a potentially larger speedup than conservative 

approaches and that the topology of possible interactions between processes need not be 

known. 

An optimistic approach to distributed simulation called Time Warp was proposed by 

Jefferson [14]. Here virtual time is the same as the simulated time. The Local Virtual 

Time of a process is set to the minimum receive time of all unprocessed messages. 

Processes can execute events and proceed in local simulated time as long as they have any 

input at all. As a consequence, the local clock or LVT of a process may get ahead of its 

predecessors' LVTs, and it may receive an event message from a predecessor with time 

stamp smaller than its LVT, i.e., in the past of the process. If this happens the process 

rolls back in simulated time. The event causing the roll back is called a straggler, see 

Figure 16. Recovery is accomplished by undoing the effects of all events that have been 

processed prematurely by the process receiving the straggler. 

The premature execution of an event will trigger two things that have to be rolled back: 

the state of the logical process and the event messages to other processes. Rolling back 

the state is accomplished by periodically saving the process state and restoring an old 

state on roll back, see Figure 17. Unsending a previously sent message is accomplished by 

sending an anti-message that annihilates the original when it reaches its destination, see 

Figure 18. Messages that are sent while the process is propagating forward in simulated 

time are called positive messages. If a process receives an anti-message that corresponds 

to a positive message that is still in the input queue, then the two will annihilate each 

other and the process will proceed, see Figure 19. If an anti-message arrives that 

corresponds to a positive message that is already processed, then the process has made an 

error and must also roll back. It sets its current state to the last state with simulated time 

earlier than the time stamp of the message, see Figure 20. A direct consequence of the roll 
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back mechanism is that more anti-messages may be sent to other processes recursively, 

resulting in an avalanche of roll backs. 

Straggler message

1 5

4

9 13 18

processed event

unprocessed event

 

Figure 16: Beginning of a roll back, a straggler arrives. 

 

Restore state

Straggler message

1

X := 1

5

X := 2

Y := 3

4

9

Y := 2

13

X := 5

Y := 3

18

processed event

unprocessed event

snapshot of state

State

X := 0

Y := 0

State

X := 1

Y := 0

State

X := 2

Y := 3

State

X := 2

Y := 2

State

X := 5

Y := 3

State of LP after

processing E13

State

X := 1

Y := 0

State of LP after

roll back  

Figure 17: State saving and recovery of the state at roll back. 

The Global Virtual Time (GVT) is the minimum of the LVTs for all the processes and the 

time stamps of all messages sent but unprocessed. No event with time stamp smaller than 

GVT will ever be rolled back, so storage used by such event (i.e., saved states) can be 

discarded. 

The procedure just described is referred to as Time Warp with aggressive cancellation. An 

alternative is lazy cancellation, where anti-messages are not sent immediately after roll 

back. Here, the process resumes executing forward in simulated time from its new LVT, 

and when it procedures a message it compares it with the messages in its output queue. If 

the same message is recreated, then there is no need to cancel the message. An anti-

message created at simulated time T is only sent after the process's clock sweeps past time 

T without regenerating the same message. Thus, under lazy cancellation a roll back at the 

successor process may be avoided. On the other hand, if messages are not reproduced, 

then roll backs at the successor processes will be required under both mechanisms, and 

they will occur sooner with aggressive cancellation. 
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Before

4. Send anti-message.

1. Straggler message arrives in

the past, causing rollback

2. Restore state of LP to that

prior to  processing event

with timestamp 5

3. Roll back events at time 9

and 5.

4. Send anti-message for event

with time stamp 25 in output

queue.

1 5

4

9 13 18

Output queue
anti-messages

10 25

 

After

1 4 5 9 13

Output queue
anti-messages

10 processed event

unprocessed event

saved state

anti-message

18

5. Resume execution by processing event at time 4.
 

Figure 18: Sending of an anti-message. 

 

Before

20 25

25

26 31 33

Output queue
Anti-messages

35 1. Anti-message arrives and annihilates

message and anti-message

 

After

20 26 31 33

Output queue
Anti-messages

35 processed event

unprocessed event

saved state

anti-message

 

Figure 19: Arrival of anti-message, annihilating a message still in the event list. 

 

Before

20

25

33

Output queue
Anti-messages

35

1. Anti-message arrives.

2. Roll back E31 and E26.

3. Send anti-message for E42.

4. Annihilate message and anti-message E25.

25 26 31

42

3. Send anti-message.

 

After

20 26 31 33

Output queue
Anti-messages

35 processed event

unprocessed event

saved state

anti-message

 

Figure 20: Arrival of anti-message, annihilating a message that was already processed, 

thus triggering another roll back. 

Depending on the application, lazy cancellation may either improve or degrade 

performance. States may be saved less frequently at the expense of greater overhead for 
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roll back. As a consequence, lazy cancellation requires more memory than aggressive 

cancellation. 

Conservative methods offer good potential for certain classes of problems. A major 

drawback, however, is that they cannot fully exploit the parallelism available in the 

simulation application. If it is possible that event EA might affect EB either directly or 

indirectly, conservative approaches must execute EA and EB sequentially. If the simulation 

is such that EA seldom affect EB these events could have been processed concurrently 

most of the time. As a consequence, conservative algorithms heavily rely on lookahead to 

achieve good performance. 

Optimistic methods offer the greatest potential as a general purpose simulation 

mechanism. A critical question faced by optimistic approaches is whether the system will 

spent most of its time on executing incorrect computations and rolling them back, at the 

expense of correct computations. An intuitive explanation why the behaviour tends to be 

stable is that incorrect computations can only be initiated by a premature execution of a 

correct event. This premature execution, and subsequent incorrect computations, are by 

definition in the simulated time future of the correct, straggler computation. Also, the 

further the incorrect computation spreads the further it moves into the simulated time 

future, thus lowering its priority for execution. Preference is always given to 

computations containing smaller time stamps. The incorrect computation will be slowed 

down, allowing the error detection and correction mechanism to correct before too much 

damage has been done. 

A more serious problem with the optimistic mechanisms is the need to periodically save 

the state of each logical process. This limits the effectiveness of the optimistic 

mechanisms to applications where the amount of computation, required to process an 

event, is significantly larger than the cost of saving the state vector. 

The type of application, or classes of applications, is important when determining an 

appropriate approach to distributed simulation. For dynamic topology systems and 

systems with irregular interactions, Time Warp methods are preferred over conservative 

methods, especially if state-saving overheads do not dominate. On the other hand, if the 

application has good lookahead properties, conservative algorithms can exploit the special 

structure within a fixed topology system. If the application has both poor lookahead and 

large state-saving overheads all existing parallel discrete event simulation approaches will 

have trouble obtaining good performance, even if the application has a considerable 

amount of parallelism. 

E. APPENDIX  

In this section we refresh your memory on discrete and continuous random variables, 

expectation and variance, and a number of probability distribution functions with some 

emphasis on those distributions that are relevant for the Poisson process. 

E.1. Elements of Probability 
If we do an experiment of which the outcome is not determined in advance, for example 

the throwing of a dice or flipping of a coin, we may try to use stochastic techniques to 

describe the system in question. If we do a simulation experiment where we try to mimic 

a specific stochastic system we need random variables in order to be able to do so. 

Distributions: Discrete and Continuous 
We speak of discrete random variables if the outcome X of an experiment can take a finite 

or at most countable number of possible values. For example you may think of flipping 

one coin. The outcome X of this experiment is restricted to heads or tails. In this case we 

say that such a system can be described by a probability mass function p(x): 

 ][)( xXPxp , 
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which denotes the probability that the outcome of the experiment X is equal to x. For 

example in case of the coin flipping experiment: 

 2/1][)( headXPheadsp . 

In general X is a discrete random variable if it can take on only a finite or countable set of 

possible values x1, x2, , xn . Since X must take on one of these values we have: 

 1)(

0i
ixp . 

This means that the probability that the outcome of the experiment lies in the set of 

outcomes x1, x2, , xn  is equal to unity. 

On the other hand if the random variable X can take on a continuous range of values we 

will have to describe it by means of a cumulative distribution function (cdf). From this 

function one can derive the probability that X will lie in a specific continuous range of 

values. The function 

 ][)( xXPxF  

describes the probability that X takes on a value that is less than or equal to x. Analogous 

to the probability mass function in the discrete case we define in the continuous case the 

probability density function f(x) (pdf): 

 
dx

xdF
xf

)(
)( . 

This density function has to be normalized to unity. This means that 

 1)( dxxf , 

which says that the outcome of the experiment X lies in the total range of possible values 

of x with probability 1. Note that f(x)dx is the probability that the random variable X is in 

the interval [x, x+dx]. 

As an example, suppose lifetime of a part in a machine is given by X, where X  0. The 

pdf (in years) is given by 

 2

2

1
)( xexf . 

Therefore, the probability that the lifetime is between 2 and 3 years is 

 145.0)32( 123

3

2

2

2

1
eedxeXP x . 

Expectation: Discrete and Continuous 
The expected value or expectation of X, also called the mean of X is denoted by E[X], 

<X>, or . For a discrete random variable it is defined by: 

 

i

ii xpxXE )(][ . 
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As an example you may think of the coin flipping experiment. Say that we denote heads 

by 0 and tails by 1. Both events occur with probability 1/2. Therefore the expectation 

value of this experiment: 

 
2

1

2

1
*1

2

1
*0]1[*1]0[*0][ XPXPXE . 

In an analog way for a continuous random variable we can calculate the expectation using 

the probability density function for X. 

 dxxxfXE )(][ . 

If we are interested in the random variable g(X), where g is some given function we 

simply write 

 

i

ii xpxgXgE )()()]([  

for the discrete case and 

 dxxfxgXgE )()()]([  

for the continuous case. 

The expectation is a linear operation in the sense that for any two random variables X1 and 

X2: 

 ][][][ 2121 XEXEXXE  

which generalizes to: 

 

i

i

i

i XEXE ][][ . [1] 

Equation 1 holds for the continuous as well as the discrete case. 

Variance: Discrete and Continuous 
The expectation value E[X] of the random variable X, is a weighted average of the 

possible values of X. However, it doesn't yield any information about the variation of 

these values. One way of measuring this variation is to consider the average value of the 

square of the difference between X and E[X]. 

If X is a random variable with mean E[X], then the variance of X, denoted by V[X] or 
2
 is 

defined by: 

 ]])[[(][ 2XEXEXV . 

It can simply be derived that: 

 22 ][][][ XEXEXV . [2] 

The covariance of two random variables X and Y, denoted Cov[X, Y] is defined by: 
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 ][][][],[C YEXEXYEYXov . [3] 

The covariance gives an idea of the correlation between two variables X and Y. What can 

be understood by ''correlation'' between two variables can be see as follows. As in the coin 

flipping experiment, assume you flip n times the same coin. Set X to be the stochastic 

variable that describes the number of heads that will come out. Simultaneously let Y be 

the variable that describes the number of times that tails will come out. It is clear that the 

outcomes of the simultaneous experiments X and Y depend on each other. Let n = 1, heads 

= 0 and tails = 1. Then 

 
4

1
],[thusand0][and,

2

1
][,

2

1
][ YXCovXYEYEXE . 

This is an example of anti-correlation. In other words: if X has a high value consequently 

Y must have a low value. If X and Y are independent Cov[X, Y] = 0. Given formulas 2 and 

3 we can derive furthermore that 

 ],[2][][][ YXCovYVXVYXV . [4] 

If now X and Y are independent random variables then 

 ][][][thusand0  ][C YVXVYXVX,Yov . 

Finally note that the standard deviation , defined as 

 ][XV  

has the same unit as the expectation. 

E.2. The Poisson Process 
Consider random arrival events, such as customers entering a shop or the breakdown of 

parts in a large machine. Define a counting function N(t) that counts the total number of 

events that arrived in the time interval [0, t], t  0. N(t) is the observation of a random 

variable that assumes the values 0, 1, 2, … Finally assume that the probability that an 

arrival occurs in [t,t+dt] equals dt. 

This arrival process, or counting process {N(t), t  0} is a Poisson process with mean rate 

 if 

 arrivals occur one at a time; 

 arrivals are completely random; number of arrivals in an interval [t,t+s] depends 

only on interval length s (so, e.g. no „rush hours‟); 

 no correlation exists between non-overlapping time intervals. 

Now introduce pn(t) the probability that N(t) = n, i.e. 

 P(N(t) = n) = pn(t). 

This is the famous Poisson distribution, which takes the following form: 

 2,1,0and0,
!

)(
)( nt

n

et
tp

tn

n  . [5] 

Proof of equation [5] 

pn(t + t) is the sum of independent, compound probabilities that there were n arrivals 

at time t and no new arrivals in the interval [t, t + t], and that there were n -1 arrivals 

at time t, and one arrival in the interval [t, t + t], and so on. So, for n  1 
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with h.o.t. meaning higher order terms. Taking the limit of t  0 we find 

  )()(
)(

1 tptp
dt

tdp
nn

n . [6] 

For n = 0 this reduces to )1)(()( 00 ttpttp  or 

  )(
)(

0
0 tp
dt

tdp
 [7] 

Solving Equation [7], with initial condition p0(0) = 1, we find tetp )(0 . Next, we 

solve Equation [6]: 
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This concludes the proof. 
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So, both the mean and varaince of the Poisson distribution are equal to  = t. 

So far we considered the counting process N(t) which is a discrete random process that 

counts the arrivals in a Poisson process in the interval [0, t]. Directly related to this, and of 

great practical relevance for Discrete Event Simulations, is the distribution of times 

between arrivals. More specifically, consider the actual times of arrival: 

let the first arrival be at t = A1, 

let the second arrival be at t = A1 + A2, etc. 

A1, A2,… are successive inter arrival times. The inter arrival times are a continuous 

random variable. We now seek the probability density function for this random variable.  

Since the first arrival occurs after time t if and only if there are no arrivals in [0, t], we 

immediately conclude that 
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tetNPtAP )0)(()( 1 . 

Thus, the probability that the first arrival will occur in [0, t] is then given by 

tetAP 1)( 1  . 

This is the cumulative distribution function of the probability distribution function that we 

are looking for. First consider the exponential distribution 
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The cumulative distribution function of the exponential distribution equals 

x

x

t edtexXPxF 1)()(

0

 . 

This is exactly the cumulative distribution function of the inter arrival times of a Poisson 

process with mean rate . Hence, A1, and for that matter all inter arrival times, are 

exponentially distributed with mean 1/ 

As an example, suppose that in a factory a repair is needed with a mean of  = 2 per day. 

The occurrence of failures is known to be a Poisson process. With these assumptions, the 

probability of 3 repairs in the next day will be p(3) = (e-2 23)/3! = 0.18. The probability 

of 2 or more repairs in the next day will be P(2 or more) = 1 - p(0) - p(1) = 0.594. 

E.3. Other distributions 
We end with some other useful discrete and continuous distributions. The question how to 

choose a specific distribution to model a stochastic process is far from trivial, and will be 

based on (previous) knowledge of the system, on actual experiments, or on by treating a 

specific choice as a hypothesis to be tested using statistical methods (e.g. the chi-squared 

test or Kolmogorov-Smirnov test). 

Consider the Bernoulli process, which is a trial with two possible outcomes, succes (xi = 

1) or failure (xi = 0). The Bernoulli distribution is the probability mass function for the 

discrete random variable describing the outcome of the Bernouilli process. The 

probability mass function and expectation and variance are 

).1(][

,][

otherwise,,0

,0,1

,1,

)(

ppXV

pXE

xqp

xp

xp

 

Consider again the Bernoulli process. X is now the number of trials to achieve the first 

success. This gives the Geometric distribution, whith the following probability mass 

function and expectation and variance: 
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Again consider the Bernoulli process. X is now the number of successes in n Bernoulli 

trials. This gives the Binomial distribution. The probability to obtain x successes in n 

trials is p
x
q

n-x
. There are a total of 

x
n  possible experiments of length n with x successes. 

Therefore, the probability mass function for the Binomial distribution is 

,2,1,0)( xqpxp xnx
x
n  . 

The Binomial random variable X can be considered as the sum of n Bernoulli processes 

Xi, X = X1 + X2 + … + Xn. Therefore one immediately finds for the expectation and 

variance of the Binomial distribution 
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It is possible to derive the Poisson distribution from the Binomial distribution by taking a 

special limit. Let n   and p  0, such that np = , a nonzero finite constant. So, we 

have an infinite large pool (n  ), with very small chance of success (p  0), but with a 

finite constant rate . With these definitions we then find 
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In the limit ,1,0,
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, which is the 

Poisson distribution (Equation [5]). 

Finally we consider three important distributions for continuous random variables. A 

continues random variable is uniformly distributed over the interval [a, b] if its 

probability density function is given by 
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A random variable X with mean  and variance  is normal distributed if its probability 

density function equals 
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The normal distribution is widely used and is forms the basis of the central limit theorem 

(see e.g in the lecture „stochastic simulation‟, [7]). The normal distribution can be derived 

from the binomial distribution in the limit of n  , p is constant, and k/n  p (proof not 

shown). 

If a process consists of k sub-processes and the time needed for each sub-process is 

exponentially distributed, then the time for the total process is Erlang distributed, with 

probability density function  
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