
1 Modeling and Simulation

A. Introduction

Science and engineering is all about studying systems, be it natural or man-made, in order

to understand them, to predict their behavior, or to design new systems and/or improve

existing designs. There are many ways to study a system, and the traditional approaches

are through theoretical analysis or physical experimentation on the systems themselves or

physical models of the systems under study. With the development of digital computers

around the second half of the previous century, a new and very powerful paradigm to

study a system was introduced, that of modeling and subsequent simulation on a

computer. With the ever increasing speed of computers, and introduction of new

computing paradigms, such as parallel- and distributed computing, [1] the use of

computers as an “experimentation environment” has become increasingly important in a

wide area of applications. The field of Modeling and Simulation is now very broad, and is

applied in many disciplines ranging from the social sciences (to e.g. study group

behavior) to the natural sciences (e.g. fluid flow modeling, etc).

The field of Scientific Computing provides the very important and necessary glue between

on the one hand conceptual or mathematical models of a system under study, and on the

other hand a simulation of such a model on a computer. Scientific Computing is the

mapping between a model and an actually running simulation. As such, Scientific

Computing is inherently interdisciplinary, joining application fields with numerical

mathematics and computer science and is part of the larger field of Computational

Science. This course, Parallel Scientific Computing and Simulation, gives an introduction

to the fields of Scientific Computing and Simulation, with a strong focus toward parallel

computing. The latter is because parallel and distributed computers have become the

hardware of choice for large scale (i.e. compute intensive) simulations. Moreover, parallel

computing includes the field of sequential computing (in the obvious limit of p, the

number of processors, being equal to one).

The lecture Simulation and Modeling [2] has given you an in-depth introduction into this

very important field, and here it is assumed that you are familiar with the concepts and

ideas as introduced in that lecture. Here we will just give a very condensed repetition of

the most important concepts, and we strongly suggest that you go back to your lecture

notes to refresh your memory. Moreover, the ideas and concepts as introduced in the

lecture Introduction Parallel Computing [1] are assumed well known and are not repeated

here. The main part of this chapter will cover a more in-depth discussion of a specific

type of models, the Discrete Event models and discuss at length Parallel Discrete Event

Simulations (PDES).

B. Modeling and Simulation, a short review

B.1. How to Study a System
A system can be anything. It can be blood flow in the aorta, it can be the architecture of

the internet, it can be the Golden Gate bridge, it can be the solar system. A system is an

isolated part of reality
1
 that we wish to study through scientific inquiry. According to

1 Or may be even more than that, it may also be a construction of the mind, such as e.g. an

abstract Mathematical theory.

Modeling and Simulation 2

Bernard Siegler „a system is a potential source of data‟ [3]. We study the system by

experimenting with it, where, according to François Cellier, „an experiment is the process

of extracting data from a system by exerting it through its inputs‟. [4] This sounds very

theoretical, but you can easily come up with examples of systems and experiments to

study them (do this, write down some examples!). Figure 1 provides a schematic

overview of ways to study a system.

System

Experiment with

the actual system

Experiment with a

model of the system

Physical ModelMathematical Model

Analytical Solution Simulation

Figure 1: Several ways to study a system through experimentation.

First we may decide to experiment with the actual system. This may be possible for some

systems (e.g. blood flow in the aorta may be measured with Magnetic Resonance

Imaging, and we may study e.g. the influence of exercise of a person on the flow), but in

other cases this may not be so obvious (how would you experiment with the solar

system?). In many cases it is more natural to first construct a model of the system under

study and next perform experiments on the model. So, you could study say the influence

of a tornado on the mechanical vibrations in the Golden Gate bridge by actually building

a small scale physical model of it and putting that in a wind tunnel to see what happens.

However, you could also build a mathematical model of your system. For instance, for the

Solar systems you could write down Newton‟s equation of motion for the main bodies in

the solar system and then try to solve these equations.

In general, according to Marvin Minski, „a Model (M) for a system (S) and an experiment

(E) is anything to which E can be applied in order to answer a question about S‟. [5] So, it

should be clear by now that a model is not necessarily a computer program. However, in

this lecture we will only study models that can be expressed as computer programs, so-

called Mathematical Models. As the model replaces the original system we must always

ask the question if this representation is accurate enough for our purposes. In other words,

modeling always requires the act of validation, where model validation always relates to

an experiment performed on the original system.

Now, mathematical models allow theoretical investigation, and in some (unfortunately not

too many) situations it turns out that the mathematical equations can be solved

analytically. We will encounter some situations of mathematical models that can be

solved analytically later in this reader. However, this is rare, and in many cases one must

resort to the final possibility, i.e. Simulation, where we may define simulation as „an

experiment performed on a mathematical model‟. [6] Again note the importance of

validation. It is easy to perform an experiment on a model in a range of parameters where

the model is no longer valid, i.e. where the model is no longer an accurate representation

of the system under study. In that case the simulation will produce results, but they have

no meaning whatsoever (garbage in, garbage out).

So, within this framework, Modeling and Simulation provides a clear route through

Figure 1 and currently is a well-established field in Science and Engineering. Let us now

zoom in a little more on the modeling and simulation cycle, see Figure 2. A domain

Modeling and Simulation 3

specific problem (a system) is mapped on a conceptual model, which is then mapped on a

solver layer. The solvers can be of different types (Numerical, Direct, or Natural) and in

the following chapters you will encounter these different types in much detail (remember,

Scientific Computing was the glue between the model and the actually running

simulation). Next, the solvers are mapped on a virtual machine model. This can be e.g. a

message passing parallel computing model (e.g. SPMD in MPI, see [1]), or the data

parallel model, or the bulk synchronous parallel model, etc. Finally, the virtual machine

model is mapped onto the actual hardware where the simulation is executed.

Vector and

Parallel machines

Embedded

systems

Clusters of PC‟s

or Workstations

Virtual Machine Model

Numerical

Solvers
(FE,FV,CG,..)

Direct

Solvers
(CA, MD)

Natural

Solvers
(SA,GA,NN,..)

Conceptual Model

Domain Specific Problem

Figure 2: The Modeling and Simulation Cycle.

In this cycle many feedback loops will exist, but in this lecture the most interesting one is

how a specific virtual machine model (read, the assumption of parallel computing in the

SPMD paradigm) influences the models and the solvers. Or, is it possible to find models

and solvers that are inherently parallel, and therefore allow a straightforward mapping on

a parallel computer. In this lecture we will study a large collection of models and solvers,

and constantly address this question.

B.2. Types of Mathematical Models
Although many ideas exist on how to distinguish between different mathematical models,

and although certainly no clear consensus exists as of today, a generally well accepted

distinction is in the following three types:

 Continuous time models;

 Discrete time models;

 Discrete event models.

The main distinction lies in the way the state of the model changes as a function of time,

see Figure 3.

State

Time

State

t

Time

State

Time

Figure 3: Trajectory of a continuous time - (left), discrete time - (middle), and discrete

event model (right).

In continuous time models the state of a system changes continuously over time. These

types of models are usually represented by sets of differential equations. With discrete-

time models, the time axis is discretised. The system state changes are commonly

Modeling and Simulation 4

represented by difference equations. These types of models are typical to engineering

systems and computer-controlled systems. They can also arise from discrete versions of

continuous-time models. The time-step used in the discrete-time model is constant. In

discrete-event models, the state is discretised and "jumps" in time. Events can happen any

time but only every now and then at (stochastic) time intervals. Typical examples come

from "event tracing'" experiments, queuing models, Ising spin simulations, image

restoration, combat simulation, etc.

C. Discrete Event Simulation

C.1. A Definition
We have seen that in continuous systems the state variables change continuously with

respect to time, whereas in discrete systems the state variables change instantaneously at

separate points in time. Unfortunately for the computational scientist there are but a few

systems that are either completely discrete or completely continuous, although often one

type dominates the other in such hybrid systems. The challenge here is to find a

computational model that mimics closely the behavior of the system, specifically the

simulation time-advance approach is critical.

If we take a closer look into the dynamic nature of simulation models, keeping track of

the simulation time as the simulation proceeds, we can distinguish between two time-

advance approaches: time-driven and event-driven.

1. Time-Driven Simulation

In time-driven simulation the time advances with a fixed increment, in the case of

continuous systems. With this approach the simulation clock is advanced in

increments of exactly t time units. Then after each update of the clock, the state

variables are updated for the time interval [t, t+ t]. This is the most widely known

approach in simulation of natural systems. Less widely used is the time-driven

paradigm applied to discrete systems. In this case we have to consider whether:

 The time step t is small enough to capture every event in the discrete system.

This might imply that we need to make t arbitrarily small, which is certainly

not acceptable with respect to the computational times involved.

 The precision required can be obtained more efficiently through the event-driven

execution mechanism. This primarily means that we have to trade efficiency for

precision.

2. Event-Driven Simulation

In event-driven simulation on the other hand, we have the next-event time advance

approach. Here (in case of discrete systems) we have the following phases:

Step 1 The simulation clock is initialized to zero and the times of occurrence

of future events are determined.

Step 2 The simulation clock is advanced to the time of the occurrence of the

most imminent (i.e. first) of the future events.

Step 3 The state of the system is updated to account for the fact that an event

has occurred.

Step 4 Knowledge of the times of occurrence of future events is updated and

the first step is repeated.

The nice thing of this approach is that periods of inactivity can be skipped over by

jumping the clock from event time to the next event time. This is perfectly save since per

definition all state changes only occur at event times. Therefore causality is guaranteed.

The event-driven approach to discrete systems is usually exploited in queuing and

optimization problems. The following sections will discuss in detail Discrete Event

Simulation (DES) and Parallel Discrete Event Simulation (PDES).

Modeling and Simulation 5

C.2. A Prototypical DES example
The prototypical DES example is a queuing system. Consider a store, with clients

entering. The store has just one clerk that handles the clients. The clients enter at certain

time intervals, and each client needs a certain (not constant) time with the clerk to finalize

his shopping. In short, clients enter the store, they queue up, are serviced, and leave again.

Depending on the amount of clients that enter the store per time unit and the handling

times per client, a queue may or may not form. Interesting parameters are mean waiting

times for each client, mean queue length, probability to have a certain number of clients

in a queue, etc.

We may formalize this example in terms of a single server queuing system, see Figure 4.

Here we assume an infinite population of units, and according to some probabilistic

model
2
 for arrival times, single units arrive in a waiting line (the queue). Units are

serviced by a server, again assuming some probabilistic model for the service times, and

after servicing the unit departs the system.

Infinite

population
Waiting line

Server

arrivals

departures

Figure 4: A single server queuing system.

We may distinguish a number of actions in the model:

 arrival of a unit,

 entry of a unit in the queue,

 servicing of a unit,

 departure of a unit.

An event, which in the model takes zero time, is the moment at which an action starts or

terminates. The minimal number of events needed to model the single server queuing

system is two: an arrival event and a departure event, see Figure 5.

no yes

Arrival

Event

Server

busy?
Unit enters queue

Begin servicing unit

Schedule new departure

Schedule new arrival

no yes

Departure

Event

Another unit

waiting?

Remove waiting

unit from queue

Begin server idle

time

Begin servicing unit

Schedule new departure

Figure 5: The arrival – and departure event in the single server queuing model.

After arrival of a unit the event handler first checks if the server is busy. If so, the unit

enters a queue, if not it is immediately serviced. Note that the arrival event again

schedules new events. This is a important feature of discrete event models. So, upon

arrival of a unit, the first thing that happens is scheduling of a new arrival event,

2 The appendix to this chapter gives a very short overview of probability distributions.

Modeling and Simulation 6

according to some probability distribution. Here arriving units can be modeled as a

Poisson process
3
 (why?), so the inter arrival times are exponentially distributed.

Furthermore, if servicing of a unit begins, a new departure event is scheduled, according

to a probability distribution for service times (e.g. exponential or normal distributions). In

the simulation pseudo random number generators are used to draw times from the

distributions (see e.g. [7], appendix A). The departure event has a comparable structure. It

first checks if a unit is waiting. If not it idles, if yes, a unit is removed from the queue and

another departure event is scheduled.

All scheduled events, with their associated times, are put on a list and sorted in increasing

time. This future event list is the core of a discrete event simulation. The first event on the

list, the imminent event, is taken from the list and handled, next the then imminent event

is taken and handled, as so on. The time advance algorithm is shown in Algorithm 1.

While not stop {

1. Advance the simulation time to time of imminent event.

2. Remove imminent event from event list

3. Execute imminent event

4. Generate (or cancel) future events (if necessary) and update

event list.

5. Update statistics and counters

}

Algorithm 1: The Time Advance Algorithm in DES.

C.3. World Views in Discrete Event Simulation
All simulations contain an executive routine for the management of the calendar and

clock, i.e., the sequencing of events and driving of the simulation. This executive routine

fetches the next scheduled event, advances the simulation clock and transfers control to

the appropriate routine. The operation routines depend on the worldview, and may be

events, activities, or processes.

A worldview is the point of view from which the modeler sees the world or the system to

be modeled. Most of the discrete event simulations use one of the three following

perspectives [8]: event scheduling, activity scanning, or process interaction.

In event scheduling each type of event has a corresponding event routine. The executive

routine processes a time ordered calendar of event notices to select an event for execution.

Event notices consist of a time stamp and a reference to an event routine. Event execution

can schedule new events by creating an event notice and place it at the appropriate

position in the calendar. The clock is always updated to the time of the next event, the one

at the top of the calendar. In fact, the example of the single server queuing system was

presented in this view.

In the activity scanning approach a simulation contains a list of activities, each of which is

defined by two events: the start event and the completion event. Each activity contains

test conditions and actions. The executive routine scans the activities for satisfied time

and test conditions and executes the actions of the first selectable activity. When

execution of an activity completes, the scan begins again. The activities in the single

server queuing model were mentioned. You could try yourself to write down the main

loop of the DES in the activity scanning approach.

The process interaction worldview focuses on the flow of entities through a model. This

strategy views systems as sets of concurrent, interacting processes (objects). A process

class describes the behavior of each class of entities during its lifetime. Process classes

can have multiple entries and exits at which a process interacts with its environment. The

executive routine uses a calendar to keep track of forthcoming tasks. However, apart from

3 See the appendix to this chapter.

Modeling and Simulation 7

recording activation time and process identity, the executive routine must also remember

the state in which the process was last suspended.

C.4. A Prototypical DES example, continued
Let us continue the example of the single server queuing system by now taking the

process interaction point of view. We can identify two processes in the model

1. A unit generator process, which generates new units that enter the system.

2. A unit process, which requests a service (i.e. queue until server is ready for this

unit), will be serviced, and leaves the system.

A simulation is now prepared by defining both processes and then starting a first instance

of the unit generator process. Below we show a program for such a simulation, in the

SIMSCRIPT II.5 language. SIMSCRIPT is a high-level simulation language that allows

construction of models either in the event scheduling or process interaction worldview.

Here we show a program in the process interaction worldview. It should be noted

however that SIMSCRIPT, and all other high-level simulation languages for that matter,

will translate the process interaction view into a execution based on event scheduling. As

the process interaction view has a very intuitive feel and is amenable to object oriented

programming, this worldview has become very popular. But, the message is that in the

final execution the event scheduling view prevails. Anyway, as announced above, in

Algorithm 2 the process interaction implementation of the single server queuing model in

SIMSCRIPT is shown.

Preamble

 Processes include UNIT,

 UNIT_GEN

 Resources include SERVER

 ..

End

Main

 ..

 Create SERVER

 Create a UNIT_GEN

 Activate this UNIT_GEN now

 Start Simulation

 ..

End

Process UNIT_GEN

 ..

 While not STOP

 Do

 Wait exponential(..) minutes

 Create a UNIT

 Activate this UNIT now

 Loop

End

Process UNIT

 ..

 Request SERVER

 Work exponential(..) minutes

 Relinquish SERVER

 ..

End

Algorithm 2: A SIMSCRIPT implementation of the single server queuing model in the

process interaction worldview.

In the preamble the two processes are requested, as well as a standard SIMSCRIPT

resource (a SERVER). The SERVER is just a high level construct that implements the

queue. Processes can request the SERVER, but must wait for servicing until it is their turn.

When a unit is serviced, it blocks the SERVER for use by other units. The exact definitions

of the UNIT_GEN and UNIT are given as well. The UNIT process requests service from the

SERVER resource. When the SERVER is still busy, the UNIT process will wait. When the

SERVER becomes available, a service time is established (the call to the

exponential(..) minutes function, i.e. drawn from an exponential distribution) and

during this period the SERVER is busy, after which the SERVER is relinquished (i.e. freed

to service other units). The UNIT_GEN only injects UNIT processes into the system, with

inter arrival times drawn from an exponential distribution. Finally, the .. are places for

other useful code, like measuring all kinds of interesting statistics of the simulation.

Finally, the main loop of the simulation first creates the SERVER and the UNIT_GEN and

activates the later. Note that in the simulation just one UNIT_GEN is active, whereas many

UNIT processes can be active.

Modeling and Simulation 8

One final note about this example. In the Kendall notation for queuing models (see e.g.

[9]) our example of the single server queuing model is a M/M/1/ / queue. This queue

has analytical solutions for e.g. the expected waiting time, the expected queue length, etc..

Therefore, simulation of such a system is not really necessary (but a nice test case or

practice). However, by making the model more complex (e.g. including rush hours in

arrivals, having more servers with different statistics and possibility of breakdown, allow

for priority clients, etc.) analytical solutions no longer exist and one must turn to

simulations.

C.5. Simulation Languages
The paradigm of Discrete Event Simulation is very powerful and has a wide range of

applications. Many special high level languages for DES have been developed. Typically,

these languages contain constructs to express the entities of interest, such as events,

objects, resources, etc, as well as random number generators to draw random numbers

from a variety of distributions, statistical analysis routines, time advancement

mechanisms providing an explicit representation of simulation time, and report generation

tools. Over the years many languages were developed in all three worldviews, see Table 1

for a small overview.

Activity Scan Process Interaction Event Scheduling

GSP GPSS Simscript

Simpac Simula(76) Quickscript

CSL Simscript SLAM

ECSL SOL Simfactory

Edsim APL Sim++

 COSMOS

 ModSim III

Table 1: Some high level languages for DES.

As was already mentioned before, especially the process interaction gives many

opportunities for object oriented programming. For instance, the ModSim III system is

completely based on this programming paradigm.

D. Parallel Discrete Event Simulation

D.1. From Sequential to Parallel Discrete Event Simulation
Discrete event models can become very large, requiring large-scale simulations on high

end computing systems. It is therefore very important to study the possibility of Parallel

Discrete Event Simulations (PDES). Before we dive into the fundamental problem in

PDES, that of causility, we first examine another simple example of a discrete event

model and investigate at what level we may expect parallelism that could be exploited. As

the main entities in a discrete event model are the events, we may hope that large scale

discrete event models contain many independent events (independent with respect to data

dependencies, see [1]) that may be executed in parallel.

Now consider a slightly more complicated queuing system, that of a traffic network as

drawn in Figure 6. We have a roundabout with three stop signs, three entry roads and

three exit roads. The roundabout and the entrance and exit roads are controlled by three

traffic lights. We may now be interested in issues of capacity of the roundabout, the

appearance of traffic jams, etc. This traffic network can now be modeled as three

connected servers, each with two input queues and two output queues. One of the output

queues connects to the input queue of another server. Each unit (car) departing from a

server on such output queue will induce an arrival event at the other, connected server. As

an exercise you could try to write down a simulation pseudo code in either the event

Modeling and Simulation 9

scheduling worldview or the process interaction worldview. We will not do that here. We

will continue to analyze this model and to try to find parallelism on the level of events.

Figure 6: A small traffic network.

Figure 7: The traffic network of Figure 6 with closed interconnecting roads.

Let us first suppose that the interconnecting roads between the traffic lights are blocked,

as in Figure 7. All traffic entering on a entry road must take the exit road of the traffic

light on which it enters the roundabout. This means that all three traffic lights are

completely independent of each other and that every event scheduled for one traffic light

can be handled completely in parallel from events scheduled at other traffic lights. Clearly

this is not a very interesting situation, but now let us assume that the connection are again

open, but that most traffic still takes the routes as drawn in Figure 7, and that just a small

portion of the traffic enters the connecting roads. This is drawn schematically in Figure 8.

Figure 8: Traffic network of Figure 6 with a small portion of the traffic on the

roundabout.

In this situation we still have many independent events, that can be handled in parallel and

a relative small amount of dependencies that must be resolved.

The main recipe now to introduce parallelism into DES is through the following steps:

1. Indicate physical components in the model,

2 Map physical components to a set of logical processes LPi,

3. Run each LPi in parallel as a separate DES,

4. Resolve dependencies between LP‟s.

Modeling and Simulation 10

The final point, resolving dependencies between Logical Processes is far from trivial and

will be discussed in detail in the next sections. The first three steps will now be

demonstrated in the framework the of example of the traffic network.

In the example each traffic light can be identified as a physical component, connected

through stretches of road. A “domain decomposition” splits the model into three

components (see Figure 9) with their connections. These three components are now

mapped to Logical Processes LPA, LPB, and LPC. Figure 10 shows the LP‟s and their

connections. Each LP is executed as a DES, and may schedule events in the other LP‟s

through the connections.

LPA LPB

LPC

Figure 9: The traffic network decomposed in three LP’s.

LPC

Arrival event

Internal events

Departure event

Departure event

Arrival event

LPB

Arrival event

Internal events

Departure event

Departure event

Arrival event

LPA

Arrival event

Internal events

Departure event

Departure event
Arrival event

Figure 10: The traffic network in terms of its Logical Processes and their connections.

Each Logical Process LPi has its own internal state Si. It also has its own clock, so each

LP has a local simulation time. We call this the Local Virtual Time (LVT). Furthermore,

for each LP we can distinguish internal events that only affect the internal state Si and

external events that may affect other states Sj. The interaction between LP‟s is through the

external events.

D.2. The Fundamental Problem in Parallel Discrete Event Simulation
We are especially interested in parallelization of asynchronous system simulation, where

events are not synchronized by a global clock, but rather occur at irregular time intervals.

In these simulations few events occur at any single point in simulated time and therefore

parallelization techniques based on synchronous execution using a global simulation

clock performs poorly. Concurrent execution of events at different points in simulated

time is required, but this introduces interesting synchronization problems.

These problems become clear if one examines the operation of a sequential discrete event

simulator. The sequential simulator typically uses three data structures: the state variables,

an event list (the calendar), and a global simulation clock. For the execution routine it is

Modeling and Simulation 11

crucial that the smallest time stamped event (Emin) from the event list is selected as the

one to be processed next. If it would depart from this rule and select another event with a

larger time stamp (Ex), it would be possible for Ex to change the state variables used by

Emin. This implies that one is simulating a system where the future could affect the past.

We call errors of these kind causality errors.

Let us next consider the parallelization of a simulation based on the above paradigm.

Most parallel discrete event simulation (PDES) strategies adhere to a process interaction

worldview that strictly forbids processes to have direct access to shared state variables. To

this methodology some extensions have been made to support the parallel execution of

the simulation [10]. The system being modeled is viewed as being composed of some

number of physical processes that interact at various points in simulated time. The

simulation is constructed as a set of logical processes LP0, LP1, , one per physical

process, as explained in the previous section. All interactions between physical processes

are modeled by time stamped event messages sent between the corresponding logical

processes. Each logical process contains a portion of the state corresponding to the

physical process it models, as well as a local clock that denotes the progress of the

process.

One can assure that no causality error occurs if one adheres to the local causality

constraint:

Local Causality Constraint: A discrete event simulation, consisting of logical

processes that interact exclusively by exchanging time stamped messages, obeys the

local causality constraint if and only if each logical process executes events in non

decreasing time stamp order.

LP1 LP2 LP1 LP2

simulated

time

simulated

time

10

20 20

10E1 E1

E2 E2

E3

Figure 11: Causality error.

Consider two events; E1 at logical process LP1 with time stamp 10, and E2 at LP2 with

time stamp 20 (see Figure 11). If E1 schedules a new event E3 for LP2 containing a time

stamp less than 20, then E3 could affect E2, necessitating sequential execution of all three

events. If one had no information what events could be scheduled by other events, one

would be enforced to process the only save event, the one containing the smallest time

stamp, resulting in a sequential execution.

During the simulation we must therefore decide whether E1 can be executed concurrently

with E2. But how do we know whether or not E1 affects E2 without actually performing

the simulation for E1? It is this question the parallel discrete event simulation strategies

must address.

We classify parallel discrete event simulation strategies by two categories: conservative

and optimistic. Conservative approaches strictly avoid the possibility of any causality

error ever occurring. These approaches rely on some strategy to determine when it is safe

to process an event. The optimistic approaches use a detection and recovery approach:

whenever causality errors are detected a rollback mechanism is invoked to recover. We

will describe some of the concepts behind conservative and optimistic simulation

mechanisms.

Modeling and Simulation 12

D.3. Conservative Methods
Conservative approaches to PDES strictly avoid the possibility of any causality error ever

occurring. The conservative approaches were the first distributed simulation mechanisms

to be developed for PDES. The basic problem conservative mechanisms must address is

to determine which event is save to process. If an LP contains an event E1 with time

stamp T1 and it can determine that it is impossible to receive another event with time

stamp smaller than T1, then the LP can safely process event E1 without a future violation

of the local causality constraint. LP‟s containing no safe events must block. This can lead

to deadlock situations if no appropriate precautions are taken.

Independently, Chandy and Misra [10], and Bryant [10] developed parallel discrete event

simulation algorithms, where one statically specifies the links that indicate which process

may communicate with which other processes. In order to determine when it is safe to

process a message, it is required that messages from any process to any other process are

transmitted in chronological order according their time stamps. Each link has a clock

associated with it that is equal to either the time stamp of the message at the front of that

link's queue or, if the queue is empty, the time of the last received message. The process

repeatedly selects the link with the smallest clock and, if there is a message in that link's

queue, updates its local clock to the link's clock and process the message. The order of

event processing will be correct because all future messages received will have later time

stamps than the local clock, since they will arrive in chronological order along each link.

If the selected queue is empty, the process blocks. This is because the process may

receive a message over this link with a time that is less than all the other input time

stamps. Thus to insure correct chronology, the process is forced to wait for a message to

update the clock on the link before the process can update its local clock. This protocol

guarantees that each process will only process events in non-decreasing time stamp order,

and thereby ensuring chronological integrity.

To summarize,

1. If LPi sends a message to LPj a link exists from i to j.

2. A message contains an event and associated timestamp for that event.

3. If a message arrives from LPi in LPj it is stored by LPj in a buffer associated

with the link from LPi.

4. LP‟s send messages in strict chronological order (and are assumed to arrive at

their destination in this strict order) - this guarantees that if LPj receives a

message from LPi with timestamp T that any other message received from LPi

will have a larger timestamp.

The algorithm for each LP can now be summarized as

1. Look at all the buffers associated with links from other

LP’s, to find the event with the minimal timestamp.

2. Simulate up to this timestamp (it is guaranteed that no

messages with events before this timestamp will arrive).

Note that you handle all internal events on the event list

and the event in the message with minimum timestamp.

3. If a buffer is empty, block and wait until a message

arrives (this new message may have a timestamp before the

messages in other non-empty buffers).

As an example, consider a LPi which has two links to other LP‟s, see Figure 12. On each

link a number of events E have arrived. Furthermore, a number of internal events have

been scheduled. The LVT starts at 1. In this starting situation, it is safe to handle events

up to time 5, so, internal events E2 and E4 and external event E5 are safe events and are

handled. This then brings us to the situation, with LVT = 5, as shown in Figure 13. One

new internal event has been scheduled. Link 1 is now empty, causing the LP to block and

waiting for a new event to arrive at link 1, see Figure 14. An event with timestamp 12

arrived at link 1. Now it is safe to handle events up to time 11, etc.

Modeling and Simulation 13

LPi

Internal events: E2, E4, E8, E10

Link 2: E11, E9

Link 1: E5

Clocki = 1

Figure 12: An example of a conservative PDES, LPi has two links, with queued events E.

Furthermore, the event list contains a number of internal events. The clock starts at 1, the

subscript on the events their timestamp at which they are scheduled to be handled.

LPi

Internal events: E8, E10, E13

Link 2: E11, E9

Link 1: empty

Clocki = 5

Figure 13: Example of Figure 12 continued.

LPi

Internal events: E8, E10, E13

Link 2: E11, E9

Link 1: E12

Clocki = 5

Figure 14: Example of Figure 12 continued.

Deadlock may occur if all LP‟s have an empty link, e.g. if message traffic is low, then

this situation readily occurs. Deadlock occurs when there is a cycle of blocked processes

and each process is blocked due to another process in the cycle. For example consider the

network of Figure 15. Each process is waiting on the incoming link containing the

smallest clock value because the corresponding queue is empty. All three processes are

blocked, even though there are event messages in other queues that are waiting to be

processed.

18

20

25

12

8

10

Figure 15: An example of deadlock. (The numbers indicate time stamps.)

Null messages are used to avoid deadlock. In this way LP‟s inform each other of their

LVT. This scheme requires that there is a strictly positive lower bound on the lookahead

for at least one process in each cycle. Lookahead is defined to be the amount of time that

a process can look into the future. In other words, if the local clock of the process is any

time T and the process can predict all messages it will send with time stamps less than T +

L, where L is the lookahead. Thus, for a queueing network model, a strictly positive lower

bound for the service time for some stations would be required. Intuitively, processes

keep the clocks of their output links ahead of their local clocks by sending null messages.

Modeling and Simulation 14

A null message with time stamp Tnull from process LPA to LPB, tells LPB that there will be

no more messages from process LPA with time stamp less than Tnull. Whenever a process

finishes processing an event, it sends a null message on each of its output ports indicating

the lower bound on the time stamp of the next outgoing message. The receiver of the null

message can then compute new bounds on its outgoing links, send this information to its

neighbors, and so on.

Chandy and Misra [11] also presented a two-phase scheme where the simulation proceeds

until deadlocked, then the deadlock is detected and resolved. The mechanism is similar to

that described above, except no null messages are created. Instead the computation is

allowed to deadlock. The scheme involves a controller process to monitor for deadlock

and control deadlock recovery. Deadlock detection mechanisms are described in [12]. The

deadlock can be broken by the observation that the message with the smallest time stamp

is always save to process; or, with use of a distributed computation, obtain a lower bound

to enlarge the set of safe messages.

The degree to which processes can look ahead and predict future events; or more

importantly, what will not happen in the simulated future critically determines the

performance of conservative mechanisms. A process with lookahead L can guarantee that

no events, other than the ones that it can predict, will be generated up to time Clock + L.

This may enable processes to safely process forthcoming messages that they have already

received. Fujimoto describes lookahead quantitatively using a parameter called the

lookahead ratio and presents empirical data to demonstrate the importance of exploiting

lookahead to achieve good performance [13].

D.4. Optimistic Methods
In optimistic methods one (optimistically) handles events on the event list and in the

message buffers. If an event arrives with a timestamp smaller than the local virtual time

(causality error !) some mechanism must be started to recover from this error. So, an LP‟s

LVT may run ahead of the timestamp of events arriving on its incoming links and if errors

are made in the chronology a procedure to recover is invoked. In contrast to conservative

approaches, optimistic strategies need not determine when it is safe to proceed.

Advantages of this approach are that it has a potentially larger speedup than conservative

approaches and that the topology of possible interactions between processes need not be

known.

An optimistic approach to distributed simulation called Time Warp was proposed by

Jefferson [14]. Here virtual time is the same as the simulated time. The Local Virtual

Time of a process is set to the minimum receive time of all unprocessed messages.

Processes can execute events and proceed in local simulated time as long as they have any

input at all. As a consequence, the local clock or LVT of a process may get ahead of its

predecessors' LVTs, and it may receive an event message from a predecessor with time

stamp smaller than its LVT, i.e., in the past of the process. If this happens the process

rolls back in simulated time. The event causing the roll back is called a straggler, see

Figure 16. Recovery is accomplished by undoing the effects of all events that have been

processed prematurely by the process receiving the straggler.

The premature execution of an event will trigger two things that have to be rolled back:

the state of the logical process and the event messages to other processes. Rolling back

the state is accomplished by periodically saving the process state and restoring an old

state on roll back, see Figure 17. Unsending a previously sent message is accomplished by

sending an anti-message that annihilates the original when it reaches its destination, see

Figure 18. Messages that are sent while the process is propagating forward in simulated

time are called positive messages. If a process receives an anti-message that corresponds

to a positive message that is still in the input queue, then the two will annihilate each

other and the process will proceed, see Figure 19. If an anti-message arrives that

corresponds to a positive message that is already processed, then the process has made an

error and must also roll back. It sets its current state to the last state with simulated time

earlier than the time stamp of the message, see Figure 20. A direct consequence of the roll

Modeling and Simulation 15

back mechanism is that more anti-messages may be sent to other processes recursively,

resulting in an avalanche of roll backs.

Straggler message

1 5

4

9 13 18

processed event

unprocessed event

Figure 16: Beginning of a roll back, a straggler arrives.

Restore state

Straggler message

1

X := 1

5

X := 2

Y := 3

4

9

Y := 2

13

X := 5

Y := 3

18

processed event

unprocessed event

snapshot of state

State

X := 0

Y := 0

State

X := 1

Y := 0

State

X := 2

Y := 3

State

X := 2

Y := 2

State

X := 5

Y := 3

State of LP after

processing E13

State

X := 1

Y := 0

State of LP after

roll back

Figure 17: State saving and recovery of the state at roll back.

The Global Virtual Time (GVT) is the minimum of the LVTs for all the processes and the

time stamps of all messages sent but unprocessed. No event with time stamp smaller than

GVT will ever be rolled back, so storage used by such event (i.e., saved states) can be

discarded.

The procedure just described is referred to as Time Warp with aggressive cancellation. An

alternative is lazy cancellation, where anti-messages are not sent immediately after roll

back. Here, the process resumes executing forward in simulated time from its new LVT,

and when it procedures a message it compares it with the messages in its output queue. If

the same message is recreated, then there is no need to cancel the message. An anti-

message created at simulated time T is only sent after the process's clock sweeps past time

T without regenerating the same message. Thus, under lazy cancellation a roll back at the

successor process may be avoided. On the other hand, if messages are not reproduced,

then roll backs at the successor processes will be required under both mechanisms, and

they will occur sooner with aggressive cancellation.

Modeling and Simulation 16

Before

4. Send anti-message.

1. Straggler message arrives in

the past, causing rollback

2. Restore state of LP to that

prior to processing event

with timestamp 5

3. Roll back events at time 9

and 5.

4. Send anti-message for event

with time stamp 25 in output

queue.

1 5

4

9 13 18

Output queue
anti-messages

10 25

After

1 4 5 9 13

Output queue
anti-messages

10 processed event

unprocessed event

saved state

anti-message

18

5. Resume execution by processing event at time 4.

Figure 18: Sending of an anti-message.

Before

20 25

25

26 31 33

Output queue
Anti-messages

35 1. Anti-message arrives and annihilates

message and anti-message

After

20 26 31 33

Output queue
Anti-messages

35 processed event

unprocessed event

saved state

anti-message

Figure 19: Arrival of anti-message, annihilating a message still in the event list.

Before

20

25

33

Output queue
Anti-messages

35

1. Anti-message arrives.

2. Roll back E31 and E26.

3. Send anti-message for E42.

4. Annihilate message and anti-message E25.

25 26 31

42

3. Send anti-message.

After

20 26 31 33

Output queue
Anti-messages

35 processed event

unprocessed event

saved state

anti-message

Figure 20: Arrival of anti-message, annihilating a message that was already processed,

thus triggering another roll back.

Depending on the application, lazy cancellation may either improve or degrade

performance. States may be saved less frequently at the expense of greater overhead for

Modeling and Simulation 17

roll back. As a consequence, lazy cancellation requires more memory than aggressive

cancellation.

Conservative methods offer good potential for certain classes of problems. A major

drawback, however, is that they cannot fully exploit the parallelism available in the

simulation application. If it is possible that event EA might affect EB either directly or

indirectly, conservative approaches must execute EA and EB sequentially. If the simulation

is such that EA seldom affect EB these events could have been processed concurrently

most of the time. As a consequence, conservative algorithms heavily rely on lookahead to

achieve good performance.

Optimistic methods offer the greatest potential as a general purpose simulation

mechanism. A critical question faced by optimistic approaches is whether the system will

spent most of its time on executing incorrect computations and rolling them back, at the

expense of correct computations. An intuitive explanation why the behaviour tends to be

stable is that incorrect computations can only be initiated by a premature execution of a

correct event. This premature execution, and subsequent incorrect computations, are by

definition in the simulated time future of the correct, straggler computation. Also, the

further the incorrect computation spreads the further it moves into the simulated time

future, thus lowering its priority for execution. Preference is always given to

computations containing smaller time stamps. The incorrect computation will be slowed

down, allowing the error detection and correction mechanism to correct before too much

damage has been done.

A more serious problem with the optimistic mechanisms is the need to periodically save

the state of each logical process. This limits the effectiveness of the optimistic

mechanisms to applications where the amount of computation, required to process an

event, is significantly larger than the cost of saving the state vector.

The type of application, or classes of applications, is important when determining an

appropriate approach to distributed simulation. For dynamic topology systems and

systems with irregular interactions, Time Warp methods are preferred over conservative

methods, especially if state-saving overheads do not dominate. On the other hand, if the

application has good lookahead properties, conservative algorithms can exploit the special

structure within a fixed topology system. If the application has both poor lookahead and

large state-saving overheads all existing parallel discrete event simulation approaches will

have trouble obtaining good performance, even if the application has a considerable

amount of parallelism.

E. APPENDIX

In this section we refresh your memory on discrete and continuous random variables,

expectation and variance, and a number of probability distribution functions with some

emphasis on those distributions that are relevant for the Poisson process.

E.1. Elements of Probability
If we do an experiment of which the outcome is not determined in advance, for example

the throwing of a dice or flipping of a coin, we may try to use stochastic techniques to

describe the system in question. If we do a simulation experiment where we try to mimic

a specific stochastic system we need random variables in order to be able to do so.

Distributions: Discrete and Continuous
We speak of discrete random variables if the outcome X of an experiment can take a finite

or at most countable number of possible values. For example you may think of flipping

one coin. The outcome X of this experiment is restricted to heads or tails. In this case we

say that such a system can be described by a probability mass function p(x):

][)(xXPxp ,

Modeling and Simulation 18

which denotes the probability that the outcome of the experiment X is equal to x. For

example in case of the coin flipping experiment:

 2/1][)(headXPheadsp .

In general X is a discrete random variable if it can take on only a finite or countable set of

possible values x1, x2, , xn . Since X must take on one of these values we have:

 1)(

0i
ixp .

This means that the probability that the outcome of the experiment lies in the set of

outcomes x1, x2, , xn is equal to unity.

On the other hand if the random variable X can take on a continuous range of values we

will have to describe it by means of a cumulative distribution function (cdf). From this

function one can derive the probability that X will lie in a specific continuous range of

values. The function

][)(xXPxF

describes the probability that X takes on a value that is less than or equal to x. Analogous

to the probability mass function in the discrete case we define in the continuous case the

probability density function f(x) (pdf):

dx

xdF
xf

)(
)(.

This density function has to be normalized to unity. This means that

 1)(dxxf ,

which says that the outcome of the experiment X lies in the total range of possible values

of x with probability 1. Note that f(x)dx is the probability that the random variable X is in

the interval [x, x+dx].

As an example, suppose lifetime of a part in a machine is given by X, where X 0. The

pdf (in years) is given by

 2

2

1
)(xexf .

Therefore, the probability that the lifetime is between 2 and 3 years is

 145.0)32(123

3

2

2

2

1
eedxeXP x .

Expectation: Discrete and Continuous
The expected value or expectation of X, also called the mean of X is denoted by E[X],

<X>, or . For a discrete random variable it is defined by:

i

ii xpxXE)(][.

Modeling and Simulation 19

As an example you may think of the coin flipping experiment. Say that we denote heads

by 0 and tails by 1. Both events occur with probability 1/2. Therefore the expectation

value of this experiment:

2

1

2

1
*1

2

1
*0]1[*1]0[*0][XPXPXE .

In an analog way for a continuous random variable we can calculate the expectation using

the probability density function for X.

 dxxxfXE)(][.

If we are interested in the random variable g(X), where g is some given function we

simply write

i

ii xpxgXgE)()()]([

for the discrete case and

 dxxfxgXgE)()()]([

for the continuous case.

The expectation is a linear operation in the sense that for any two random variables X1 and

X2:

][][][2121 XEXEXXE

which generalizes to:

i

i

i

i XEXE][][. [1]

Equation 1 holds for the continuous as well as the discrete case.

Variance: Discrete and Continuous
The expectation value E[X] of the random variable X, is a weighted average of the

possible values of X. However, it doesn't yield any information about the variation of

these values. One way of measuring this variation is to consider the average value of the

square of the difference between X and E[X].

If X is a random variable with mean E[X], then the variance of X, denoted by V[X] or
2
 is

defined by:

]])[[(][2XEXEXV .

It can simply be derived that:

 22][][][XEXEXV . [2]

The covariance of two random variables X and Y, denoted Cov[X, Y] is defined by:

Modeling and Simulation 20

][][][],[C YEXEXYEYXov . [3]

The covariance gives an idea of the correlation between two variables X and Y. What can

be understood by ''correlation'' between two variables can be see as follows. As in the coin

flipping experiment, assume you flip n times the same coin. Set X to be the stochastic

variable that describes the number of heads that will come out. Simultaneously let Y be

the variable that describes the number of times that tails will come out. It is clear that the

outcomes of the simultaneous experiments X and Y depend on each other. Let n = 1, heads

= 0 and tails = 1. Then

4

1
],[thusand0][and,

2

1
][,

2

1
][YXCovXYEYEXE .

This is an example of anti-correlation. In other words: if X has a high value consequently

Y must have a low value. If X and Y are independent Cov[X, Y] = 0. Given formulas 2 and

3 we can derive furthermore that

],[2][][][YXCovYVXVYXV . [4]

If now X and Y are independent random variables then

][][][thusand0][C YVXVYXVX,Yov .

Finally note that the standard deviation , defined as

][XV

has the same unit as the expectation.

E.2. The Poisson Process
Consider random arrival events, such as customers entering a shop or the breakdown of

parts in a large machine. Define a counting function N(t) that counts the total number of

events that arrived in the time interval [0, t], t 0. N(t) is the observation of a random

variable that assumes the values 0, 1, 2, … Finally assume that the probability that an

arrival occurs in [t,t+dt] equals dt.

This arrival process, or counting process {N(t), t 0} is a Poisson process with mean rate

 if

 arrivals occur one at a time;

 arrivals are completely random; number of arrivals in an interval [t,t+s] depends

only on interval length s (so, e.g. no „rush hours‟);

 no correlation exists between non-overlapping time intervals.

Now introduce pn(t) the probability that N(t) = n, i.e.

 P(N(t) = n) = pn(t).

This is the famous Poisson distribution, which takes the following form:

 2,1,0and0,
!

)(
)(nt

n

et
tp

tn

n . [5]

Proof of equation [5]

pn(t + t) is the sum of independent, compound probabilities that there were n arrivals

at time t and no new arrivals in the interval [t, t + t], and that there were n -1 arrivals

at time t, and one arrival in the interval [t, t + t], and so on. So, for n 1

Modeling and Simulation 21

,
inh.o.t.

)()(
)()(

,inh.o.t.)()1)(()(

1

1

t

t
tptp

t

tpttp

tttpttpttp

nn
nn

nnn

with h.o.t. meaning higher order terms. Taking the limit of t 0 we find

)()(
)(

1 tptp
dt

tdp
nn

n . [6]

For n = 0 this reduces to)1)(()(00 ttpttp or

)(
)(

0
0 tp
dt

tdp
 [7]

Solving Equation [7], with initial condition p0(0) = 1, we find tetp)(0 . Next, we

solve Equation [6]:

.
!

)(
)(

,
!2

)(
)(so,

)(

,)()(so,
)(

1,0)0(

2

221
2

110
1

t
n

n

t

t

n

e
n

t
tp

e
t

tppp
dt

tdp

ettppp
dt

tdp

np



This concludes the proof.

00
)!1(

)1(and
)!1(

thatRecalling

x

x

x

x

x

x
e

x
e we can easily derive the

expectation and variance for the Poisson distribution. Writing the Poisson distribution as

,2,1,0),(,
!

)(xt
x

e
xp

x

we immediately find

.)1(][

,)1()1(
)!1(!

][

,
)!1(!

][

2

00

2
2

00

XV

ee
x

x
e

x

ex
XE

ee
x

e
x

ex
XE

x

x

x

x

x

x

x

x

So, both the mean and varaince of the Poisson distribution are equal to = t.

So far we considered the counting process N(t) which is a discrete random process that

counts the arrivals in a Poisson process in the interval [0, t]. Directly related to this, and of

great practical relevance for Discrete Event Simulations, is the distribution of times

between arrivals. More specifically, consider the actual times of arrival:

let the first arrival be at t = A1,

let the second arrival be at t = A1 + A2, etc.

A1, A2,… are successive inter arrival times. The inter arrival times are a continuous

random variable. We now seek the probability density function for this random variable.

Since the first arrival occurs after time t if and only if there are no arrivals in [0, t], we

immediately conclude that

Modeling and Simulation 22

tetNPtAP)0)(()(1 .

Thus, the probability that the first arrival will occur in [0, t] is then given by

tetAP 1)(1 .

This is the cumulative distribution function of the probability distribution function that we

are looking for. First consider the exponential distribution

.
112

][

,22][

,1][

,0,)(

222

2

0
0

2

0

22

0
0

0

XV

dxxeexdxexXE

dxexedxxeXE

xexp

xxx

xxx

x

The cumulative distribution function of the exponential distribution equals

x

x

t edtexXPxF 1)()(

0

 .

This is exactly the cumulative distribution function of the inter arrival times of a Poisson

process with mean rate . Hence, A1, and for that matter all inter arrival times, are

exponentially distributed with mean 1/

As an example, suppose that in a factory a repair is needed with a mean of = 2 per day.

The occurrence of failures is known to be a Poisson process. With these assumptions, the

probability of 3 repairs in the next day will be p(3) = (e-2 23)/3! = 0.18. The probability

of 2 or more repairs in the next day will be P(2 or more) = 1 - p(0) - p(1) = 0.594.

E.3. Other distributions
We end with some other useful discrete and continuous distributions. The question how to

choose a specific distribution to model a stochastic process is far from trivial, and will be

based on (previous) knowledge of the system, on actual experiments, or on by treating a

specific choice as a hypothesis to be tested using statistical methods (e.g. the chi-squared

test or Kolmogorov-Smirnov test).

Consider the Bernoulli process, which is a trial with two possible outcomes, succes (xi =

1) or failure (xi = 0). The Bernoulli distribution is the probability mass function for the

discrete random variable describing the outcome of the Bernouilli process. The

probability mass function and expectation and variance are

).1(][

,][

otherwise,,0

,0,1

,1,

)(

ppXV

pXE

xqp

xp

xp

Consider again the Bernoulli process. X is now the number of trials to achieve the first

success. This gives the Geometric distribution, whith the following probability mass

function and expectation and variance:

Modeling and Simulation 23

.][

,
1

][

,,3,2,1,)(

2

1

p

q
XV

p
XE

xpqxp x 

Again consider the Bernoulli process. X is now the number of successes in n Bernoulli

trials. This gives the Binomial distribution. The probability to obtain x successes in n

trials is p
x
q

n-x
. There are a total of

x
n possible experiments of length n with x successes.

Therefore, the probability mass function for the Binomial distribution is

,2,1,0)(xqpxp xnx
x
n .

The Binomial random variable X can be considered as the sum of n Bernoulli processes

Xi, X = X1 + X2 + … + Xn. Therefore one immediately finds for the expectation and

variance of the Binomial distribution

.][

,][

npqpqpqpqXV

nppppXE





It is possible to derive the Poisson distribution from the Binomial distribution by taking a

special limit. Let n and p 0, such that np = , a nonzero finite constant. So, we

have an infinite large pool (n), with very small chance of success (p 0), but with a

finite constant rate . With these definitions we then find

.11
!

)1()1(

1
)!(!

!
)(

nkk

k

knk
knk

k
n

nnkn

knnn

nnknk

n
qpkXP



In the limit ,1,0,
!

)(so ,1lim k
k

e
kXPe

n

kn

n
, which is the

Poisson distribution (Equation [5]).

Finally we consider three important distributions for continuous random variables. A

continues random variable is uniformly distributed over the interval [a, b] if its

probability density function is given by

.
12

)(
][

,
2

][

with

otherwise,0

,
1

)(

2ab
XV

ba
XE

bxa
abxf

A random variable X with mean and variance is normal distributed if its probability

density function equals

Modeling and Simulation 24

2

2

1
exp

2

1
)(

x
xf .

The normal distribution is widely used and is forms the basis of the central limit theorem

(see e.g in the lecture „stochastic simulation‟, [7]). The normal distribution can be derived

from the binomial distribution in the limit of n , p is constant, and k/n p (proof not

shown).

If a process consists of k sub-processes and the time needed for each sub-process is

exponentially distributed, then the time for the total process is Erlang distributed, with

probability density function

.][

,][

,,3,2,1,0,
)!1(

)(
)(

2

1

k
XV

k
XE

kxe
k

x
xp x

k



F. References

1. Hoekstra, A.G.: Introduction Parallel Computing. Faculty of Science, University of

Amsterdam, The Netherlands, (2001)

2. Sloot, P.M.A.: Simulation and Modelling. Faculty of Science, University of Amsterdam, The

Netherlands, (2002)

3. Siegler, B.: Theory of Modeling and Simulation. (1976)

4. Cellier, F.: Continuous System Modeling. (1990)

5. Minski, M.: Models, Mind, Machines. (1965)

6. Korn, G.,Wait, J.: Digital Continuous System Simulation. (1978)

7. Sloot, P.M.A.: Computational Physics: Stochastic Simulation. Faculty of Science, University

of Amsterdam, The Netherlands, (2002)

8. Hooper, J.W.: Strategy related characteristics of discrete event languages and models.

Simulation 46 (1986) 153-159

9. Banks, J., Carson, J.S.,Nelson, B.L.: Discrete-Event System Simulation. Prentice Hall, (1999)

10. Chandy, K.M.,Misra, J.: Distributed Simulation: A Case Study in Design and Verification of

Distributed Programs. IEEE Transactions on Software Engineering SE-5 (1979) 440-452

11. Chandy, K.M.,Misra, J.: Asynchronous distributed simulation via a sequence of parallel

computations. Communications of the ACM 24 (1981) 198-205

12. Misra, J.: Distributed discrete event simulation. ACM Computing Surveys 18 (1986) 39-65

13. Fujimoto, R.M.: Performance measurements of distributed simulation strategies. Trans. Soc.

Comput.Sim. 6 (1989) 89-132

14. Jefferson, D.R.: Virtual Time. ACM Transactions on Programming Languages and Systems 7

(1985) 404-425

