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Abstract
• Sub-models on micro scales usually represent the most computationally

intensive part of multiscale models.

•Our goal is to reduce the computation time spent on uncertainty quan-
tification of multi-scale models.

•We exploit the multiscale nature of the model and limit the inspection
of the multiscale model up to the level of the subscale systems.

Multiscale modeling

Consider a PDE of the form
∂u(x, t, ξ)

∂t
= L(u(x, t, ξ), ξ),

where L is an operator acting in the space variable, and ξ denotes n-
dimensional space of uncertain input. The analytical solution of this
PDE satisfies

u(x, t + ∆t, ξ) = e∆tLu(x, t, ξ).

Let us assume for L a two-term splitting:

L = Lµ + LM ,
where Lµ and LM are subscale models with micro and macro time scale,
respectively. Thus, the equation can be rewritten

u(x, t + ∆t, ξ) ≈ e∆tLMe∆tLµu(x, t, ξ)

The original PDE can be approximated as a sequence of the following
two sub-systems

∂u∗(x, t, ξ)

∂t
= Lµu∗(x, t, ξ), for tn < t < tn+1,

with u∗(x, tn, ξ) ≈ u(x, tn, ξ)
∂u∗∗(x, t, ξ)

∂t
= LMu∗∗(x, t, ξ), for tn < t < tn+1,

with u∗∗(x, tn, ξ) = u∗(x, tn+1, ξ)

In general, a model with two or more different time scales can be illus-
trated by a Submodel Execution Loop [1, 2].

uinit are some initial conditions for a sub-scale model, O is the observation
of the current state, S is the solver, and B is the application of boundary
conditions.

Case study

We studied the Gray-Scott reaction diffusion model with uncertain coef-
ficients:

∂u(t, x, y, ξ)

∂t
= Du(ξ1)∇2u− uv2︸ ︷︷ ︸

Macro scale model

+F (ξ2)(1− u)︸ ︷︷ ︸
Micro scale model

∂v(t, x, y, ξ)

∂t
=
︷ ︸︸ ︷
Dv(ξ3)∇2v + uv2−

︷ ︸︸ ︷
(F (ξ2) + K(ξ4))v

where the model reaction and diffusion coefficients contain 10% uncer-
tainty with mean values

E(Du(ξ1)) = 2 · 10−5, E(F (ξ2)) = 0.025,

E(Dv(ξ3)) = 1 · 10−5, E(K(ξ4)) = 0.053.

The model reproduces a compex pattern formation with a transition map
studied in [3].

Conclusions

•Our semi-intrusive method can result in a significant decrease in com-
putational time while maintaining the quality of UQ estimates.

•The method allows to choose the number of samples N1 at each time
scale according to errors estimated by the cross-validation approach.
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Fig. 4: Comparison of the performance of the different Uncertainty

Quantification methods
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