
FGCS

ELSEYIER Future Generation Computer Systems 12 (1997) 391-406

OUTURE
VENERATION

O~MPUTER
QYSTEMS

Load balancing by redundant decomposition
and mapping

J. F. de Ronde*, A. Schoneveld’, P. M. A. Sloot’

Department of Mathematics and Computer Science, University of Amsterdam, Kruislaan 403,1098
SJ Amsterdam, The Netherlands

Abstract

In this paper a new methodology for load balancing parallel processes on parallel systems is proposed. The problem of
load balancing is considered to be an NP-hard optimization task. Taking static parallel tinite element applications as a case
study, the benefits and losses that follow from applying the methodology are studied. It is found that the proposed
methodology can be especially useful for load balancing in asymmetric processor topologies, and therefore is of importance
for work load balancing in workstation clusters.

Keywords: Redundant domain decomposition; Mapping; Graph based parallel process/processor modelling

0. Background

Experience gained in the CAMAS project [27],
indicates that in the community of parallel applica-
tion developers, a strong need exists for various
tools to support efficient code development. One
can distinguish, e.g. tools for code analysis, perform-
ance evaluation and load balancing of parallel ap-
plications. The CAMAS project has focussed on the
development of methodologies on which such tools
can be based. The methods that were developed
have been implemented in an integrated workbench.

*Corresponding author. Tel.: + 3120 525 7463;
fax: + 3120 525 7490; E-mail: janr @wins. wad.
CAMAS: Computer Aided Migration of Applications System,
ESPRIT III project number 6756, September 1992/September
1995.
’ E-mail: arjen@wins.uva.nl.
*E-mail: peterslo@wins.uva.nl.

Fig. 1 shows an overview of the CAMAS tool set.
The following tools can be identified:

(i) Code Analysis tools: Inter procedural de-
pendency analyzer (IDA) [19] and Fortran
to Symbolic application description transla-
tor (F2SAD) [29].

(ii) Performance evaluation tools: Parallel ma-
chine modeling (Parasol I) [4] and parallel
performance prediction (Parasol II) [S, 291.

(iii) Load balancing tools: Domain decomposi-
tion tool (DDT) [9] and Process mapping
tool (MAP) [6].

In this paper the focus is on load balancing of
parallel processes on parallel systems. Within the
tool set, Fig. 1, the grey boxes and ovals denote the
various stages in which load balancing was ap-
proached in the CAMAS project. A preprocessing

0167-739X/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved
SSDI 0167-739X(97)00030-5

392 J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406

Fig. 1. The CAMAS workbench.

step creates a domain decomposition of a (finite
element) mesh using DDT, followed by a mapping
phase, where the emerging parallel processes are
mapped on a parallel machine using MAP. A major
unresolved problem in this load balancing ap-
proach is the optimal cardinality of the domain
decomposition, given a certain target parallel archi-
tecture, which is the topic of this work.

This paper is structured as follows. In Section 1
the load balancing problem is introduced in a for-
mal manner. An introduction to the methodology of
redundant decomposition and mapping to ap-
proach the load balancing problem is given. Next,
machine and application models are formulated
that can be used to express the load balancing
problem in terms of an NP-hard combinatorial
optimization task. Furthermore, the properties of
two well-known cost models, that can be used to
indicate the quality of process allocations are sum-
marized. In Section 2 the optimization kernel of the
MAP tool is presented. Three heuristic optimization
strategies that can be formulated within this frame-
work are given. Section 3 is used to present a

number of experiments on cost based mapping
using MAP. Amongst others, the benefits and losses
due to redundant decomposition on the mapping
quality are investigated. In Section 4, a summary is
given, followed by a discussion of the experimental
results. Finally, some directions for future work are
suggested.

1. Load balancing by redundant decomposition
and mapping

The problem of finding an efficient mapping of
a set of parallel tasks is generally referred to as the
loud balancing problem. In [7] it is posed that a prac-
tical approach to the load balancing problem is to
solve the problem in two distinct phases: domain
decomposition followed by mapping. Applications
that are expected to benefit from large scale parallel
computing generally work on data domains of con-
siderable size. In general the intrinsic parallelism
(denoted by the problem size N) is much higher than
the available number of processors (P) in a parallel

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 393

Fig. 2. Decomposition into 16 partitions of a 320 element torus, and its translation into a graph model.

system. Finding the optimal mapping is an NP-hard
problem, which requires, in the worst case, O(PN)
different mappings to be evaluated. The size of the
solution space is so large that it inhibits finding the
best mapping in a reasonable time. Therefore, it is
essential to reduce the size of this solution space.
This can be done by clustering N parallel tasks into
A4 clusters where M is of a(P) (decomposition). The
decomposition determines the connectivity between
the clusters as well as their relative computational
weight. In this way the load balancing problem is
reduced to the mapping of M parallel tasks instead
of the N atomic parallel tasks. The M clusters can
then be grouped into (a maximum of) P super clus-
ters, that is, mapping them on a parallel machine
consisting of P processors.

We can motivate the two phase approach as
follows. Decomposition is necessary to separate
the domain of an application into an accept-
able number of parallel tasks. Mapping is necessary
for optimization of the parallel execution time.
We pose that a redundant decomposition (M > P)
can be used to create a solution space that con-
tains more solutions that are near the optimal
mapping (which can only be found in case that the
granularity of the decomposition is equal to the
intrinsic parallelism (N)). However, this will induce
an increased size of the solution space and conse-
quently the problem becomes more difficult to opti-
mize. Therefore, the trade-off between solution
quality and optimization time has to be kept in
mind.

1 .I. Modelling the cost of mappings

In order to allow for evaluation of a given decom-
position and mapping, two models are needed:
a parallel application model and a parallel machine
model [20]. Both models must be of moderate
complexity, allowing for quick evaluation of candi-
date mappings. However, the model still has to
carry enough richness to allow for comparison with
the real system. The models that are used in MAP
are instances of a more generic formalism used in
dynamic complex system studies [26].

1 .I .l. Parallel application model
A widely used model for static parallel processes

is the parallel task graph. The vertices of the graph
correspond to computational tasks and are at-
tributed with a work load while the edges model
communication load between the tasks. For
example, Fig. 2 shows the modelling procedure for
an application that works on a domain with a torus
shape consisting of 32 x 10 = 320 quadrilateral el-
ements. The torus is partitioned into 16 parts (only
the top half is shown) and these 16 partitions are
consecutively represented in a static task graph. In
this case, the work load attributes of the vertices can
be set equal. The edges in the graph have relative
weights of 2,5 or 10.

1 .1.2. Parallel machine model
A parallel machine can be modelled analogously.

Now a vertex corresponds to a processor and the

394 J. F. de Ronde et al./Future Generation Computer Systems 12 (1997) 391-406

attribute is processing power, while an edge corre-
sponds to the physical network connection between
processors and the attribute there is link speed or
bandwidth. The processor graph is fully connected,
since every processor can communicate with every
other processor, although they are not necessarily
linked to each other directly in the physical topo-

logy.

1 .I .3. Cost of a mapping
Several cost models that use a graph representa-

tion of the parallel application and machine can be
found in literature. The following cost function
(l)[143, is known to model the actual execution time
for a given task allocation with reasonable accuracy.
Of course, it is a simplification of the real situation,
i.e. message latencies and network congestion are
neglected.

H=yz (c lwJSq+ max K,,IS,
UN “F U’,U,EA(U,) >

(1)

where Ui is a task in the parallel task graph;, 3 the set
of processors; a(Ui) the set of tasks connected to
task ui; W the set of tasks ui residing on processor q;,
W,, the work associated with task ui (expressed in
flop); S, the processor speed of processor q
(expressed in flop/s); W,,,, the number of bytes to be
sent from processor p to processor q, due to the
connectivity between task ui, residing on processor
q, and task ur residing on processor p; S, the
bandwidth of the route between processor p and
q (expressed in bytes/s) and fl is a control parameter,
equivalent to the calculation-communication ratio

(LIJLln,) WI*
Eq. (1) estimates the turn-around time by the

execution time of the “slowest” processor in the
parallel machine. The discontinuous appearance of
this cost function is known to hamper the conver-
gence behaviour of optimization algorithms. An
alternative cost function (2), first introduced by Fox
[lo], has better optimization properties.

H=B~W;+~Cm, (2)
P P>4

where, W,: = A,& with A,: = I&P W,,, total

work on processor p in terms of flop and,
C w: = M,/S,, with M,: = J&,_ W Y,Y,.

An incremental change to a given-task allocation
(moving one task to another processor), necessitates
a complete recalculation of the cost for Eq. (1). On
the other hand, Eq. (2) has the locality property,
which means that incremental changes in a task
allocation can be propagated into the cost without
having to re-calculate the whole cost function. Only
the difference has to be calculated instead [17]. This
is specifically useful if an optimization algorithm
that is based on incremental changes is applied, and
as such can exploit the direct calculation of these
increments, thus decreasing the computational cost
of the optimization process. A disadvantage of using
(2) is the fact that it is not a correct model for the
absolute cost. However, the suboptimal mappings
that are found with both functions approximately
coincide, which is satisfactory in most practical
situations. Both cost models are available within
MAP.

2. Optimization methods for mapping

Since the decomposition and mapping phases are
processed separately, dedicated methods for each
can be developed. Decomposition of mesh based
application domains can be performed with con-
siderable efficiency using deterministic graph par-
titioning methods. In this study the library of graph
partitioning methods that is offered by the DDT
tool [9] of the CAMAS workbench, is used to create
the domain decompositions.

The problem of evaluating every possible map-
ping for a problem with granularity N on a parallel
platform of P processors is an intractable task for
realistic problems. Even if the granularity of the
application is first reduced by means of a redundant
decomposition, the amount of possibilities still
grows unacceptably. It has been shown that heuris-
tic methods like genetic algorithms (GA) and
simulated annealing (SA) are good approaches for
finding, suboptimal mapping [18]. Motivated by
arguments like parallelizability, generic applicabil-
ity, cleanliness and extendability we have chosen to
base the optimization kernel of MAP on a frame-
work which can incorporate both types of algorithm

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 395

as well as a deterministic peedy search method coding in its own characteristic manner in the opti-
known as steepest descent (SD). mization process.

2.1. The MAP kernel: A generic optimization
ji-amework

Many problems in science and engineering can be
considered as optimization problems. One ap-
proach to solve these problems is to use determinis-
tic or numerical methods. Another attractive
approach is to use stochastic or natural solvers (NS)
[26]. Two well-known natural solvers are SA [lS]
and GA [13]. A fundamental problem is that both
methods are difficult to parallelize to a level of high
scalability.

2.1.2. An abstract cellular genetic algorithm (ACGA)
To avoid the use of global information which is

necessary in the AGA of Aarts et al. Cl], we have
introduced a local spatial neighbourhood structure
[23]. In this way we make an analogy between the
chromosome (or solution vector) and a cell in Cellu-
lar Automata. Each chromosome is assigned to
a cell, which explicitly defines its neighbourhood
structure. Interaction between cells (and conse-
quently mixing of solutions in GA, for example) is
restricted to a local neighbourhood. We can formu-
late the pseudo-code for the ACGA as follows:

Classical GAS use global knowledge for their
selection process. There does not exist a spatial
relation between the different chromosomes. An
essential problem in SA is that the method is in-
herently sequential. Our approach to parallelize
both methods is to introduce adjustable ranges of
locality by using an explicit mapping onto Cellular
Automata. Examples in which a GA is mapped onto
Cellular Automata can be found, for example, in
[12,16,28-j.

Initialize
DO

In the general case it is not possible to map SA
onto Cellular Automata. However, locality can be
imposed on SA by applying a population based
algorithm [111. Another approach is to use simulta-
neous independent searches, which is basically the
same method without interactions [2].

FOREACHcellinthepopulation
Chooseaparentlist (choice)
Recombineparentlist (production)
Mutatetheoffspring
Evaluateoffspring
IF offspring meets some criterion

(selection)
accept offspring

ELSE
leave the current chromosome in

itsplace
ENDIF

ENDFOR

In [1] a generic algorithm, the so-called abstract
genetic algorithm (AGA), for both SA and GA was
introduced. In the MAP kernel an abstract cellular
framework is utilized, that can be parallelized effi-
ciently. Three different optimization methods can be
invoked within MAP that fit directly onto this
framework.

UNTIL maximum number of generations
(iterations)

2.1.3. A cellular genetic algorithm (CGA)
From the ACGA pseudo-code above a parallel

CGA with local selection can be derived straightfor-
wardly. We only have to select the various genetic
operators.

2.1 .l. Solution encoding
A mapping is coded as a sequence, where each

letter in this sequence is a number from the alphabet

{ILL.., P}. The index of this sequence corresponds
to the vertex number of the task in the task graph,
while the letter in the sequence corresponds to the
processor allocation number of the given task. Each
of the three optimization methods that can be in-
voked within MAP manipulates this solution en-

First, the selection operator. A conventional GA
uses a global method to select the parents. One
example is roulette wheel selection. With a CGA the
parents are selected from a neighborhood of size
(2~ + 1)2, where Y is the interaction radius. The
fitness F(xi) of a specific mapping xi is given by

F(xi) = Hm3x - H(xJ where H,, corresponds to the
cost of the most expensive individual in the genetic
population and H,, denotes the cost associated with

396 J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406

individual xi. A cell is chosen as a parent by picking
out a uniformly distributed random number
<E [0, 1) which satisfies the following rule:

(3)

where Aktr) is the neighborhood with radius I of cell
x,, including x,, and x,,,EA~(~). In a previous work
[24] we have coined the term local roulette wheel
(LRW) selection for this mechanism.

Another possibility is tournament selection,
which we coin local tournament selection (LTS) in
the case of CGA. There is an advantage in using LTS
over LRW in small neighbourhoods, because LRW
suffers from sampling errors when used on small
populations. In [24] we have shown that the use of
structured populations and local selection does not
induce major deviations from panmictic selection
pressure. As a recombination operator we take the
popular l-point GA cross-over operator. In Fig. 3
the cross-over of two mappings is depicted. The
mutation operator induces random changes to a
solution vector. In our case it operates as follows.
Each letter in the solution encoding is randomly
changed with a small (mutation) probability to
a new value, which is chosen uniformly from the set
{l,...,P}.

parents mating
at crossover-point

A GA has several other parameters, that can be
used to steer its behaviour. The most important
ones that can be distinguished are: The convergence
length L and the population size N. If the optimal
solution in the population has not changed during
the last L evolution steps, the system is assumed to
have converged. The population size N is equal to
the number of chromosomes or solution encodings
in the genetic population. Usually, it can be assumed
that a population size of the order of the problem
size (in this case the number of parallel processes) is
a sensible choice. The cross-over operation gen-
erally is applied with a probability of about 0.7. This
has also been adopted as the default cross-over
probability in the GA algorithm used in MAP. The
mutation probability is taken to be equal to l/n,
where n is the length of the encoding sequence, or
equivalently, the number of parallel tasks in the task
graph.

2.1.4. Cellular simulated annealing (CSA)
Another optimization method that can be embed-

ded in the cellular framework is a special variant of
simulated annealing: cellular simulated annealing
(CSA). To introduce locality in the SA algorithm the
following approach is taken. Several SA solutions or
configurations exist together on a two dimensional

offspring

I I I I J I

/ 1 2 8 9 10

> 6 7 3 4 5

Fig. 3. l-point cross-over of two sequences of length 5.

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 391

(2D) grid. These configurations only know of the
existence of other configurations in their direct
neighborhood. This neighbourhood is defined as
a localized spatial structure on the grid. If a new
configuration has to be evaluated for acceptance,
not only the previous configuration but also its
neighborhood set is taken into account. Rejection of
a new configuration can cause any of the configur-
ations in a neighbourhood set to take over the
current spatial grid location. For details on the
implementation of SA and CSA the reader is refer-
red to [23].

2.1.5. Cellular steepest descent (CSD)
The steepest descent (SD) algorithm, is compar-

able to gradient based optimization methods in
continuous optimization. It evaluates the cost of
each mapping that can be obtained from the present
solution vector by a single mutation, The mutation
that gives the highest decrease in cost (steepest
descent) is accepted. This procedure is repeated and
continued, until no one-step mutations are left that
decrease the cost. Such a mechanism is also known
as a greedy method. Although the method is fast in
comparison with SA and GA, and straightforward
to implement, it is likely to get stuck in local minima,
and therefore the least attractive for global optimiz-
ation of complex combinatorial optimization prob-
lems. SD can be embedded into the cellular
framework, leading essentially to an embarraisingly
parallel implementation of the algorithm, that is,
multiple non-interacting SDS are performed at the
same time.

3. Experiments

In this section, several mapping experiments are
presented. Firstly, in Section 3.1, mapping on hy-
pothetical machines, with either infinitely fast pro-
cessors, or infinitely fast communication networks,
is considered.

The ratio of calculation time and communication
time of parallel applications (expressed by fi in Eqs.
(1) and (2)) is an important factor in the optimization
process. An experiment on the sensitivity of the
mapping process to this parameter is presented in
Section 3.2. In Section 3.3, results are given on ex-

perimentation with the concept of redundant
decomposition and mapping. This is done on a
finite element problem, that is to be processed in
parallel.

3.1. Mapping on hypothetical machines

Initially, experiments are carried out on the
simplest possible cases. For this purpose, two differ-
ent hypothetical parallel machines are distin-
guished. One is equipped with infinitely fast
processors, which implies that the work load term in
the cost functions is deleted. The optimal mapping is
sequential: all processes are allocated to one proces-
sor. The other hypothetical machine is located on
the other side of the machine spectrum. In this case
communication between processors can be per-
formed infinitely fast. Therefore, the optimal map-
ping requires the work (in terms of computation
time) to be equally balanced over the processor
topology; each processor gets an equal part of the
calculation time (not necessarily equal work dis-
tribution, since in principle it is allowed to have an
asymmetric processor topology).

As a test application model we take the car grid
depicted in Fig. 4. We consider decomposition in
16,32 and 64 parts, using recursive spectral bisec-
tion (RSB) [25], followed by mapping of the
corresponding task graphs on both hypothetical
topologies. Cost function (2) is used as the objective
function by the CGA optimization process.

In Fig. 5 the evolution of the work load distribu-
tion for the fast-cpu topology is depicted for the best
individual in the GA population, for mapping 32
partitions on a 16 processor topology. For each
processor the evolution of the work load allocation
is displayed as a line. it can be observed that the total
work load is assigned to one processor after 75
generations.

Fig. 6 shows the evolution of the work load dis-
tribution, but now for mapping on the fast-network
topology. In this case the work load is distributed
evenly over the available processors.

In Fig. 7 the evolution of the cost associated with
the best individual in the population is shown for
the following problem instances; the car grid par-
titioned into 16,32 and 64 parts, respectively, map-

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406

Fig. 4. Car grid, 7938 elements, courtesy provided by ESI-Paris.

6000 1 I ,

32on16 __

7000 -

6000 -

5000 -

-%
S 4000 -
z
B

3000 -

2000

1000

0
0 20 40 60 80 100

generations

Fig. 5. Evolution of the work load distribution of the best individual in the population for mapping 32 partitions on a 16 processor, fast-
cpu, topology.

800

600

-S
0

3 500
‘0
z

400

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406

I

I I I I
32on16 __

399

I

20

I I I

40 60 80 100
generations

Fig. 6. Evolution of the work load distribution of the best individual in the population for mapping 32 partitions on a 16 processor, fast-
network, topology.

1600

600

16on4 6
32 on 4 -+---
64on4 -D

0 20 40 60 80 100
generations

Fig. 7. Evolution of the cost of the best individual in the population for mapping 16,32 and 64 partitions on a 4 processor, fast-cpu,
topoh5gy.

400 J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406

2.7e+06

2.6e+06

2.5e+06

2.4e+06

2.2e+06

2.le+06

2e+06

+

1

Cl
h

i 1.9e+06
Cl

I I I

I 16on16 +
32on16 -t-.
64on16 -o--

20 40 60 80 100
generations

Fig. 8. Evolution of the cost of the best individual in the population for mapping 16,32 and 64 partitions on a 16 processor, fast-network,
topology.

ped on a 4 processor, fast-cpu, topology. Fig. 8
shows the cost evolution for mapping the same
decompositions on a 16 processor, fast-net-
work, topology. Both figures have been created
using CGA. It should be noted that the experi-
mental data depicted in all figures correspond to
single optimization runs. Therefore, one should
not draw general conclusions on the convergence
speed of the genetic algorithm on the basis of these
figures.

/?, which has been introduced in the cost func-
tions, can be used to vary the characteristics of
a parallel machine in the machine spectrum between
the two hypothetical machines. In the following, we
will study the implications of /3 variations to the
load balancing problem in more detail.

3.2. B Sensitivity

The competition between the work and calcula-
tion term in the cost functions can be varied using fi.
It gives a natural parameter to study the mapping
problem for a given application and machine topo-
logy over the whole spectrum of possible machines.
In Fig. 9 the number of processors that is used in
optimal mapping vs. the value of /? in the cost
functions is shown. Eq (1) was taken as the objective
function, mapping the 320 torus grid, partitioned
into four parts on a 4 processor ring topology. The
small solution space in this case, allows for an
exhaustive search for the optimal values. The alloca-
tions that were found to be optimal in this case,
therefore could be proven to be the global optima.

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (I 997) 391-406 401

Fig. 9. Number of processors in optimal allocation vs. /3.

Before we continue with the experiments on re-
dundancy, let us reflect on the consequences of this
section. We observe that there is a transition in the
optimal number of processors that is used, that is
dependent on 8. In a recent work [S] we have
argued that the load balancing problem essentially
only exists in the transition region. Denoting the
value of fi where the transition is halfway by /I,, we
can state that in practice it can be expected that
mapping of a number of interconnected tasks is
trivial in the region where B-C/?,. In this case it
makes no sense to search for parallelism. Sequential
task mapping is optimal.

On the other hand if /I > /I,, the amount of com-
munication between the parallel tasks is small in
comparison with the amount of work per task.
Therefore, parallelism can be exploited. Finding the

optimal allocation in this situation is not trivial
though. If we have A4 tasks that are not all of equal
weight, we are confronted with the NP-complete
job shop problem [3]. Furthermore, if the processor
topology is asymmetric, which for example can be
the case in a heterogeneous cluster of workstations,
extra difficulty is introduced.

Within the transition region (#l z &), the work
and communication term in the cost function are in
strong competition with one another and the opti-
mal value will be even harder to find, than in case of
/I > /I,. In Section 1 it has been posed that a redun-
dant decomposition creates additional degrees of
freedom for the mapping process, enabling it to find
better optimal solutions. In Section 3.3, we will
study the benefits of redundant decomposition,
where /I is restricted to be larger than /3,.

402 J. F. de Ronde et a/./Future Generation Computer Systems I2 (1997) 391-406

Table 1
The (suboptimal) cost for varying decomposition cardinality (M)
and number of processors (P) with j3 z 10

JW 4 5 6 7 8

8 1619.6 15%.8 1586.2 1564.0 856.8
16 1623.8 1526.2 1198.4 1158.6 822.0
32 1625.2 1340.4 1121.8 975.0 821.0
64 1642.4 1314.4 1095.2 932.0 824.4

Table 2
The (suboptimal) cost for varying decomposition cardinality (M)
and number of processors (P) using a fast network topology

M/P 4 5 6 I 8

8 2006.0 1976.0 1968.0 19340 1053.0
16 1996.0 1883.0 1495.0 1433.0 10140
32 19920 1663.0 1417.0 1205.0 1014.0
64 1992.0 1594.0 1331.0 1147.0 1006.0

3.3. Load balancing by redundant decomposition
and mapping

In this section we present some experiments on
redundant decomposition. Again we consider the
car grid. Tables 1 and 2 summarize the quality of
mapping, calculated using Eq. (l), for various values
of M and P. We consider a target machine that is
fully connected and homogeneous.

The decomposition method that is used to create
the A4 partitions is taken to be recursive coordinate
bisection [25]. For Table 1 @ = z,Jr,,,, zz 10,
whereas a fast network topology is used for the
results presented in Table 2. Each number in these
tables is the minimal value over 200 SD runs and is
calculated using cost function (l), while the SD
process is steered by Eq. (2).

From Table 1 we can observe that redundancy
generally allows us to find better optima, although
for the situation where P = 4 this is not the case. In
the discussion below, some practical problems asso-
ciated with mapping real finite element partitions
are discussed, that account for this deficiency. For
the fast network topology, redundancy is beneficial
in all cases, see Table 2.

Finally, we consider mapping on an asymmetric
fully connected B-node topology, where the relative

processing power of each CPU is inversely
proportional to the processor identifier,
5, = l/p (p E { 1,2,3,4,5,6,7,8}) and /I x 10. In Fig.
10 the cost evolution for mapping 8,16,32 and 64
partitions of the car grid is depicted. We have used
CGA for the optimization process. Note that in-
creasing redundancy initially results in better
suboptima, but that the solution quality degrades
for large redundancy, which is presumably due to
the size of the solution space.

4. Discussion and concluding remarks

4.1. Summary and discussion

For the purpose of mapping parallel processes
onto parallel machines, we have developed a tool
(MAP), which utilizes a generic graph model for
parallel applications and machines. The quality of
a proposed mapping is expressed using a cost func-
tion of which several examples are available within
MAP. The mapping problem is approached as
a NP-hard combinatorial optimization task. From
within MAP several (well-known) parallel heuristic
optimization kernels can be invoked to “solve” the
mapping problem. The idea to use a redundant
decomposition to create search freedom for the
mapping optimization process is posed as a possible
method to enhance the performance of parallel pro-
cesses, opposed to a partitioning cardinality equal
to the number of available processors.

4.1 .I. Mapping on hypothetical machines
The GA converges to (sub) optimal mappings

under the default parameter settings, when (2) is
used as the objective function. This follows from
experiments such as mapping on processor net-
works with respectively infinitely fast processors (all
processes are mapped on one processor) and on
topologies with an infinitely fast network (work
load balance). A selection of the corresponding ex-
perimental results is shown in Figs. 5-7. It is clear
that the optimization task becomes more problem-
atic as the number of solutions increases. Further-
more, the optimization in the case of fast-cpu
topologies appears to be much harder than in case
of the fast-network topologies. It takes in general

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 403

280

260

240

180

160
u

8on8 __
16 on 8 ----.
32 on 8 --...
64 on 8

200 250 300 350 400 450 500
generations

Fig. 10. Evolution of the optimal mapping in the CGA population for mapping 8, 16,32 and 64 partitions on an asymmetric 8 node
topology with j x 10.

much more evolution steps or a larger population
size to arrive at the optimal value.

This can be explained from the fact that the
number of optima is much smaller in the fast-cpu
case (P) than in the case of the fast-network (P!),
although the size of the solution space is equal in
both cases. Therefore, the chance than an optimal
solution is found (by random search) for the former
is much smaller than for the latter. On the other
hand the optimal mapping of parallel processors
with an infinitely fast network is only exactly solv-
able in the case that each process has equal weight.
As soon as this property is violated it is known that
the problem becomes NP-complete, analogous to
job scheduling [3]. However, good suboptimal sol-
utions (minimizing the variance of the work load
distribution) are found.

Comparable experiments indicate that SA has
less difficulty with finding the optima in the fast-cpu
case. The nature of the SA algorithm, where in-
cremental changes to the solution encoding are
made, is the main reason for this. Both SA and GA
have more trouble optimizing(l), which is caused by
the discontinuous form of this function. In this case
bruteforce random search or multiple SD runs are
possible alternatives.

4.1.2. /I Sensitivity
The competition between communication and

calculation time is an important parameter in the
mapping process. Fig. 9 clearly shows that variation
of /I induces a transition from optimal sequential to
parallel allocation. The steepness of this transition is
rather striking. It was found that the optimal map-

404 J. F. de Ronde et al./Future Generation Computer Systems 12 (1997) 391-406

ping appears either to be purely sequential or maxi-
mally parallel. Effectively, outside the transition
region the problem of mapping respectively is re-
duced to sequential allocation of the parallel tasks
and job scheduling.

4.1.3. Load balancing by redundant decomposition
and mapping

From Tables 1 and 2 we can see that the quality of
mapping can significantly benefit from redundant
decomposition if we consider mappings where
M/P is not an integer. This can be expected, since
the relative weight of each chunk of data will be
smaller in case of more redundancy which makes it
easier to balance the work load distribution.

If M/P is an integer it is clear that the applicability
of redundant decomposition strongly depends on
the quality of the decomposition method. In case of
a homogeneous processor topology, and a locality
preserving decomposition method like RSB, one
can only expect a marginal cost gain by applying
mapping. On the other hand, reasonable cost im-
provements can be expected for mapping on hetero-
geneous topologies as is shown in Fig. 10. Note that
there is a trade-off between cost decrease due to
increased redundancy and the size of the search
space, which increases with the degree of redun-
dancy. For a redundancy of 64 one can expect
a better optimal solution cost. However, due to the
increased complexity, CGA is not able to find it in
reasonable time.

4.2. Concluding remarks and future work

A significant practical problem in mapping real
parallel processes using redundant decomposition is
illustrated by the following example. Given a practi-
cal finite element mesh that is decomposed in M,
and 2M parts, where the second partitioning equals
the first partitioning, with each subdomain bisected.
The first partitioning can therefore directly be con-
structed out of the second one by assembling the
appropriate parts together. This collection oper-
ation is computationally so expensive that it must
be left out of a mapping algorithm. The cost of
a mapping is estimated by the individual contribu-
tions of each of the 2M partitions to the cost func-
tion. The contribution to the communication cost of

a processor pair is approximated by the summation
of the communication volume between each pair of
data partitions on these processors. As a conse-
quence, we are confronted with double counting of
shared mesh points, resulting in the situation that
the cost associated with the mapping of the M parts
will be lower than that of the identical mapping of
the 2M parts. Therefore it is not possible to quanti-
tatively compare the evolution of the mapping costs
for varying redundancy.

We have observed a trade-off between the useful
redundancy and the size of the solution space. Al-
though increased redundancy allows us to find bet-
ter solutions it is not said that the performance
gained by it will compensate the effort that we have
to put into finding a better solution. In Section 3.2 it
was noted that the specific parallel system and
parallel application parameters are very important
for the shape of the search space of the mapping
problem.

The methodology of redundant decomposition
and mapping described above is applicable to the
load balancing problem for applications that dis-
play a static work load distribution combined with
parallel machines that have static processor charac-
teristics. An additional strong point, of our load
balancing approach, is that it allows for more flexi-
bility in handling asymmetry present in the proces-
sor topology.

However, many applications cannot be described
in terms of a static parallel task graph. Furthermore,
parallel machines like workstation clusters are by
no means static resources. Extensive research on the
subject of dynamic load balancing in our group has
resulted in a prototype dynamic load balancing
system for cluster computing, called Dynamic PVM

WI.
It can be expected that the inherent dynamic

asymmetry in workstation clusters will have a sig
nificant degrading effect on the performance of ap-
plications that work on nonredundantly
decomposed meshes. Redundant decomposition,
and thus in practice a redundant set of parallel tasks,
can be used by a system like Dymanic PVM to adapt
to changes in the CPU utilization. Part of the future
work in our group consists of embedding a (parallel)
mapping algorithm, into the task scheduler of
Dynamic PVM [21].

J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406 405

Acknowledgements

The DDT tool of the CAMAS workbench was used
for creating the domain decompositions. It has been
developed by Nick Floros, of the University of
Southampton. We are grateful that we were allowed
to use this tool for our purposes.

References

Cl1

PI

c31

M

c51

PI

c71

PI

c91

Cl01

Cl11

Cl21

Cl31

E.H.L. Aarts, A.E. Eiben and K.H. van Hee, Global conver-
gence of genetic algorithms A markov chain analysis, in ed.
H.P. Schwefel (1990) 4-12 Parallel Problem soloing from
Nature I,.
R. Azencott, Simulated Annealing: Parallelizntion Tech-
niques (Wiley, New York, 1992).
D.P. Bovet and P. Crescenxi, Introduction to the theory of
complexity, International Series in Computer Science
(Prentice-Hall, Englewood cliffs, NJ, 1994).
A. De Mes, P.M.A. Sloot and J.F. de Ronde, Camas-tr-
2.1.1.4 parasol i progress report, Technical Report, Univer-
sity of Amsterdam, March 1994.
J.F. de Ronde, A. Schoneveld and P.M.A. Sloot, Properties
of the task allocation problem, Technical Report CS-96-03,
University of Amsterdam, 1996.
J.F. de Ronde and P.M.A. Sloot, Camas-tr-2.1.3.4map final
report, Technical Report, University of Amsterdam, Octo-
ber 1995.
J.F. de Ronde, A. Schoneveld, P.M.A. Sloot, N. Floros and
J. Reeve, Load balancing by redundant decomposition and
mapping, in: High Performance Computing and Networking.
Lecture Notes in Computer Science, eds. H. Liddell,
A. Colbrook, B. Hertzberger and P. Sloot, Vol. 1067 (1996)
555-561.
J.F. de Ronde, B. van Halderen, A. de Mes, M. Beemster
and P.M.A Sloot, Automatic performance estimation of
spmd programs on mpp in: Massively Parallel Processing
Applications and Development, eds. L. Dekker, W. Smit and
J.C. Zuidervaart, EURGSIM, (June 1994) 381-388.
N. Floros, Camas-tr-2.2.2.8 user manual, Technical Report,
University of Southampton, April 1995.
G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D.
Walker, Solving Problems on Concurrent Processors, Vol.
1 (Prentice-Hall, Englewood cliffs, NJ, 1988).
D.E. Goldberg, A note on boltzmann tournament selection
for genetic algorithms and population oriented simulated
annealing Complex Systems 4 (1990) 445-460.
M. Gorges-Schleuter, An asynchronous parallel genetic
optimization strategy, in: 3rd Int. Conf: on Genetic Algo-
rithms (1989) 422-427.
J.H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan, Ann Arbor, 1975.

[14] J. De Keyser and D. Roose, Load balancing data parallel
programs on distributed memory computers, Par&lCom-
puting 19 (1993) 1199-1219.

[lS] P. Kirkpatrick, C.D. Gelatt and M.P. Veccbi, Optimization
by simulated annealing, Research Note RC 9355, IBM,
1982.

ClTl

WI

[163 B. Manderick and P. Spiessens, Fine grained parallel gen-
etic algorithms, in: 3rd Int. Conf on Genetic Algorithms,
(1989) 428-433.
N. Mansour and G. Fox, A hybrid genetic algotitbm for
task allocation, in: Proc. 4th Int. Conf: on Genetic Algo-
rthims, (1991) 466-473.

N. Mansour and G. Fox, Allocating data to multicomputer
nodes by physical optimization algorithms for loosely syn-
chronous computations, Concurrency: practice and experi-
ence, 4 (7) (1992) 557-574.
J. Merlin, Camas-tr-2.2.1.2 ida’s user’s guide (year 1 dcliver-
able report), Technical Report, University of Southampton,
September 1993.
M.G. Norman, Models of machines and computation for
mapping in multicomputers, ACM Computing Surseys 25
(1993) 263-302.
University of Amsterdam, Dynamite: Dynamic task migra-
tion execution environment, ESPRIT project nr. 23499,
1997.

Cl91

cm

ix1

WI

~231

c241

c251

CW

~271

PI

~291

Benno J. Overeinder, Peter M.A. Sloot and Robbert N.
Hcederik, A dynamic load balancing system for parallel
cluster computing, Future Generation Computer Systems,
1996, Published in Special Issue on Resource Management
in Distributed Systems.
A. Schoneveld, An abstract cellular genetic algorithm, Mas-
ter’s Thesis, University of Amsterdam, June 1994.
A. Schoneveld, J.F. de Ronde, P.M.A. Sloot and J.A. Kaan-
dorp, A parallel cellular genetic algorithm used in finite
element simulation, in: Parallel Problem Solvingfrom Na-
ture IV, Lecture Notes in Computer Science, eds. H-.M.
Voigt, H-. P. Schwefel, I. Rechenberg, and W. Ebeling,
(1996) 533-542.
H.D. Simon, Partitioning of unstructured problems for
parallel processing, Computing Systems in Engineering
2 (2/3)(1991) 135-148.
P.M.A. Sloot, J.A. Kaandorp and A. Schoneveld, Dynamic
complex systems (dcs) a new approach to parallel comput-
ing in computational physics, Technical Report TR CS 95,
University of Amsterdam, November 1995.
P.M.A. Sloot and J. Reeve, Camas-tr-2.3.7 executive report
on the camas workbench, Technical Report, University of
Amsterdam and University of Southampton, October
1995.
M. Tomassini, The parallel genetic cellular automata: Ap-
plication to global function optimization, in: Artificial Neu-
ral nets and Genetic AZgorithms (1993) 385-391.
B. van Halderen and P.M.A. Sloot, Camas-tr-2.1.1.7
sad/parasol final report, Technical Report, University of
Amsterdam, October 1995.

406 J. F. de Ronde et aLlFuture Generation Computer Systems 12 (1997) 391-406

Jan. F. de Ronde received a Masters
degree (cum laude) in Physics from the
University of Amsterdam in 1992. After
his graduation he joined the Parallel
Scientific Computing and Simulation
Group at the same University as
a Ph.D. student studying general as-
pects of mapping in High Performance
Computing and Simulation. His re-
search focusses on theoretical and prac-
tical aspects of task allocation on
parallel architectures. Presently? he is
working on the implementation of

a parallel finite element simulation code, the design of which is
inspired by the findings of his work on mapping irregular task-
graphs on parallel systems. He has published several papers on
the following topics: performance modelling of parallel applica-
tions, mapping of parallel tasks on parallel machines and paral-
lelization of explicit finite element programs.

Peter M.A. Sloot ‘ned a Masters de-
gree in Chemical Y. hyslcs and Theoreti-
cal Physics at the University of
Amsterdam in 1983. He was then ap-
pointed as a research fellow at the Duth
Cancer Institute. In 1988 he received
a Ph.D. from theDepartment of Mathe-
matics and Computer Science at the
University of Amsterdam. In 1991 he
became an assistant professor and in
1993 an associate professor in parallel
scientific computing in the depaitment.
He has written and mana ed a large

number of externally funded projects (funded by N ‘tv 9, STW,
Biophysics, Esprit eo). In 1990 he founded the interdisciplinary
working group Parallel ScientificComputing and Simulation. He
has publis+d,over lwrp on vaeous theoretical and expee-
mental topics m the fiel o computatlonal science. He has been m
the organising committee of a large number of national and
international conferences and workshoos on scientific comout-

Arjen Schoneveld obtained a Masters
degree in Computer Science from the
University of Amsterdam in 1994. In
the same-year he joined the Parallel

ing. His current interest is in the modelfing and implementation
of dynamic complex systems for massively parallel computers.

~
Scientific Computing. and Simulation
Group at the Umverslty of Amsterday
as a Ph.D. student. Currently, he 1s
studying the concept of Dynamical
Comolex Svstems CDCS) as a common

! denoininator of diderentkinds of physi-
cal and biological systems, in which the
locality, inherently present, can be ex-
ploited for allocation onto parallel plat-

forms. Parallel machines themselves are not- considered
separately, rather as another instance of DCS. Features like
frustration and disorder caused by mutually interacting agents,
can be found throughout different DCS. Important issues include
the localisation of complexity regions within “phase-diagrams”
of such systems. He is the author of several papers on the topic of
task allocation complexity and parallel heuristic optimization
methods.

