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Abstract 

In this paper a new methodology for load balancing parallel processes on parallel systems is proposed. The problem of 
load balancing is considered to be an NP-hard optimization task. Taking static parallel tinite element applications as a case 
study, the benefits and losses that follow from applying the methodology are studied. It is found that the proposed 
methodology can be especially useful for load balancing in asymmetric processor topologies, and therefore is of importance 
for work load balancing in workstation clusters. 
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0. Background 

Experience gained in the CAMAS project [27], 
indicates that in the community of parallel applica- 
tion developers, a strong need exists for various 
tools to support efficient code development. One 
can distinguish, e.g. tools for code analysis, perform- 
ance evaluation and load balancing of parallel ap- 
plications. The CAMAS project has focussed on the 
development of methodologies on which such tools 
can be based. The methods that were developed 
have been implemented in an integrated workbench. 
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Fig. 1 shows an overview of the CAMAS tool set. 
The following tools can be identified: 

(i) Code Analysis tools: Inter procedural de- 
pendency analyzer (IDA) [19] and Fortran 
to Symbolic application description transla- 
tor (F2SAD) [29]. 

(ii) Performance evaluation tools: Parallel ma- 
chine modeling (Parasol I) [4] and parallel 
performance prediction (Parasol II) [S, 291. 

(iii) Load balancing tools: Domain decomposi- 
tion tool (DDT) [9] and Process mapping 
tool (MAP) [6]. 

In this paper the focus is on load balancing of 
parallel processes on parallel systems. Within the 
tool set, Fig. 1, the grey boxes and ovals denote the 
various stages in which load balancing was ap- 
proached in the CAMAS project. A preprocessing 
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Fig. 1. The CAMAS workbench. 

step creates a domain decomposition of a (finite 
element) mesh using DDT, followed by a mapping 
phase, where the emerging parallel processes are 
mapped on a parallel machine using MAP. A major 
unresolved problem in this load balancing ap- 
proach is the optimal cardinality of the domain 
decomposition, given a certain target parallel archi- 
tecture, which is the topic of this work. 

This paper is structured as follows. In Section 1 
the load balancing problem is introduced in a for- 
mal manner. An introduction to the methodology of 
redundant decomposition and mapping to ap- 
proach the load balancing problem is given. Next, 
machine and application models are formulated 
that can be used to express the load balancing 
problem in terms of an NP-hard combinatorial 
optimization task. Furthermore, the properties of 
two well-known cost models, that can be used to 
indicate the quality of process allocations are sum- 
marized. In Section 2 the optimization kernel of the 
MAP tool is presented. Three heuristic optimization 
strategies that can be formulated within this frame- 
work are given. Section 3 is used to present a 

number of experiments on cost based mapping 
using MAP. Amongst others, the benefits and losses 
due to redundant decomposition on the mapping 
quality are investigated. In Section 4, a summary is 
given, followed by a discussion of the experimental 
results. Finally, some directions for future work are 
suggested. 

1. Load balancing by redundant decomposition 
and mapping 

The problem of finding an efficient mapping of 
a set of parallel tasks is generally referred to as the 
loud balancing problem. In [7] it is posed that a prac- 
tical approach to the load balancing problem is to 
solve the problem in two distinct phases: domain 
decomposition followed by mapping. Applications 
that are expected to benefit from large scale parallel 
computing generally work on data domains of con- 
siderable size. In general the intrinsic parallelism 
(denoted by the problem size N) is much higher than 
the available number of processors (P) in a parallel 
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Fig. 2. Decomposition into 16 partitions of a 320 element torus, and its translation into a graph model. 

system. Finding the optimal mapping is an NP-hard 
problem, which requires, in the worst case, O(PN) 
different mappings to be evaluated. The size of the 
solution space is so large that it inhibits finding the 
best mapping in a reasonable time. Therefore, it is 
essential to reduce the size of this solution space. 
This can be done by clustering N parallel tasks into 
A4 clusters where M is of a(P) (decomposition). The 
decomposition determines the connectivity between 
the clusters as well as their relative computational 
weight. In this way the load balancing problem is 
reduced to the mapping of M parallel tasks instead 
of the N atomic parallel tasks. The M clusters can 
then be grouped into (a maximum of) P super clus- 
ters, that is, mapping them on a parallel machine 
consisting of P processors. 

We can motivate the two phase approach as 
follows. Decomposition is necessary to separate 
the domain of an application into an accept- 
able number of parallel tasks. Mapping is necessary 
for optimization of the parallel execution time. 
We pose that a redundant decomposition (M > P) 
can be used to create a solution space that con- 
tains more solutions that are near the optimal 
mapping (which can only be found in case that the 
granularity of the decomposition is equal to the 
intrinsic parallelism (N)). However, this will induce 
an increased size of the solution space and conse- 
quently the problem becomes more difficult to opti- 
mize. Therefore, the trade-off between solution 
quality and optimization time has to be kept in 
mind. 

1 .I. Modelling the cost of mappings 

In order to allow for evaluation of a given decom- 
position and mapping, two models are needed: 
a parallel application model and a parallel machine 
model [20]. Both models must be of moderate 
complexity, allowing for quick evaluation of candi- 
date mappings. However, the model still has to 
carry enough richness to allow for comparison with 
the real system. The models that are used in MAP 
are instances of a more generic formalism used in 
dynamic complex system studies [26]. 

1 .I .l. Parallel application model 
A widely used model for static parallel processes 

is the parallel task graph. The vertices of the graph 
correspond to computational tasks and are at- 
tributed with a work load while the edges model 
communication load between the tasks. For 
example, Fig. 2 shows the modelling procedure for 
an application that works on a domain with a torus 
shape consisting of 32 x 10 = 320 quadrilateral el- 
ements. The torus is partitioned into 16 parts (only 
the top half is shown) and these 16 partitions are 
consecutively represented in a static task graph. In 
this case, the work load attributes of the vertices can 
be set equal. The edges in the graph have relative 
weights of 2,5 or 10. 

1 .1.2. Parallel machine model 
A parallel machine can be modelled analogously. 

Now a vertex corresponds to a processor and the 
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attribute is processing power, while an edge corre- 
sponds to the physical network connection between 
processors and the attribute there is link speed or 
bandwidth. The processor graph is fully connected, 
since every processor can communicate with every 
other processor, although they are not necessarily 
linked to each other directly in the physical topo- 

logy. 

1 .I .3. Cost of a mapping 
Several cost models that use a graph representa- 

tion of the parallel application and machine can be 
found in literature. The following cost function 
(l)[ 143, is known to model the actual execution time 
for a given task allocation with reasonable accuracy. 
Of course, it is a simplification of the real situation, 
i.e. message latencies and network congestion are 
neglected. 

H=yz ( c lwJSq+ max K,,IS, 
UN “F U’,U,EA(U,) > 

(1) 

where Ui is a task in the parallel task graph;, 3 the set 
of processors; a(Ui) the set of tasks connected to 
task ui; W the set of tasks ui residing on processor q;, 
W,, the work associated with task ui (expressed in 
flop); S, the processor speed of processor q 
(expressed in flop/s); W,,,, the number of bytes to be 
sent from processor p to processor q, due to the 
connectivity between task ui, residing on processor 
q, and task ur residing on processor p; S, the 
bandwidth of the route between processor p and 
q (expressed in bytes/s) and fl is a control parameter, 
equivalent to the calculation-communication ratio 

(LIJLln,) WI* 
Eq. (1) estimates the turn-around time by the 

execution time of the “slowest” processor in the 
parallel machine. The discontinuous appearance of 
this cost function is known to hamper the conver- 
gence behaviour of optimization algorithms. An 
alternative cost function (2), first introduced by Fox 
[lo], has better optimization properties. 

H=B~W;+~Cm, (2) 
P P>4 

where, W,: = A,& with A,: = I&P W,,, total 

work on processor p in terms of flop and, 
C w: = M,/S,, with M,: = J&,_ W Y,Y,. 

An incremental change to a given-task allocation 
(moving one task to another processor), necessitates 
a complete recalculation of the cost for Eq. (1). On 
the other hand, Eq. (2) has the locality property, 
which means that incremental changes in a task 
allocation can be propagated into the cost without 
having to re-calculate the whole cost function. Only 
the difference has to be calculated instead [17]. This 
is specifically useful if an optimization algorithm 
that is based on incremental changes is applied, and 
as such can exploit the direct calculation of these 
increments, thus decreasing the computational cost 
of the optimization process. A disadvantage of using 
(2) is the fact that it is not a correct model for the 
absolute cost. However, the suboptimal mappings 
that are found with both functions approximately 
coincide, which is satisfactory in most practical 
situations. Both cost models are available within 
MAP. 

2. Optimization methods for mapping 

Since the decomposition and mapping phases are 
processed separately, dedicated methods for each 
can be developed. Decomposition of mesh based 
application domains can be performed with con- 
siderable efficiency using deterministic graph par- 
titioning methods. In this study the library of graph 
partitioning methods that is offered by the DDT 
tool [9] of the CAMAS workbench, is used to create 
the domain decompositions. 

The problem of evaluating every possible map- 
ping for a problem with granularity N on a parallel 
platform of P processors is an intractable task for 
realistic problems. Even if the granularity of the 
application is first reduced by means of a redundant 
decomposition, the amount of possibilities still 
grows unacceptably. It has been shown that heuris- 
tic methods like genetic algorithms (GA) and 
simulated annealing (SA) are good approaches for 
finding, suboptimal mapping [18]. Motivated by 
arguments like parallelizability, generic applicabil- 
ity, cleanliness and extendability we have chosen to 
base the optimization kernel of MAP on a frame- 
work which can incorporate both types of algorithm 



J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 395 

as well as a deterministic peedy search method coding in its own characteristic manner in the opti- 
known as steepest descent (SD). mization process. 

2.1. The MAP kernel: A generic optimization 
ji-amework 

Many problems in science and engineering can be 
considered as optimization problems. One ap- 
proach to solve these problems is to use determinis- 
tic or numerical methods. Another attractive 
approach is to use stochastic or natural solvers (NS) 
[26]. Two well-known natural solvers are SA [lS] 
and GA [13]. A fundamental problem is that both 
methods are difficult to parallelize to a level of high 
scalability. 

2.1.2. An abstract cellular genetic algorithm (ACGA) 
To avoid the use of global information which is 

necessary in the AGA of Aarts et al. Cl], we have 
introduced a local spatial neighbourhood structure 
[23]. In this way we make an analogy between the 
chromosome (or solution vector) and a cell in Cellu- 
lar Automata. Each chromosome is assigned to 
a cell, which explicitly defines its neighbourhood 
structure. Interaction between cells (and conse- 
quently mixing of solutions in GA, for example) is 
restricted to a local neighbourhood. We can formu- 
late the pseudo-code for the ACGA as follows: 

Classical GAS use global knowledge for their 
selection process. There does not exist a spatial 
relation between the different chromosomes. An 
essential problem in SA is that the method is in- 
herently sequential. Our approach to parallelize 
both methods is to introduce adjustable ranges of 
locality by using an explicit mapping onto Cellular 
Automata. Examples in which a GA is mapped onto 
Cellular Automata can be found, for example, in 
[12,16,28-j. 

Initialize 
DO 

In the general case it is not possible to map SA 
onto Cellular Automata. However, locality can be 
imposed on SA by applying a population based 
algorithm [ 111. Another approach is to use simulta- 
neous independent searches, which is basically the 
same method without interactions [2]. 

FOREACHcellinthepopulation 
Chooseaparentlist (choice) 
Recombineparentlist (production) 
Mutatetheoffspring 
Evaluateoffspring 
IF offspring meets some criterion 

(selection) 
accept offspring 

ELSE 
leave the current chromosome in 

itsplace 
ENDIF 

ENDFOR 

In [ 1] a generic algorithm, the so-called abstract 
genetic algorithm (AGA), for both SA and GA was 
introduced. In the MAP kernel an abstract cellular 
framework is utilized, that can be parallelized effi- 
ciently. Three different optimization methods can be 
invoked within MAP that fit directly onto this 
framework. 

UNTIL maximum number of generations 
(iterations) 

2.1.3. A cellular genetic algorithm (CGA) 
From the ACGA pseudo-code above a parallel 

CGA with local selection can be derived straightfor- 
wardly. We only have to select the various genetic 
operators. 

2.1 .l. Solution encoding 
A mapping is coded as a sequence, where each 

letter in this sequence is a number from the alphabet 

{ILL.., P}. The index of this sequence corresponds 
to the vertex number of the task in the task graph, 
while the letter in the sequence corresponds to the 
processor allocation number of the given task. Each 
of the three optimization methods that can be in- 
voked within MAP manipulates this solution en- 

First, the selection operator. A conventional GA 
uses a global method to select the parents. One 
example is roulette wheel selection. With a CGA the 
parents are selected from a neighborhood of size 
(2~ + 1)2, where Y is the interaction radius. The 
fitness F(xi) of a specific mapping xi is given by 

F(xi) = Hm3x - H(xJ where H,, corresponds to the 
cost of the most expensive individual in the genetic 
population and H,, denotes the cost associated with 
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individual xi. A cell is chosen as a parent by picking 
out a uniformly distributed random number 
<E [0, 1) which satisfies the following rule: 

(3) 

where Aktr) is the neighborhood with radius I of cell 
x,, including x,, and x,,,EA~(~). In a previous work 
[24] we have coined the term local roulette wheel 
(LRW) selection for this mechanism. 

Another possibility is tournament selection, 
which we coin local tournament selection (LTS) in 
the case of CGA. There is an advantage in using LTS 
over LRW in small neighbourhoods, because LRW 
suffers from sampling errors when used on small 
populations. In [24] we have shown that the use of 
structured populations and local selection does not 
induce major deviations from panmictic selection 
pressure. As a recombination operator we take the 
popular l-point GA cross-over operator. In Fig. 3 
the cross-over of two mappings is depicted. The 
mutation operator induces random changes to a 
solution vector. In our case it operates as follows. 
Each letter in the solution encoding is randomly 
changed with a small (mutation) probability to 
a new value, which is chosen uniformly from the set 
{l,...,P}. 

parents mating 
at crossover-point 

A GA has several other parameters, that can be 
used to steer its behaviour. The most important 
ones that can be distinguished are: The convergence 
length L and the population size N. If the optimal 
solution in the population has not changed during 
the last L evolution steps, the system is assumed to 
have converged. The population size N is equal to 
the number of chromosomes or solution encodings 
in the genetic population. Usually, it can be assumed 
that a population size of the order of the problem 
size (in this case the number of parallel processes) is 
a sensible choice. The cross-over operation gen- 
erally is applied with a probability of about 0.7. This 
has also been adopted as the default cross-over 
probability in the GA algorithm used in MAP. The 
mutation probability is taken to be equal to l/n, 
where n is the length of the encoding sequence, or 
equivalently, the number of parallel tasks in the task 
graph. 

2.1.4. Cellular simulated annealing (CSA) 
Another optimization method that can be embed- 

ded in the cellular framework is a special variant of 
simulated annealing: cellular simulated annealing 
(CSA). To introduce locality in the SA algorithm the 
following approach is taken. Several SA solutions or 
configurations exist together on a two dimensional 

offspring 

I I I I J I 

/ 1 2 8 9 10 

> 6 7 3 4 5 

Fig. 3. l-point cross-over of two sequences of length 5. 
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(2D) grid. These configurations only know of the 
existence of other configurations in their direct 
neighborhood. This neighbourhood is defined as 
a localized spatial structure on the grid. If a new 
configuration has to be evaluated for acceptance, 
not only the previous configuration but also its 
neighborhood set is taken into account. Rejection of 
a new configuration can cause any of the configur- 
ations in a neighbourhood set to take over the 
current spatial grid location. For details on the 
implementation of SA and CSA the reader is refer- 
red to [23]. 

2.1.5. Cellular steepest descent (CSD) 
The steepest descent (SD) algorithm, is compar- 

able to gradient based optimization methods in 
continuous optimization. It evaluates the cost of 
each mapping that can be obtained from the present 
solution vector by a single mutation, The mutation 
that gives the highest decrease in cost (steepest 
descent) is accepted. This procedure is repeated and 
continued, until no one-step mutations are left that 
decrease the cost. Such a mechanism is also known 
as a greedy method. Although the method is fast in 
comparison with SA and GA, and straightforward 
to implement, it is likely to get stuck in local minima, 
and therefore the least attractive for global optimiz- 
ation of complex combinatorial optimization prob- 
lems. SD can be embedded into the cellular 
framework, leading essentially to an embarraisingly 
parallel implementation of the algorithm, that is, 
multiple non-interacting SDS are performed at the 
same time. 

3. Experiments 

In this section, several mapping experiments are 
presented. Firstly, in Section 3.1, mapping on hy- 
pothetical machines, with either infinitely fast pro- 
cessors, or infinitely fast communication networks, 
is considered. 

The ratio of calculation time and communication 
time of parallel applications (expressed by fi in Eqs. 
(1) and (2)) is an important factor in the optimization 
process. An experiment on the sensitivity of the 
mapping process to this parameter is presented in 
Section 3.2. In Section 3.3, results are given on ex- 

perimentation with the concept of redundant 
decomposition and mapping. This is done on a 
finite element problem, that is to be processed in 
parallel. 

3.1. Mapping on hypothetical machines 

Initially, experiments are carried out on the 
simplest possible cases. For this purpose, two differ- 
ent hypothetical parallel machines are distin- 
guished. One is equipped with infinitely fast 
processors, which implies that the work load term in 
the cost functions is deleted. The optimal mapping is 
sequential: all processes are allocated to one proces- 
sor. The other hypothetical machine is located on 
the other side of the machine spectrum. In this case 
communication between processors can be per- 
formed infinitely fast. Therefore, the optimal map- 
ping requires the work (in terms of computation 
time) to be equally balanced over the processor 
topology; each processor gets an equal part of the 
calculation time (not necessarily equal work dis- 
tribution, since in principle it is allowed to have an 
asymmetric processor topology). 

As a test application model we take the car grid 
depicted in Fig. 4. We consider decomposition in 
16,32 and 64 parts, using recursive spectral bisec- 
tion (RSB) [25], followed by mapping of the 
corresponding task graphs on both hypothetical 
topologies. Cost function (2) is used as the objective 
function by the CGA optimization process. 

In Fig. 5 the evolution of the work load distribu- 
tion for the fast-cpu topology is depicted for the best 
individual in the GA population, for mapping 32 
partitions on a 16 processor topology. For each 
processor the evolution of the work load allocation 
is displayed as a line. it can be observed that the total 
work load is assigned to one processor after 75 
generations. 

Fig. 6 shows the evolution of the work load dis- 
tribution, but now for mapping on the fast-network 
topology. In this case the work load is distributed 
evenly over the available processors. 

In Fig. 7 the evolution of the cost associated with 
the best individual in the population is shown for 
the following problem instances; the car grid par- 
titioned into 16,32 and 64 parts, respectively, map- 
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Fig. 4. Car grid, 7938 elements, courtesy provided by ESI-Paris. 
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Fig. 5. Evolution of the work load distribution of the best individual in the population for mapping 32 partitions on a 16 processor, fast- 
cpu, topology. 



800 

600 

-S 
0 

3 500 
‘0 
z 

400 

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 

I 

I I I I 
32on16 __ 

399 

I 

20 

I I I 

40 60 80 100 
generations 

Fig. 6. Evolution of the work load distribution of the best individual in the population for mapping 32 partitions on a 16 processor, fast- 
network, topology. 
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Fig. 7. Evolution of the cost of the best individual in the population for mapping 16,32 and 64 partitions on a 4 processor, fast-cpu, 
topoh5gy. 
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Fig. 8. Evolution of the cost of the best individual in the population for mapping 16,32 and 64 partitions on a 16 processor, fast-network, 
topology. 

ped on a 4 processor, fast-cpu, topology. Fig. 8 
shows the cost evolution for mapping the same 
decompositions on a 16 processor, fast-net- 
work, topology. Both figures have been created 
using CGA. It should be noted that the experi- 
mental data depicted in all figures correspond to 
single optimization runs. Therefore, one should 
not draw general conclusions on the convergence 
speed of the genetic algorithm on the basis of these 
figures. 

/?, which has been introduced in the cost func- 
tions, can be used to vary the characteristics of 
a parallel machine in the machine spectrum between 
the two hypothetical machines. In the following, we 
will study the implications of /3 variations to the 
load balancing problem in more detail. 

3.2. B Sensitivity 

The competition between the work and calcula- 
tion term in the cost functions can be varied using fi. 
It gives a natural parameter to study the mapping 
problem for a given application and machine topo- 
logy over the whole spectrum of possible machines. 
In Fig. 9 the number of processors that is used in 
optimal mapping vs. the value of /? in the cost 
functions is shown. Eq (1) was taken as the objective 
function, mapping the 320 torus grid, partitioned 
into four parts on a 4 processor ring topology. The 
small solution space in this case, allows for an 
exhaustive search for the optimal values. The alloca- 
tions that were found to be optimal in this case, 
therefore could be proven to be the global optima. 
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Fig. 9. Number of processors in optimal allocation vs. /3. 

Before we continue with the experiments on re- 
dundancy, let us reflect on the consequences of this 
section. We observe that there is a transition in the 
optimal number of processors that is used, that is 
dependent on 8. In a recent work [S] we have 
argued that the load balancing problem essentially 
only exists in the transition region. Denoting the 
value of fi where the transition is halfway by /I,, we 
can state that in practice it can be expected that 
mapping of a number of interconnected tasks is 
trivial in the region where B-C/?,. In this case it 
makes no sense to search for parallelism. Sequential 
task mapping is optimal. 

On the other hand if /I > /I,, the amount of com- 
munication between the parallel tasks is small in 
comparison with the amount of work per task. 
Therefore, parallelism can be exploited. Finding the 

optimal allocation in this situation is not trivial 
though. If we have A4 tasks that are not all of equal 
weight, we are confronted with the NP-complete 
job shop problem [3]. Furthermore, if the processor 
topology is asymmetric, which for example can be 
the case in a heterogeneous cluster of workstations, 
extra difficulty is introduced. 

Within the transition region (#l z &), the work 
and communication term in the cost function are in 
strong competition with one another and the opti- 
mal value will be even harder to find, than in case of 
/I > /I,. In Section 1 it has been posed that a redun- 
dant decomposition creates additional degrees of 
freedom for the mapping process, enabling it to find 
better optimal solutions. In Section 3.3, we will 
study the benefits of redundant decomposition, 
where /I is restricted to be larger than /3,. 
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Table 1 
The (suboptimal) cost for varying decomposition cardinality (M) 
and number of processors (P) with j3 z 10 

JW 4 5 6 7 8 

8 1619.6 15%.8 1586.2 1564.0 856.8 
16 1623.8 1526.2 1198.4 1158.6 822.0 
32 1625.2 1340.4 1121.8 975.0 821.0 
64 1642.4 1314.4 1095.2 932.0 824.4 

Table 2 
The (suboptimal) cost for varying decomposition cardinality (M) 
and number of processors (P) using a fast network topology 

M/P 4 5 6 I 8 

8 2006.0 1976.0 1968.0 19340 1053.0 
16 1996.0 1883.0 1495.0 1433.0 10140 
32 19920 1663.0 1417.0 1205.0 1014.0 
64 1992.0 1594.0 1331.0 1147.0 1006.0 

3.3. Load balancing by redundant decomposition 
and mapping 

In this section we present some experiments on 
redundant decomposition. Again we consider the 
car grid. Tables 1 and 2 summarize the quality of 
mapping, calculated using Eq. (l), for various values 
of M and P. We consider a target machine that is 
fully connected and homogeneous. 

The decomposition method that is used to create 
the A4 partitions is taken to be recursive coordinate 
bisection [25]. For Table 1 @ = z,Jr,,,, zz 10, 
whereas a fast network topology is used for the 
results presented in Table 2. Each number in these 
tables is the minimal value over 200 SD runs and is 
calculated using cost function (l), while the SD 
process is steered by Eq. (2). 

From Table 1 we can observe that redundancy 
generally allows us to find better optima, although 
for the situation where P = 4 this is not the case. In 
the discussion below, some practical problems asso- 
ciated with mapping real finite element partitions 
are discussed, that account for this deficiency. For 
the fast network topology, redundancy is beneficial 
in all cases, see Table 2. 

Finally, we consider mapping on an asymmetric 
fully connected B-node topology, where the relative 

processing power of each CPU is inversely 
proportional to the processor identifier, 
5, = l/p (p E { 1,2,3,4,5,6,7,8}) and /I x 10. In Fig. 
10 the cost evolution for mapping 8,16,32 and 64 
partitions of the car grid is depicted. We have used 
CGA for the optimization process. Note that in- 
creasing redundancy initially results in better 
suboptima, but that the solution quality degrades 
for large redundancy, which is presumably due to 
the size of the solution space. 

4. Discussion and concluding remarks 

4.1. Summary and discussion 

For the purpose of mapping parallel processes 
onto parallel machines, we have developed a tool 
(MAP), which utilizes a generic graph model for 
parallel applications and machines. The quality of 
a proposed mapping is expressed using a cost func- 
tion of which several examples are available within 
MAP. The mapping problem is approached as 
a NP-hard combinatorial optimization task. From 
within MAP several (well-known) parallel heuristic 
optimization kernels can be invoked to “solve” the 
mapping problem. The idea to use a redundant 
decomposition to create search freedom for the 
mapping optimization process is posed as a possible 
method to enhance the performance of parallel pro- 
cesses, opposed to a partitioning cardinality equal 
to the number of available processors. 

4.1 .I. Mapping on hypothetical machines 
The GA converges to (sub) optimal mappings 

under the default parameter settings, when (2) is 
used as the objective function. This follows from 
experiments such as mapping on processor net- 
works with respectively infinitely fast processors (all 
processes are mapped on one processor) and on 
topologies with an infinitely fast network (work 
load balance). A selection of the corresponding ex- 
perimental results is shown in Figs. 5-7. It is clear 
that the optimization task becomes more problem- 
atic as the number of solutions increases. Further- 
more, the optimization in the case of fast-cpu 
topologies appears to be much harder than in case 
of the fast-network topologies. It takes in general 
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Fig. 10. Evolution of the optimal mapping in the CGA population for mapping 8, 16,32 and 64 partitions on an asymmetric 8 node 
topology with j x 10. 

much more evolution steps or a larger population 
size to arrive at the optimal value. 

This can be explained from the fact that the 
number of optima is much smaller in the fast-cpu 
case (P) than in the case of the fast-network (P!), 
although the size of the solution space is equal in 
both cases. Therefore, the chance than an optimal 
solution is found (by random search) for the former 
is much smaller than for the latter. On the other 
hand the optimal mapping of parallel processors 
with an infinitely fast network is only exactly solv- 
able in the case that each process has equal weight. 
As soon as this property is violated it is known that 
the problem becomes NP-complete, analogous to 
job scheduling [3]. However, good suboptimal sol- 
utions (minimizing the variance of the work load 
distribution) are found. 

Comparable experiments indicate that SA has 
less difficulty with finding the optima in the fast-cpu 
case. The nature of the SA algorithm, where in- 
cremental changes to the solution encoding are 
made, is the main reason for this. Both SA and GA 
have more trouble optimizing(l), which is caused by 
the discontinuous form of this function. In this case 
bruteforce random search or multiple SD runs are 
possible alternatives. 

4.1.2. /I Sensitivity 
The competition between communication and 

calculation time is an important parameter in the 
mapping process. Fig. 9 clearly shows that variation 
of /I induces a transition from optimal sequential to 
parallel allocation. The steepness of this transition is 
rather striking. It was found that the optimal map- 
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ping appears either to be purely sequential or maxi- 
mally parallel. Effectively, outside the transition 
region the problem of mapping respectively is re- 
duced to sequential allocation of the parallel tasks 
and job scheduling. 

4.1.3. Load balancing by redundant decomposition 
and mapping 

From Tables 1 and 2 we can see that the quality of 
mapping can significantly benefit from redundant 
decomposition if we consider mappings where 
M/P is not an integer. This can be expected, since 
the relative weight of each chunk of data will be 
smaller in case of more redundancy which makes it 
easier to balance the work load distribution. 

If M/P is an integer it is clear that the applicability 
of redundant decomposition strongly depends on 
the quality of the decomposition method. In case of 
a homogeneous processor topology, and a locality 
preserving decomposition method like RSB, one 
can only expect a marginal cost gain by applying 
mapping. On the other hand, reasonable cost im- 
provements can be expected for mapping on hetero- 
geneous topologies as is shown in Fig. 10. Note that 
there is a trade-off between cost decrease due to 
increased redundancy and the size of the search 
space, which increases with the degree of redun- 
dancy. For a redundancy of 64 one can expect 
a better optimal solution cost. However, due to the 
increased complexity, CGA is not able to find it in 
reasonable time. 

4.2. Concluding remarks and future work 

A significant practical problem in mapping real 
parallel processes using redundant decomposition is 
illustrated by the following example. Given a practi- 
cal finite element mesh that is decomposed in M, 
and 2M parts, where the second partitioning equals 
the first partitioning, with each subdomain bisected. 
The first partitioning can therefore directly be con- 
structed out of the second one by assembling the 
appropriate parts together. This collection oper- 
ation is computationally so expensive that it must 
be left out of a mapping algorithm. The cost of 
a mapping is estimated by the individual contribu- 
tions of each of the 2M partitions to the cost func- 
tion. The contribution to the communication cost of 

a processor pair is approximated by the summation 
of the communication volume between each pair of 
data partitions on these processors. As a conse- 
quence, we are confronted with double counting of 
shared mesh points, resulting in the situation that 
the cost associated with the mapping of the M parts 
will be lower than that of the identical mapping of 
the 2M parts. Therefore it is not possible to quanti- 
tatively compare the evolution of the mapping costs 
for varying redundancy. 

We have observed a trade-off between the useful 
redundancy and the size of the solution space. Al- 
though increased redundancy allows us to find bet- 
ter solutions it is not said that the performance 
gained by it will compensate the effort that we have 
to put into finding a better solution. In Section 3.2 it 
was noted that the specific parallel system and 
parallel application parameters are very important 
for the shape of the search space of the mapping 
problem. 

The methodology of redundant decomposition 
and mapping described above is applicable to the 
load balancing problem for applications that dis- 
play a static work load distribution combined with 
parallel machines that have static processor charac- 
teristics. An additional strong point, of our load 
balancing approach, is that it allows for more flexi- 
bility in handling asymmetry present in the proces- 
sor topology. 

However, many applications cannot be described 
in terms of a static parallel task graph. Furthermore, 
parallel machines like workstation clusters are by 
no means static resources. Extensive research on the 
subject of dynamic load balancing in our group has 
resulted in a prototype dynamic load balancing 
system for cluster computing, called Dynamic PVM 

WI. 
It can be expected that the inherent dynamic 

asymmetry in workstation clusters will have a sig 
nificant degrading effect on the performance of ap- 
plications that work on nonredundantly 
decomposed meshes. Redundant decomposition, 
and thus in practice a redundant set of parallel tasks, 
can be used by a system like Dymanic PVM to adapt 
to changes in the CPU utilization. Part of the future 
work in our group consists of embedding a (parallel) 
mapping algorithm, into the task scheduler of 
Dynamic PVM [21]. 
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