
Implementing microthreaded microprocessors
in VHDL

Jun Wu
Master’s Thesis in Computer Science

Prof. dr. Chris Jesshope, Supervisor

February 27, 2006

Universiteit van Amsterdam
Faculty of Science

Informatics Institute





iii

This thesis, ”Implementing microthreaded microprocessors in VHDL”,
is submitted in partial fulfilment to the requirements for the degree Master
of Science in Computer Science at the Universiteit van Amsterdam.

Date:

Author’s signature: Supervisior’s signature:





Abstract

Micro-threads are small fragments of code based on loops, can be executed
concurrently and the concurrency is described parametrically in the bi-
nary code. This thesis describes a microthreaded model of concurrency
and illustrates the complete bottom-level design of its pipeline compared
with the conventional MIPS pipeline. The simulations from a single mi-
crothreaded processor implemented in VHDL are also presented in this the-
sis. This simulation concentrates on the first stage of this pipeline which in-
cludes micro-threads create and dynamically schedule or reschedule. This
stage is also the most important stage of the microthreaded pipeline.





Acknowledgments

I have been work five years as a space computer engineer in China Academy
of Space Technology. I am really honored I can be a master student of com-
puter science in University Van Amsterdam.

I would like to acknowledge my daily supervisor, Prof. dr. Chris Jesshope,
who has provided me with the chance to the subject and guiding me through-
out the whole project. I have for a long time been interested in low-level
programming of microprocessors. During the design of the microthreaded
processor. Professor Chris Jesshope teaches me from the cpu’s basic theory
to core design and simulation. From him, I learned a lot on microproces-
sor design that will be useful in my future job. I have also learned a lot on
digital design in general. He gave me a lot of help for not only knowledge,
but also daily life. If no his kindly help, to complete my master program is
definitely unbelievable.

I would like to take this chance to thank to the University Van Ams-
terdam and the Faculty of Computer Science for offering so nice master
program in computer science to international students. Also I would like
to express my gratitude to Niels Molenaar in international office. He sup-
ported me in all possible ways during these years.

My special appreciation is to Prof. Peter Sloot for organizing the Master
of Computational Science program.





Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Moore’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems facing current architectures . . . . . . . . . . . . . 2
1.3 Alternate approaches . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Microthreaded Processor 11
2.1 Conventional MIPS Pipeline . . . . . . . . . . . . . . . . . . . 11
2.2 Microthreaded processor architecture . . . . . . . . . . . . . 16

3 Design and Implementation of the Microthreaded processor 29
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Local scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Put all together . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Simulation results 43
4.1 Register Allocation Unit . . . . . . . . . . . . . . . . . . . . . 43
4.2 Local Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusions and Future Work 53
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55





List of Figures

1.1 Moores Law Means More Performance. Processing power,
measured in millions of instructions per second (MIPS), has
risen because of increased transistor counts. Courtesy of
Intelr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Typical simple five stages MIPS Pipeline. . . . . . . . . . . . 12
2.2 The datapath and control for MIPS pipeline. Courtesy of

Hennessy and Patterson (1) . . . . . . . . . . . . . . . . . . . 15
2.3 Microthreaded processor includes a broadcast bus and ring

network. Courtesy of Chris Jesshope . . . . . . . . . . . . . . 16
2.4 The interface to the Local Scheduler . . . . . . . . . . . . . . 18
2.5 The interface to the Address Unit. . . . . . . . . . . . . . . . . 20
2.6 The logic of register address decoding. . . . . . . . . . . . . . 22
2.7 Microthreaded Pipeline. . . . . . . . . . . . . . . . . . . . . . 23
2.8 The datapath and control for Microthreaded pipeline includ-

ing a local scheduler and an asynchronous interface. . . . . . 28

3.1 Block diagram of the RAU, CQ and the interface with the
thread create process. . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The processes and interactions within the continuation queue. 37
3.3 The datapath and detail of Local scheduler. . . . . . . . . . . 41

4.1 The test bench of Register Allocation Unit, showing the se-
quence of allocation states in the test . . . . . . . . . . . . . . 44

4.2 The VHDL simulation result of the Register Allocation Unit.
This graph displays the changes to the interface to the regis-
ter allocation logic. . . . . . . . . . . . . . . . . . . . . . . . . 45



xii List of Figures

4.3 The VHDL simulation result of Register Allocation Unit. This
graph displays the value of each of the 32 flags in the regis-
ter allocation model. When the flag is at logic low, the corre-
sponding register is not allocated. A transition to logic high
shows an allocation and a transition from high to low shows
an unallocation. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 The first microsecond VHDL simulation result for the Local
Scheduler. This graph displays that the microprocessor be-
gins to read the TCB from the I-Cache after initialization. . . 50

4.5 The second microsecond VHDL simulation result for the Lo-
cal Scheduler. This graph displays that the microprocessor
begins to create the threads after half cycle when it finishes
reading the TCB parameters. And half cycle later it begins to
latch the first active thread. So it is just one cycle delay for
starting the threads. It also shows the local scheduler begins
to do the first register allocation at the same time with the
thread creation. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 The third microsecond VHDL simulation result for the Lo-
cal Scheduler. It shows the behaves which are latching and
switching the threads. It also shows the time to create the
last thread. Meanwhile, it finishes sending the request to the
RAU for register allocation. . . . . . . . . . . . . . . . . . . . 52



List of Tables

2.1 Concurrency-control instructions . . . . . . . . . . . . . . . . 17
2.2 Microthreaded instructions’ opcode map . . . . . . . . . . . 17
2.3 Interface to the Local Scheduler . . . . . . . . . . . . . . . . . 19
2.4 Thread state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Register file partition . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The parameters in the thread control block (TCB) which de-
fines a family of microthreads. . . . . . . . . . . . . . . . . . . 30

3.2 Allocation parameters. . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Components of a slot in the continuation queue for 512 slots

and 1K entry register file. . . . . . . . . . . . . . . . . . . . . 37

4.1 The sequence of allocation states. . . . . . . . . . . . . . . . . 45





Chapter 1

Introduction

Micro-threads are lightweight threads drawn from a single context and
were first introduced in 1996. They are small fragments of code based on
loops, can be executed concurrently and the concurrency is described para-
metrically in the binary code (2; 3; 4; 5; 6; 7; 8; 9; 10). In this thesis, we
describe the implementation of the micro-thread pipeline, which is derived
from a conventional MIPS pipeline and supports addition to its ISA-µt1 (see
Chapter 2) and makes use of VHDL 2 to realize this pipeline model. The
implementation supports dynamically scheduling of micro-threads and en-
ables scalable implementations of various types of wide-issue multiproces-
sors. This model is tested on different assembly codes, providing a verifi-
cation of the applicability of this model based on those simulation results.

1.1 Moore’s law

Moore, one of the founders of Intelr, made a powerful prediction in an arti-
cle in the April 19, 1965 issue of Electronics magazine that the total number
of transistors on the cheapest CPU will grow exponentially at a constant
rate and that this constant rate produces a doubling every 12 (or 18, or 24)
months.

“The first microprocessor only had 22 hundred transistors. We
are looking at something a million times that complex in the

1ISA-µt:Instruction set architecture of micro-threads. It consists 5 more instructions for
explicit concurrency control — Create, Swch, Kill, Break and Bsync.

2VHDL:Very High Speed Integrated Circuit Hardware Description Language.



2 Introduction

Figure 1.1: Moores Law Means More Performance. Processing power, mea-
sured in millions of instructions per second (MIPS), has risen because of
increased transistor counts. Courtesy of Intelr.

next generations-a billion transistors. What that gives us in the
way of flexibility to design products is phenomenal.”

What is less well-known is that Moore also stated that manufacturing
costs would dramatically drop as the technology advanced. If we look back
in time, Gordon Moore’s prediction of exponential growth of the number
of transistors on a chip has not only been achieved but in some cases ex-
ceeded. Conventional microarchitectures have been improving in perfor-
mance by approximately 50-60% per year, improving the instructions per
cycle (IPC) using more transistors on a chip and increasing the clock speed.
In 1965, a single transistor cost more than a dollar. By 1975, the cost of a
transistor had dropped to less than a penny, while transistor size allowed
for almost 100,000 transistors on a single die. From the roadmap of the
Intelr microprocessor, we can see that designs are now topping out at well
above 1 billion transistors, running at 3.2 GHz and higher, delivering over
10,000 MIPS, and can be manufactured in high volumes with transistors
that cost less than 1/10,000th of a cent (11).

1.2 Problems facing current architectures

The key metrics for characterizing a microprocessor include: performance,
power, cost (die area), and complexity(12). One of the biggest challenges,



Problems facing current architectures 3

which the current designer is facing is the design of a billion-transistor ar-
chitecture, which achieve high performance, low power, low cost and low
design complexity. During the last three decades, even the microproces-
sors have gone through significant changes, however, the basic computa-
tional model has not changed much. The instructions and data are the only
components of a program. The instructions are encoded in a specific in-
struction set architecture (ISA). The computational model is still a single
instruction stream, sequential execution model, operating on the architec-
ture states (memory and registers) (12).

At the end of 2004, it was well know that there would not be a version of
the Pentium 4 running at 4.0GHz. Intel has dropped the plans for this pro-
cessor which should be released before Oct, 2004, according the previous
microprocessor roadmap. The explanation from Intel was that this decision
to drop plans for a 4.0GHz CPU is a result of Intel’s change in focus with re-
gards to both processor strategy and marketing. However, in fact, the real
reason why Intel cancelled the plan is merely a compromise with the chal-
lenges of the conventional microprocessor architecture we have been facing
from the past several decades. Like Intel, other semiconductor manufactur-
ers are also having similar issues in producing faster single-core processors
because of the following challenges, which all manufacturers have been
facing in the past or will face in the future:

• Memory wall

All modern microprocessors employ memory hierarchy. The grow-
ing gap between the frequency of the microprocessor that doubles
every two to three years and the main memory access time that only
increases 7% per year imposes a major challenge(12). The latency
of today’s main memory is approximate 30 ns, which approximately
equals 100 microprocessor cycles. The two most obvious reasons for
this limitation are

1. Memory has scaled in size but not in access time

2. Speed of physical interconnects remains bounded by the laws of
physics.

• Power challenge

Dynamic power and static (leakage) power are both key issues. Static
power will surpass dynamic power at 65nm. It is implicated that in
the future chips will have billions of transistors, but can only power
a fraction of them at once(13).



4 Introduction

Power density has also reached a limit, where conventional techniques
used to package and to dissipate heat are no longer able to cope.
Physical demands on the silicon will cause excessive heat and eat up
more power than any semiconductor manufacturers can accept. If the
trends continue, power dissipation will increase from 100W in 1999 to
about 2,000W in 2010(14). Chips in 0.6-µm technology used to have
power density similar to a (cooking) hot plate (10 W/cm2), we may
experience a chip with the power density of a nuclear power plant
or even a rocket nozzle soon if the trend continues(12). In(12), the
author also mentions three general approaches to power reduction:

1. increase energy efficiency;

2. conserve energy when a module is not in use;

3. recycle and reuse;

These approaches can all be exploited by the microthreaded model in
reducing the power dissipation and these are addressed in chapter 2

• Speedup

Performance depends only on IPC and Frequency for a given exe-
cutable program. In order to keep the pace of performance growth,
one of the challenges has been to increase the frequency without neg-
atively impacting the IPC. From the year 1998 to 2005, for instance,
microprocessor manufacturers obtained got enormous gains in com-
mercial Superscalar Processor’s frequency from 500MHz to 3800MHz.
However, the IPC has remained unchanged at around1.0-2.0 for typ-
ical applications. Furthermore, both conventional strategies will fail
for future technologies (50nm and below), with clock speed growth
slowing down because of fundamental pipelining limits and wire de-
lays making architectures communication bound(15).

• Use of frequency versus Concurrency

Improvement in clock speed to obtain better performance can not
be continued infinitely, as power density is a function of frequency
and is becoming a critical design constraint, which is already men-
tioned above. Using concurrency as a means of increasing perfor-
mance without increasing power density is a much better strategy
based on the assumption that all models and implementations are
completely scalable. However, concurrency management is inher-
ently arduous and will increase the design complexity. It requires



Alternate approaches 5

additional complexity that involves additional work (e.g,dependency
tracking, speculation, scheduling) to be done on each instruction.

• Scalability

As mentioned above, using concurrency will be the better choice than
just increasing aggressive clock frequency. However, speedup can not
to be achieved from concurrency if the performance, area and power
dissipated are not all scale linearly with issue width. Today’s archi-
tectures will not scale, showing diminishing returns in IPC even with
increasing chip transistor budgets. The ILP of conventional architec-
tures such as superscalar core is limited by the issue window, whose
logic complexity grows as the square of the number of entries(16).
The register files, re-order buffers and issue windows, which are fre-
quently accessed global structures and relied by the conventional ar-
chitectures, become bottlenecks limiting clock speed and pipeline depths.
Thus the performance is not scalable with the current technology.
The power and area are not scalable with the conventional strategy
as well. Maximum power consumption is proportional to voltage2

and frequency as follows: Power = C × V2 × Frequency, C is the
effective load capacitance. The area can not scale down with transis-
tor widths as the wire delays and the on-chip power dissipation for
the long wires communications(communication-bound) do no scale
at the same rate. Recent research demonstrates that the inter commu-
nication network accounts for 36% in Raw processor(17) or 50% in
Intel processor(18) of the total chip power. One of the key constraints
faced by designers is how to alleviate the high performance penalty
of long wire delays compare with the high clock cycle at future tech-
nologies.

1.3 Alternate approaches

• Out-of-order

The current approach in attempting to boost IPC is out-of-order exe-
cution. Out-of-order execution is a restricted form of data flow com-
putation. The first machine to use out-of-order execution was proba-
bly the CDC 6600 (1964) which used a scoreboard to resolve conflicts.
The key concept of out-of-order processing is to allow the processor
to hides some of the stalls that occur when the data needed to per-
form an operation is not available(e.g. cache miss). The microproces-



6 Introduction

sor can schedule new instructions as long as they are independent.
A superscalar out-of-order microprocessor can achieve higher IPC
than a superscalar in-order microprocessor. Out-of-order execution
involves dependency analysis and instruction scheduling. Therefore,
it takes a longer time (more pipe stages) to process an instruction
in an out-of-order microprocessor(12). The size of the instruction
window and logic complexity increase quadratically with the issue
width, which results in an out-of-order microprocessor, especially a
wide-issue one, that is much more complex and power hungry than
an in-order microprocessor(16).

• VLIW

A Very Long Instruction Word or VLIW CPU architecture implements
a form of explicit instruction level parallelism, where multiple func-
tional units are used concurrently as specified by a single instruction
word. The original concept of VLIW is basically developed from the
superscalar processor, which tries to achieve improvements in the
quality of the control unit. One potential solution to this problem is to
move the dispatcher logic out of the chip and into the compiler, which
can spend considerably more time and effort on making the best de-
cisions possible. This is the basic premise of very long instruction
word (VLIW) CPU designs, which is also known as static superscalar
or compile time scheduling(19).

Early VLIWs operated in lockstep; There was no hazard detection
hardware at all. This structure dictated that a stall in any functional
unit pipeline must cause the entire processor to stall, since all the
functional units must be kept synchronized. Binary code compati-
bility has also been a major logistical problem for VLIWs. In a strict
VLIW approach, the code sequence makes use of both the instruction
set definition and the detailed pipeline structure, including both func-
tional units and their latencies. Thus, different numbers of functional
units and unit latencies require different versions of the code(1).

• EPIC

HP introduced one instruction set architecture called EPIC (Explicitly
Parallel Instruction Computing) which builds upon VLIW and pre-
VLIW work performed over the past two decades. EPIC is a 64-bit
microprocessor instruction set, that provides up to 128 general and
floating point unit registers. The specific jointly designed instruc-
tion set architecture was named IA-64 which was introduced by Intel.



Alternate approaches 7

More recently, Intel has preferred to use IPF (Itanium processor Fam-
ily) as the name of the first implementation.

In particular, EPIC builds upon the architectural ideas pioneered at
Cydrome and Multiflow. Explicit information on independent in-
structions in the program is a major distinguishing feature of EPIC
architectures. It uses Unbundled branches and Predicted execution
to deal with eliminating and/or speeding up branching, Cache sped-
ifiers and Data speculation to deal with cache locality management,
Control speculation and Predicated code motion to deal with start-
ing load instructions as early as possible(20). EPIC needs very large
register file, as a smaller register set limits performance. Current effi-
ciency of utilizing the register files is low, the processor has to shuffle
data in and out of registers instead of doing the work required for the
program(21). And EPIC still can not avoid vulnerable to speculation
hazards, which is inhered with predicated execution.

• TRIPS

The TRIPS architecture is the first instantiation of an EDGE (Explicit
Data Graph Execution) instruction set. Direct istruction communica-
tion is one main characteristic of EDGE architecture. irect instruction
communication means that the hardware delivers a producer instruc-
tion’s output directly as an input to a consumer instruction, rather
than writing it back to a shared namespace, such as a register file.
Only block outputs written back to register file. Compiler structures
program into sequence of hyperblocks which specify explicit instruc-
tion placement in the ALU array. A TRIPS block resembles a 3D VLIW
instruction, with instruction filling fixed slots in a rigid structure. The
TRIPS processor is a static placement, dynamic issue (SPDI) architec-
ture, whereas a VLIW machine is a static placement, static issue (SPSI)
architecture(22). TRIPS has a totally different binary interface, so the
backward compatibility can not be achieved now. The I-cache capac-
ity and bandwidth can not be sufficiently utilized if the block size are
less than normal or sufficient size(23).

• Multi-threading

For the current generation of microprocessors, hardware multithread-
ing is becoming a generally applied technique, which exploit thread-
level parallelism (TLP). thread-level parallelism (TLP) is a coarser-
grained parallelism when compared with the instruction level par-
allelism ILP. The notion of a thread which we discuss in this thesis



8 Introduction

differs from the notion of software threads in multithreaded operat-
ing systems. The thread in Multi-threading processors can be operat-
ing system thread, a compiler-generated thread or even a hardware-
generated thread(24).

From the first multithreading processor DYSEAC (1954) which use
the technique multiple sequence, there were a number of other types
of multithreading, such as fine-grain MT (FGMT), coarse-grain MT
(CGMT), simultaneous MT (SMT), implicit MT (IMT), and dynamic
MT (DMT).

Within the processor, a multithreaded processor can control at least
two threads in parallel. Explicit multithreaded processors interleave
the execution of instructions of different user-defined threads (operat-
ing system threads or processes) in the same pipeline and differ from
the implicit multithreaded processors and dynamic multithreaded
processors, which increase the performance of sequential programs
by applying compiler-based or hardware-based thread-level specula-
tion. The implicit and dynamic multithreaded processors can not be
scalable since they suffer from the misprediction. In case of misspec-
ulation, all speculatively generated results must be discarded. More
details are given in(24).

Many forms of explicit multithreaded processors have been intro-
duced from 1960’s, such as the Interleaved multithreading (IMT),
Blocked multithreading (BMT), instructions can be issued only from
a single thread in a given cycle, and Simultaneous multithreading
(SMT), instructions can be issued from multiple threads in a given
cycle. SMT is widely implemented by some modern commercial pro-
cessors, such as Intel Pentium 4 Hyper-Threading (HTT), DEC Alpha
EV8, and MIPS MT. RMI.

Interleaved multithreading (IMT) is one type of fine-grain MT (FGMT),
it switch threads on each cycle. Some processors such as Heteroge-
neous Element Processor (HEP), the Horizon, and the Cray Multi-
Threaded Architecture (MTA) multiprocessors are the most well-known
examples of IMT. It apply the techniques such as dependence look-
ahead technique and interleaving technique try to overcome the pro-
cessing power accessibility. The microthreaded processors described
in this thesis is closest to the IMT. Microthreaded model and IMT,
both processors are in-order core, can eliminate control and data de-
pendences between instructions in the pipeline, and pipeline hazards



Thesis outline 9

cannot arise and the processor pipeline can be easily built without
the necessity of complex forwarding paths. This leads to a very sim-
ple and therefore potentially very fast no hardware interlocking or
data forwarding pipeline. Moreover, the context-switching overhead
is zero cycles. Long memory latency can be tolerated by both schemes
which can cover memory latency and improve overall throughput
(24). The difference between microthreaded model and IMT will be
discussed in chapter 2.

• Chip multiprocessors

In order to achieve better utilization of thread-level parallelism (TLP),
especially for some application that lack sufficient instruction-level
parallelism (ILP), some current commercial processors including In-
tel Itanium 2, PA-RISC (PA-8800), IBM POWER (POWER4 and POWER5),
and SPARC (UltraSPARC IV) adopt multi-cores on a single chip. Cur-
rent CMP integrate superscalar cores which share a common second-
or third-level cache and interconnetc. The CMP will be widely used
to achieve better scalbility and advancer power and thermal man-
agement, at last get obvious performance improvement in the next
generation microprocessors(25).

There are several challages for CMP, because memory access time is
much slower than the processor speed, and even a single-core pro-
cessor still faces the increasing gap between memory and processor
speed. CMP can make this case worse, if, as normally, just one pro-
cessor can access the shared memory once. The other big problem is
how to get the performance improvement for the legacy or general
programs which are usually not programmed for multithreaded pro-
cessing. In fact, most consumer softwares are not written in such a
manner that they can gain large benefits from CMP systems. Writing
correct and efficient multithreaded programs with conventional pro-
gramming models is still an incredibly complex task limited to a few
expert programmers. The performance potential of CMP is just lim-
ited to multiprogramming workloads and a few server applications(26).

1.4 Thesis outline

This thesis describes the research into microthread processor operation and
the design of a microthread pipeline in VHDL. Chapter 2 shows the whole
bottom-level design of the microthread pipeline in detail. It introduces



10 Introduction

the conventional MIPS pipeline briefly, and then compares microthread
pipeline with traditional one to show how the microthreaded processor
works and how it can get improvement in TLP and ILP. In chapter 3 the
design of the first stage of the pipeline is presented, which includes in-
struction fetch, local scheduling logic and Resigter Allocation Unit (RAU).
Chapter 4 describe the simulation results using VHDL. Finally, chapter 5
gives the conclusion of this thesis and discussion about future work.



Chapter 2

Microthreaded Processor

In this chapter, we deliberate the microthreaded concurrency model in more
detail and explore the whole up-bottom design of the Microthreaded pro-
cessor which comprises a pipeline, a local scheduler, a asynchronous com-
municator, a large register file and a local I-cache. The microthreaded pipeline
is based on the conventional in-order execution pipeline microprocessor —
MIPS R2000. The MIPS R2000 was announced in 1985, and was the first
commercial MIPS CPU model. It offers a very clean instruction set and
pipeline. We choose this simple prototype since this model can be easily
implemented as the core of the microthreaded processor and extended to
build more complex system. The objective of the design is to be able to
run the microthreaded instructions, and as the same as the MIPS R2000, all
instructions can be run in one cycle. All the microthread instrcutions and
most of the MIPS R2000 instructions are supported, except multiply, divi-
sion and floating point instructions. Besides the support of the single-core
architecture, an interface for the CMP (Chip Multiprocessors) architecture
will also be included in this design.

2.1 Conventional MIPS Pipeline

2.1.1 An Overview of Pipelining

Pipelining is an implementation technique in which multiple instructions
are overlapped in execution. Pipelining increases the number of simultane-
ously executing instructions and the rate at which instructions are started
and completed. It improves instruction through-put rather than individual
instruction execution time. Today, pipelines are key to making processors



12 Microthreaded Processor

Figure 2.1: Typical simple five stages MIPS Pipeline.

fast. More details of pipelining are given in (1).
The classical MIPS pipeline has five stages. Figure 2.1 shows the typical

simple MIPS Pipeline.

• IF(Instruction Fetch): Instructions are fetched from the instruction
memory (cache).

• ID(Instruction Decode): Read registers, decode the instruction, gen-
erate the control signals and calculate branch address. Reading and
decoding are allowed to occur simultaneously.

• EX(Execution): Arithmetic and logic operation execution or address
calculation.

• MEM(Memory access): Access an operand in data memory (cache)
on load and store instructions.

• WB(Write back): The result is written into a register.

2.1.2 Datapath of Pipeline

• Instruction fetch:

The value of register PC is the address of the instruction which is
being read from the memory. After this instruction is fetched from
memory, the PC address is incremented by 4 and then written back



Conventional MIPS Pipeline 13

into the PC to be ready for the next clock cycle. The instruction is
also placed in the IF/ID pipeline register which also saves the in-
cremented PC in case it is needed later for an instruction, such as
branch instruction. When it has an exception, the instruction will be
fetched from an identical location. In this case, the PC multiplexor
sends 0x4000 0040 to the PC.

• Instruction decode and register file read:

The instruction in the IF/ID pipeline register supplies the register
numbers for reading two registers and extends the sign of the 16-bit
immediate to 32-bit. These three 32-bit values are all stored in the
ID/EX pipeline register along with the incremented PC address, the
source and destination register number. The sign-extended immedi-
ate is shifted left two and added with the incremented PC. That sum is
the effective branch address which is sent back to the PC multiplexor.

• Execute or address calculation:

The instruction reads the contents of two registers and does the arith-
metic/logic operation, or it gets an address by adding the register 1
with a sign-extended immediate. This address is used in MEM stage.
Those results are placed in the EX/MEM pipeline register. The by-
pass network is described in section 2.1.4.

• Memory access:

The instruction reads the data memory using the address from the
EX/MEM pipeline register and loads the data into the MEM/WB
pipeline register.

• Write back:

The data is read from the MEM/WB pipeline register and written into
the register file.

2.1.3 Pipelined control

The control information is created during instruction decode stage and
propagated through the pipeline. The control signals are used to select the
Result register, the ALU operation, either Read data 2 or a sign-extended
immediate for the ALU, branch assertion, pipeline flush, memory read or
write, and register file manipulation.



14 Microthreaded Processor

2.1.4 Pipeline hazard

There are situations in pipelining when the next instruction cannot execute
in the following clock cycle. These events are called hazards. There are
three types of hazards in a conventional MIPS pipeline(1).

• Structural hazards

Structural Hazards means that the hardware does not have enough
resource to support the combination of instructions which are exe-
cuted in a clock cycle. For instance, the MIPS pipeline structure does
not support accessing the same memory twice during one clock cycle,
thus if only one memory is used it will be impossible to solve a store
or load instruction without stalling the pipeline. Structural hazards
are easy to eliminate. The simplest method is increasing the number
of resources(for example, using two memories, one for instructions
and one for data).

• Control hazards

A control hazards is when instruction fetch cannot continue because
the execution path is dependent on a decision based on the results
of an earlier instruction(branch). It can be considered as special case
of a data hazard. But they are separated category because they are
treated in different ways. This can be applied to the branch instruc-
tion. Stall and prediction are the two simple techniques to resolve
the control hazards. In 2.2.3, it is indicated how the microthreaded
pipeline resolves control hazards.

• Data hazards

If an instruction cannot continue because it needs a value that has
not yet been generated by an earlier instruction, it has a data hazard.
A solution is to get the result from the pipeline before it reaches the
write back stage. This solution is called forwarding or bypassing.
Reference (1) introduces the forwarding logic for two cases:

– EX hazard:

if(EX/MEM.RegWrite
and (EX/MEM.RegisterRd 6=0)
and (EX/MEM.RegisterRD=ID/EX.RegisterRs))
Bypass data from register EX/MEM.



Conventional MIPS Pipeline 15

Figure 2.2: The datapath and control for MIPS pipeline. Courtesy of Hen-
nessy and Patterson (1)



16 Microthreaded Processor

– MEM hazard:

if(MEM/WB.RegWrite
and (MEM/WB.RegisterRd 6=0)
and (EX/MEM.RegisterRd 6=ID/EX.RegisterRs)
and (MEM/WB.RegisterRd=ID/EX.RegisterRs))
Bypass data from register MEM/WB.

Section 2.2.3 indicates the difference between microthreaded pipeline
and MIPS pipeline forwarding logic.

Figure 2.2 shows the R2000 MIPS pipeline datapath and control. A
description of this figure can be found in (1).

2.2 Microthreaded processor architecture

Figure 2.3: Microthreaded processor includes a broadcast bus and ring net-
work. Courtesy of Chris Jesshope

Figure 2.3 gives an overview of the Microthreaded processor, its inter-
nal structure and interconnections. This processor comprises a pipeline,
a local scheduler, an asynchronous interface, a large register file and a lo-
cal I-cache (27). In this project, this memory architecture eliminates the L1



Microthreaded processor architecture 17

D-cache completely. In paper (27; 28), it mentions that the Microthread
processor may or may not have a local D-cache because of the constraint of
area and power, and the inherent advantage of Microthreaded processor,
which can tolerant and hide high memory latency. The authors compare
two cases, the first set of results are for a relatively complex level-1 D-cache
of 64Kbyte, with 8-way associativity and 64 byte line size, the second set of
results are for a 1Kbytes with direct mapped cache lines. It can be seen that
number of instructions executed, time to solution and IPC are all virtually
unchanged (28). This scheme reduces the complexity of the processor by
omitting the L1 D-cache.

The microthread model can be applied to an arbitrary ISA by the imple-
mentation of just 5 instructions that provide concurrency controls. These
instructions are shown in table 2.1. The Microthread instructions are only
executed in the first stage of the pipeline and only control the behavior of
the Local scheduler.

The Local scheduler is therefore the most important component of a
microthreaded processor. The understanding, design and implementation
in VHDL of this components is the major contribution of this thesis.

Table 2.1: Concurrency-control instructions
Instruction Instruction Behavior

Cre Creates a new family of threads
Swch Causes a context switch to occur

Kill Terminates the thread being executed
Bsync Waits for all other threads to terminate

Brk Terminates all other threads

Table 2.2: Microthreaded instructions’ opcode map
op(31:26)

18 Swch 011000
19 Kill 011001
1a Bysnc 011010
1b 011011
1c Cre 011100
1d Brk 011101



18 Microthreaded Processor

2.2.1 Local scheduler

Figure 2.4: The interface to the Local Scheduler

The local scheduler determines which iterations from a family of mi-
crothreads is to be executed and manages the state of them. In chapter 3,
we will illustrate the design details of the Local Scheduler. Below we just
illustrate the interface and control logic of this Local Scheduler.

The Register File is responsible for synchronizing an instruction’s exe-
cution with the production of its data. To do this it suspends instructions
until their data is available. To reschedule the suspended thread it will
send the signals Slot Number and WakeUP when data is written to a regis-
ter in which a thread reference (Slot number) is stored in. A reference of the
thread is written in a register on a read failure and that thread is resched-
uled only when data is satisfied. Once the signal WakeUP is asserted, the
scheduler reads the Slot Number to find the location in the data structures
and activate this waiting thread immediately.

The register read stage also determines the value of the thread’s PC
following a context switch and then assert the signal SchWrite to let local
scheduler change the corresponding thread’s PC. This PC written to the
scheduler could possibly be current instruction PC, when a read register
fails, branch target instruction PC, when the branch is taken, or instruction
PC+8 when the branch is not taken.

IM is the pre-fetching port which input the instruction that has the ad-



Microthreaded processor architecture 19

Table 2.3: Interface to the Local Scheduler
Slot Number 9 bits input

WakeUp 1 bit input
SchWrite 1 bits input

PC 32 bits input
IM 32 bits input

PCSet0 1 bit output
PCSet1 1 bit output

New thread PC 32 bits output
L0 Data 32 bits output
L0 Addr 10 bits output
L0 Write 1 bit output

Thread state 35 bits output
PC 32 bits output

Check 1 bit output1
Hit 1 bit input

Force context switch 1 bit input

dress PC+4. The pre-fetching mechanism is the key why the Michthreaded
pipeline does not need extra pipeline cycles to execute the context switch
instructions. A concurrency control instruction always follows an executable
one and is prefetched and executed concurrently with it as there are no
structural hazards in doing so.

PcSet0 is used for decoding whether the opcode of the prefetched in-
struction, IM[PC+4] is a ISAµt or not.

PcSet0 = MF29 ∗ MF30 ∗ MF31; (2.1)

PcSet1 is the signal for decoding the opcode of IM[PC+4] that deter-
mines if it is a context switch instruction or not.

The signals L0 Data, L0 Addr and L0 Write are used for loop index
initialization.

PcSet1 = MF28 ∗ MF29 ∗ MF30 ∗ MF31; (2.2)

The local scheduler latches the new thread PC when a context switch oc-
curs. It needs these three signals: PC, Check and Hit to test if the thread in-
structions PC are not beyond the boundary of instruction cache line. Forced
context switch is a special case when the PC increments over a cache-line



20 Microthreaded Processor

boundary. All cache misses will cause a context switch if processor has
more active threads or stall on waiting the cache line re-flush otherwise.

Table 2.4 is the thread state. It comprises five components and is uti-
lized by the next stage of the pipeline. The Local/Remote bit can catenate
with D-base as one component.

Table 2.4: Thread state
Field Name Size Description

Local/Remote 1 bit Location of the microcontext
D-base 10 bits Base address of the dependent register window
L-base 10 bits Bsse address of the local register window

S+L 5 bits Size of the dynamic windows
Slot number 9 bits Location of the thread inside the scheduler

Producer slot no. 9 bits Location of thread required for dependence.

2.2.2 Register File Partitioning and Addressing

Figure 2.5: The interface to the Address Unit.

In the register read stage, the conventional MIPS ISA supplies the ad-
dress of an instruction’s operands directly for reading or writing to the reg-
ister file. A microthreaded processor can not satisfy this need of register
address from the instructions. It has a large register file which contains
several different register windows. The first register window is the Global
register ($Gi) and comprises the lower 16 registers. These registers are used
to store loop invariants or any other data that is shared by all threads (28).
There are three other register windows which are mapped to the upper 16



Microthreaded processor architecture 21

registers for addressing the microcontext of each iteration. These are the
local window ($Li), the shared window ($Si) and the dependent window
($Di). The sum of the size of these three windows must be less than or
equal to 16. More details about register file partition and distribution can
see (28)

Table 2.5: Register file partition

Share($S3)/Dependent($D4)
Local($L3)

Share($S2)/Dependent($D3)
Local($L2)

Share($S1)/Dependent($D2)
Local($L1)

Global($G)

The thread’s state (S+L, Remote/Local, D-base and L-base ) and the reg-
ister specifier in the instruction are required to generate a register address
into the appropriate context. The following table and Figure 2.6 are the
logic to achieve this.

If the ms bit of RS equals 0, it means RS is less than 16, then the register
is a $G and RS is used directly. If RS is less than 16+S+L, the register is $L
or $S. In both cases all registers are on local processor and the remote signal
is set to zero. When RS is larger or equal than 16+S+L, then the register is
$D. In this case it is possible to read this register from remote processor if
the signal of $D remote/local is 1 and the register address is formed from
producer’s D base. Otherwise the register is read locally.



22 Microthreaded Processor

Figure 2.6: The logic of register address decoding.

if ( RS < 16)
{

Address = RS;
Remote == 0

}
elsif (rs < 16 + S + L)
{

Address = L base + RS;
Remote == 0

}
elsif (rs ≥ 16 + S + L) && (Remote $D == 1)
{

Remote = 1;
Address = D base(producer) + RS;

}
elseif (rs ≥ 16 + S + L) && (Remote $D == 0)
{

Remote = 0;
Address = D base + RS;

}



Microthreaded processor architecture 23

2.2.3 Microthreaded Pipeline

High level architecture of Microthreaded Pipeline

Figure 2.7: Microthreaded Pipeline.

The concept of this Pipeline is formed from a combination of microthread
theory and the general MIPS pipeline. Figure 2.7 gives an overview of a
simple microthreaded, in-order pipeline with its four stages and the com-
munication interfaces required to implement this model in a distributed
manner. The pipeline stages are:

• IF(Instruction Fetch): Thread control and instruction fetch.

• ID(Instruction Decode): Instruction decode/register read and resched-
ule

• EX(Execution): Arithmetic and logic operation execution or address
calculation.

• WB(Write Back): Result is written into a register or written asyn-
chronously to the register file.

Microthreaded Pipeline Datapath & Control

• Instruction fetch:



24 Microthreaded Processor

The main task of IF has no difference between Microthreaded and
MIPS pipeline ( 2.1.2), which is get the proper instruction with the
correct address PC. The differences between the Microthreaded and
MIPS pipeline IF stage are the update of the PC and a local schedule,
which select the new PC either PC+4, PC+8 or a new thread’s PC
address. It also keeps all threads’ states. All instructions to support
the microthreaded model requrie only the first stage of a conventional
pipeline as they provide control to the local scheduler at the IF stage.

Two instructions at PC and PC+4 are fetched simultaneously. One
instruction is launched into the pipeline register and transferred to
the rest of pipeline and the other one, if it is a concurrency control
instruction, is launched into the local scheduler for the concurrency
controls. There is one constraint for this case, the lower address in-
struction (IM[PC] ) of the two instructions should not be the thread-
control instruction and the compiler must guarantee this.

For the case the instruction IM[PC+4] is a conventional ISA, then the
new PC will be PC+4 in the next cycle. Otherwise it means the in-
struction is a microthreaded instruction. In this case there are two
possibilities. If the instructions following the current one is a Swtch,
Kill or Bsync, then the instruction can force a context switch and also
if there is at least one thread ready to be run in the local scheduler, the
new PC will be the new thread PC and transferred to the instruction
memory. Otherwise if the instruction can not cause a context switch,
the new PC will be PC+8 instead of PC+4 (Create or Break). Follow-
ing is the pseudo code to describe this:

if ( IM(PC+4) ∈ RISC ISA )
PC = PC + 4;

elsif ( IM(PC+4) ∈ { Swch, Kill, Bsync } )
PC = new thread PC;

else
PC = PC + 8;

• Instruction decode:

This is similar to the MIPS Pipeline(see section 2.1.2), the instruction
stored in the IF/ID pipeline register supplies the register numbers
which are decoded through the address unit (see section 2.2.2) for
reading/writing registers.



Microthreaded processor architecture 25

There are two special cases in reading and writing the register file
that require explicit communication. Writing to the global window is
an action which not only writes locally but also the address and data
must be broadcast to all other processors to update the same location
on all processors. This broadcast communications is triggered by a
write to a register with a specifier in the range{0...15}. In this case
the data is written locally as normal but also sent to a broadcast bus,
which duplicates the write in every other processor. The second spe-
cial case is for reads to the dependent window, when producer and
consumer are mapped to different processors. A failed read to the
dependent window, will also trigger a remote read of the data via the
ring network. If the data is not immediately available on the remote
processor, the request is suspended in the producer’s shared window
until the data is produced. After it returns, via the network, wakes
up the suspended threaded in the dependent window of consumer
thread. All these communication are asynchronous and independent
of the pipeline’s operation.

The compiler places a Swch instruction after any branch of control
and an instruction whose register operands are not statically guaran-
teed. When the Swch follows a branch instruction, it has an opera-
tion that sends the resolved PC, which is possible the branch/jump
address or the PC+8 back to the Local Scheduler along with a write
request signal. In the other case, when the register operand is read
fail, it has two operations, one is writing the current PC to the sched-
uler to let this thread wait for the data until it is available. Another
operation is that to let the slot number pass down the pipeline with
the thread’s state and write it back to the register using the normal
write-back process. In order to realize this operation and not make
any changes to later pipeline stages, the control logical just change the
Execution stage to do an logic and operation of the two Slot Number
as the operands. The logic is following:



26 Microthreaded Processor

if(Instruction == Jump)
PC = Jump Address;

elsif(Registers == Empty)
{

PC = Current PC;
Registers = Slot number;

}
elsif(Branch == taken)

PC = Branch Address;
else

PC = PC+8;

The control of the Microthreaded Pipeline is very simple if it is com-
pared to the conventional MIPS pipeline (see section 2.1.3). It elim-
inates all the control logic to deal with the pipeline bubbles. It does
not need the complex logic for example for Branch prediction and
Pipeline Flush.

Until now we can easily understand why the Microthreaded Model
can obviously improve the instruction-level prarllelism (ILP) and thread-
level parallelism (TLP). Once there are threads available, the proces-
sor will never be suspended for resolving the branch address or wait-
ing the data to be available. For the branch, the context switch avoids
having to implement branch prediction and fills the pipeline with in-
structions from other threads. The thread has a deterministic delay
before being rescheduled. Also once the data dependencies for an
instruction are resolved, the scheduler can be signalled to resume ex-
ecution of the suspended thread immediately.

• Execution & Write back:

In theory, these stages do not have a big difference with the MIPS
pipeline, which is described in section 2.1.2. The obvious difference
is that the Microthreade pipeline communicate with the data memory
through an Asynchronous Communication.

Microthreaded Pipeline Hazards

Because of the reasons already mentioned above, the Microthreaded Pipeline
does not have Branch Hazards which is described in section 2.1.4. For the
Data hazards and forwarding, the bypass can be just simplified as follows:



Microthreaded processor architecture 27

if(EX/WB.RegWrite
and (EX/WB.RegisterRd 6=0)
and (EX/WB.RegisterRD=ID/EX.RegisterRs))
Bypass data from register EX/WB.

Figure 2.8 shows the final evolved datapath and control for Microthreaded
pipeline which includes a local scheduler, address unit and asynchronous
interface.



28 Microthreaded Processor

Figure 2.8: The datapath and control for Microthreaded pipeline including
a local scheduler and an asynchronous interface.



Chapter 3

Design and Implementation of
the Microthreaded processor

Microthreaded model defines instruction level parallelism. It provides la-
tency tolerance through explicit context switching (swch) for control and
data hazards. In Chapter 2, we describe the high-level architecture of the
microthreaded processor and the low-level pipeline design. In this chapter
and chapter 4 we illustrate the design details of this processor realization
in VHDL language. And this thesis focuses on the implementation of local
scheduler and the whole IF stage.

3.1 Overview

We have indicated the top-level architecture of an IF stage comprising PC
selection logic, an instruction memory (cache) and a local scheduler. As
described in previous chapter, the parallelization information of the mi-
crothreaded is produced by the compiler and kept in the thread control
block (TCB). In IF stage, it uses local scheduler to read the information
through the TCB to take charge the management when a create instruction
executed. The TCB stores the information which determines the number
of required registers per thread. A set of registers local($L), shared($S),
and dependent($D) should be allocated by each thread before execution.
The instruction memory has two blocks which are a code block storing the
microthreaded instructions and a TCB containing parameters that describe
the family of threads. A family of threads is defined by an iterator includ-
ing a triple of start, step and limit. And a thread pointer (TP) defines the
first executable instruction of a thread and it is terminated by the instruc-



30 Design and Implementation of the Microthreaded processor

tion Kill. One or more Kill instructions are possible required if the thread
has branch (28). The parameters defining the information of micro-contex
is also required. All threads share a single contex and each thread has its
own register window which is allocated dynamically by the Register Allo-
cation Unit (RAU). We call this dynamical window as microcontext. Table
3.1 describes the variables in the TCB that defines the thread family.

Table 3.1: The parameters in the thread control block (TCB) which defines
a family of microthreads.

Name Description Size
Threads Cardinality of the set of threads repre-

senting an iteration (n)
2 bytes

Dependency Iteration offset for any loop carried de-
pendencies

2 bytes

Pre-ambles Number of iterations using pre-amble
code

2 bytes

Post-ambles Number of iterations using post-amble
code

2 bytes

Start Start of loop index value 4 bytes
Limit Limit of loop index value 4 bytes
Step Step between loop indices 4 bytes

Locals No. of local registers dynamically allo-
cated per iteration

1 byte

Shares No. of shared registers dynamically allo-
cated per iteration

1 byte

Pre− pointer∗ One pointer per thread in set for pre-
amble code

0/4 bytes

Main− pointer∗ One pointer per thread in set for main
loop-body code

4n bytes

Post− pointer∗ One pointer per thread in set for post-
amble code

0/4 bytes

The code block and TCB are all saved inside the instruction memory
(I-Cache) due to the simplification. Of course, the TCB block is .data type
also can be stored in the data memory (D-Cache). The following depen-
dent example loop and pseudo-code can illustrate how to partition these
two blocks and the structure of the data and code. These two block has
separated address and the TCB area is just read once when creating the
microthreads. In chapter 4 we use a similar independent loop to demon-



Local scheduler 31

strate how the microthreaded microprocessor implements depend on the
data and code of these two blocks.

f or(i = 1; i < n; i + +)
M = (M + C[i]) ∗ (A[i] + B[i]);

Thread control Block:
.data
loop: .word 2 # threads per iteration

.word 1 # dependency distance

.word 1 # loop start

.word n # loop limit

.word 1 # loop step

.word 6 # number of local registers

.word 1 # number of shared registers

.word p # point to code fragment

.word q # point to code fragment

Code Fragments:
.code
main: cre loop # create family of threads

Bsync
p: Lw $L1 A($L0)

Lw $L2 B($L0)
Add $L3 $L1 $L2
Kill

q: Lw $L4 C($L0)
Add $L5 $D0 $L4
Swch
Mul $S0 $L3 $L5
Kill

3.2 Local scheduler

3.2.1 Register Allocation Unit

The hardware supporting dynamical allocation and de-allocation registers
to families of microthreads is described in this section. As mentioned above,
each thread must allocate a set of registers before thread starting execution.
Register allocation unit (RAU) within each scheduler models the allocation



32 Design and Implementation of the Microthreaded processor

Figure 3.1: Block diagram of the RAU, CQ and the interface with the thread
create process.

of micro-contexts to the local register file and determines when new mi-
crothreads may be allocated. It uses the dynamical mechanism to check
if there are enough required number of registers for each thread prior to
thread scheduling and deallocate registers when the thread is terminated.
If registers are available it will allocate a micro-context and then create en-
tries in the continuation queue (CQ). It needs to find a group of contiguous
free registers to satisfy the request from the thread-create process and re-
lease it after Kill instruction. When all the thread associated with a micro-
context have been killed, its registers will be relinquished and the RAU
will update its allocation model (27). The RAU utilizes a set of 1-bit flags to
model the allocation states of the registers and it is initialized to be free (set
to 0) when processor resetted.

Initially there is one free block and it contains all available free registers
can be used by other threads. These registers do not include the register
0-31 which is used by the main thread. The free block is split to allocated
blocks with the requested size from the thread-create process and mark
remaining blocks as free. Figure 3.1 shows the structure design of RAU
and the (de-)allocation interface with the rest part of the local scheduler.
As show, the RAU has an iterative array of allocation slices, one slice per n
registers. In this design, we just choose n=1 to realize a RAU and we can
evaluate n > 1 after full development. RAU responses the request action



Local scheduler 33

and gets the information from the thread-create process and the needed
information, i.e the base address and slice available, will be sent back after
(de-)allocation. The information propagates through the slices to determine
the base address and the size of the largest free block, the base address
and size of the current free block and whether it has free block. When the
space is available and its size is larger than the size of the required registers
for a given thread, the thread-create process supplies the required block
size and an allocate request. An error flag is also propagated through the
slices to indicate whether the inputs are appropriate or not (27). The data
manipulated and propagated between slices is listed in table 3.2.

Table 3.2: Allocation parameters.
Signal Description

SSS Selected Slice Size
CSS Current Slice Size
SSB Selected Slice Base
CSB Current Slice Base
SAS Set allocate Size
SASI Slice allocate Size in
SA Slice Available

Error Error signal
Flagin Current flag state

Flagprev Previous flag stage
Flagout New flag state

There are two challenges to design this hardware unit. The first chal-
lenge is that the registers should be fully utilized. The second one is how to
perform the (de)allocation in a minimum/constant number of cycles. For
the first challenge, this is also the issue that we should always concern how
to balance the design complexity with efficiency. The complexity of this al-
location scheme is proportional to O( R

n ), R is the size of the register file and
n is the number of registers allocation in a unit of allocation. As mentioned
above, we use one slice per register (n=1) in our VHDL implementation
and this has top efficiency and the highest complexity as well. In order to
reduce the complexity of the allocator, we can use n greater than 1, and
it also reduce both area and propagation delay. However, we need con-
sider the inefficiency in register use because of the inherent disadvantage
of block algorithm. It causes the unused register fragments unless these
registers are released by the thread or these unused contiguous registers



34 Design and Implementation of the Microthreaded processor

are large enough for allocating to new thread. In (27), the authors also
indicate that any low efficiency to allocate registers can be minimized by
optimization of compiler, which can enable this allocation scheme to fully
manage the overhead associated with dynamic allocation. Cycles for im-
plementation is always a critical issue for allocator design. This allocation
design is straightforward. We use signals which propagate though slices
of allocation logic directly. The signal propagation can get minimal delay
which is one cycle when this allocation scheme allocates one micro-context.
When this allocator has no any action is being operated, the RAU still can
calculate the needed information, so that it is available before next request.

The algorithm implemented by the RAU is described below (27), where
we have N combinational logic slices, note that the description of the ab-
breviations we used are illustrated in table 3.2.

• Initialization.
To decide if the space is available or no error in pervious process. If it
is available and correct, to find the base address and size of the largest
free block in the register file.

• When to do a allocation.
If the space is available and the size of the largest block is greater than
or equal to the required size, identify the portion of the free block re-
quired for the allocation starting at its base address. Flip the corre-
sponding flags of that block. Otherwise, just wait and calculate the
needed information for next allocation.

• When to do a release.
To set the flags as empty start from the beginning (base) address.

Below is the simplified pseudo-code of register allocation algorithm.

if((Do allocate=1)and(SASI>0)and(SASin=0)and(flagin=0))then
SASout = SASI - 1;
flagout = 1;

elsif((Do allocate=1)and(SASI=0) and (SASin>0)and(flagin=0))then
SASout=SASin-1;
flagout=1;

elsif((Do allocate=1)and((SASI>0)or(SASin>0))and(flagin=1))then
Errorout=1;

end if;
if((Do release=1)and(SASI>0)and(SASin=0)and(flagin=1))then

SASout=SASI-1;



Local scheduler 35

flagout=0;
elsif((Do release=1)and(SASI=0)and(SASin>0)and(flagin=1))then

SASout=SASin-1;
flagout=0;

elsif ((Do release=1)and((SASI>0)or(SASin>0))and(flagin=0))then
Errorout=1;

end if;
if(Flagin=0)and(Flagprev=0)and(Do allocate=0)and(Do release=0)then

if(CSSin≥SSSin) then
SSSout = CSSin + 1;
SSBout = CSBin;

else
SSSout = SSSin;
SSBout = SSBin;

end if;
CSSout = CSSin + 1;
CSBout = CSBin;
SASout = 0;
SAout = 1;

elsif(Flagin=0)and(Flagprev=1)and(Do allocate=0)and(Do release=0)then
if(CSSin>SSSin) then

SSSout = CSSin;
SSBout = CSBin;

else
SSSout = SSSin;
SSBout = SSBin;

end if;
CSSout = 1;
CSBout = slice id;
SASout = 0;
SAout = 1;

elsif(Flagin=1)and(Flagprev=0)and(Do allocate=0)and(Do release=0)then
if(CSSin>SSSin) then

SSSout = CSSin;
SSBout = CSBin;

else
SSSout = SSSin;
SSBout = SSBin;

end if;



36 Design and Implementation of the Microthreaded processor

CSSout = CSSin;
CSBout = CSBin;
SASout = 0;
SAout = 1;

elsif(Flagin=1)and(Flagprev=1)and(Do allocate=0)and(Do release=0)then
if(CSSin>SSSin) then

SSSout = CSSin;
SSBout = CSBin;

else
SSSout = SSSin;
SSBout = SSBin;

end if;
CSSout = CSSin;
CSBout = CSBin;
SASout = 0;
SAout = SAin;

end if;

3.2.2 Continuation Queue

The microthreaded execution model dynamically creates threads via the
local scheduler as and when required by executing instructions generated
at compile time. Figure 3.1 shows the intra-actions between Continuation
Queue (CQ) with Thread-create process and RAU within the Local sched-
uler. The continuation queue can accept one new thread per cycle from the
I-cache if RAU is available. A continuation queue has a table, a link mem-
ory and several processes, which hold and manage the state of all allocated
threads. The slots are addressed by slot number which is used as the refer-
ence to a thread. Each slot of the table comprises a program counter, two
base addresses for the dynamically allocated registers and the sum of the
number local and shared registers allocated. The register base addresses
are local base which is the base address of its micro-context, dependent
base which is the base address of a dependent micro-context if used, and
includes a flag to specify this is local or remote address. It also includes a
link field which is a pointer to another slot in the table. This point is used
to build continuation queues which are empty queue, ready queue and a
queue for threads suspended on a register. All these components are shown
in table 3.3. In our VHDL realization, for a 32 bits PC, a 1K register file and
a 512 slots CQ, each slot in the continuation queue needs 67 bits.



Local scheduler 37

Table 3.3: Components of a slot in the continuation queue for 512 slots and
1K entry register file.

Field Name Size
PC 32 bits

Local Base 10 bits
Dependent Base 11 bits

L+S 5 bits
Link Field 9 bits

Thread state is stored within a slot and maintained by several processes
and link queues. All the thread slots are organized into three queues which
are used to manage the empty, active and suspended slots. Each queue has
two registers used to maintain pointers. The head and tail registers which
are the first and last pointers of the chain. For example, for the empty
queue, the head register points to the first empty slot number. The link
field of each empty slots is used to point to the next empty slot within the
queue. And another one is the tail register which indicates the last empty
slot number of this queue. By default, any operations, i.e. create or kill, just
can operate on these two slots. We can simplify this operation into how to
maintain the pointer within the link queues. It is also one of the main tasks
of the continuation queue.

Figure 3.2: The processes and interactions within the continuation queue.



38 Design and Implementation of the Microthreaded processor

The continuation queue has several processes which are code prefetch-
ing, thread creating, thread kill and context switch. The process code prefetch-
ing runs during the whole execution period. When the prefetched instruc-
tion is conventional ISA, it sets the next PC as PC+4 and has no difference
with a conventional processor. And when this prefetched instruction is
ISA-µt, it sets the next PC as PC+8 or new thread PC. The processes thread
creating, thread kill and context switch can all be trigged by thread cre-
ating process in IF stage. But for the context switch process, it also can
be trigged by the results occured from the ID stage when the cases, i.e.
branch or register ready, to wake-up and reschedule the threads. This case
is also a special case of context switch process. In this case, the process also
manages the continuation queues of threads suspended on a given register.
Figure 3.2 shows the relationship between those processes. The logic of
them are described in more detail below.

• Code Prefetching

if (instruction = ISA ) then
PC=PC+4;

elsf (instruction = Cre) then
Stall the pipeline;
PC=Address of TCB;
Trigger thread creating process;

elsf (instruction = Bsync) then
Synchronization for thread creation ;
Read all parameters of TCB from D-cache;
Resume the pipeline;

elsf (instruction = Swch ) then
Trigger context switch process;

elsf (instruction = Kill ) then
Trigger thread kill process;

end if;

• Thread Creating



Local scheduler 39

if (Create process) then
Check PC whether within the I-cache;
if (PC hit = 1) then

if ((L0 ≤ Loop Limit) and (Space Available = 1) and (L+S ≤ Slice Size)
and (input error = 0) and (Empty Link Available = 1)) then
Tail.A.next = Head.E
Tail.A = Head.E
Head.E = Head.E.next
RR Write = 1; - - Write value of $L0 to register file
RR L0 = L0;
RR L0 Address = Allocate Base;
Write PC to continuation queue;
Write S+L to continuation queue;
Write L base to continuation queue;
Write D base to continuation queue;
Do allocate = 1; - - Let the RAU allocate the register file
Required Alloc Size = Local registers + Shared registers
if (Empty Link Head = Empty Link Tail) then

Empty Link Available = 0;
end if;

end if;
L0 = L0 + Step loop;

end if;
end if;

• Thread Kill and Context Switch



40 Design and Implementation of the Microthreaded processor

if (Context switch or Kill process) then
if (Active Link Head 6= Active Link Tail) then

LS Stall = 0; – Latch a new thread
PcSet0 = 0;
PcSet1 = 0;
New thread pc = PC(Active Link Head);
Thread Local Remote = 0; – Thread state output
Thread D base = D base(Active Link Head);
Thread L base = L base(Active Link Head);
Thread S L = S L(Active Link Head);
Thread Slot number = Active Link Head;
Head.A = Head.A.Next
if (Kill process) then

Tail.next:=Slot
Tail.E:=Slot

end if;
elsif Active Link Avaiable = 1 then –If it is the last active link

LS Stall = 0; – Latch a new thread
PcSet0 = 0;
PcSet1 = 0;
New thread pc = PC(Active Link Head);
Thread Local Remote = 0; – Thread state output
Thread D base = D base(Active Link Head);
Thread L base = L base(Active Link Head));
Thread S L = S L(Active Link Head));
Thread Slot number = Active Link Head;
if (Kill process) then

Tail.next:=Slot
Tail.E:=Slot

end if;
Active Link Avaiable = 0;

– The last active link is used up, all the slots are
empty.

end if;
end if;



Put all together 41

Figure 3.3: The datapath and detail of Local scheduler.

3.3 Put all together

In this project, we finish designing the low-level architecture of Microthread
pipeline and implementing the first stage of it. The design and implemen-
tation of a local scheduler is the main contribution to the microthread pro-
cessor. Fingure 3.3 shows the detail of local scheduler. It shows its main
components and the datapath between it and other stages of the pipeline.
The simulation results of those separated components and a full simulation
are illustrated in chapter 4.





Chapter 4

Simulation results

In this Chapter, we show some preliminary simulation results of this project.
We simulated the IF stage of the microthreaded pipeline including the local
scheduler which is the most important component within a microthreaded
processor. The results are preliminary as we just show the relationship be-
tween independent threads and can not show the results when threads run-
ning on multi-processors. And also a microthreaded compiler is required
before we can simulate complete applications.

4.1 Register Allocation Unit

What we need to test the behavior of Register Allocation Unit (RAU) which
is described qualitatively below:

• If the RAU is ready, the scheduler can initiate an allocation immedi-
ately, which completes in a single cycle.

• Find the start address and the size of the first and largest free block in
the register file.

• When an allocation occurs, flip the flags from the start address with
the request size.

• When to do the release, set the corresponding flags of that block to be
free in the register use model.

• Set available signal when it has free registers.



44 Simulation results

In order to illustrate the results as simply as possible, we just use 32
registers which is a large enough size for the test. The test bench that we
design is described with following figures:

Figure 4.1: The test bench of Register Allocation Unit, showing the se-
quence of allocation states in the test

Figure 4.2 and 4.3 show the last VHDL simulation results of RAU. We
can see those sequent results are the same with the prediction from the test
bench. First, we have a big free registers file. All of the flags are set to be 0
and the slice size output of RAU is set to 32. And then it gets a allocation
request in size 11 and 16. After those requests, the largest address is 27 and
size is 5. Later it gets a release request in size 7 and based on 17. Now the



Local Scheduler 45

Table 4.1: The sequence of allocation states.
Event Size Release base Base address returned

Allocate 11 / 11
Allocate 16 / 27

Deallocate 7 15 15
Allocate 4 / 27

current largest address and size are 17 and 7. The last request is allocation
in size 4, so after this case the largest address is changed back to 27 and
the largest free size is 5. Figure 4.2 shows the result of input and output
ports. Figure 4.3 shows the change of the flags. The cycle time is 10ns. In a
single cycle, it creates the correct information whether a free block has been
found, the base address of the largest free block, the size of the largest free
block, the base address and size of the current free block.

Figure 4.2: The VHDL simulation result of the Register Allocation Unit.
This graph displays the changes to the interface to the register allocation
logic.

4.2 Local Scheduler

The continuation queue does not need to be test independently. We can test
it by testing the whole local scheduler. Before testing the local scheduler, we
will illustrate our test bench. It also shows how both loop and in-line forms
of concurrency are expressed in microthreaded model. Consider the code
generated from a simple loop given below in C and assemble language:

f or(i = 1; i < 10; i + +)
C[i] := A[i]2 + B[i]2;



46 Simulation results

Figure 4.3: The VHDL simulation result of Register Allocation Unit. This
graph displays the value of each of the 32 flags in the register allocation
model. When the flag is at logic low, the corresponding register is not allo-
cated. A transition to logic high shows an allocation and a transition from
high to low shows an unallocation.

Thread control Block:
.data
loop: .word 2 # threads per iteration

.word 0 # dependency distance

.word 1 # loop start

.word 10 # loop limit

.word 1 # loop step

.word 5 # number of local registers

.word 0 # number of shared registers

.word p # point to code fragment

.word q # point to code fragment



Local Scheduler 47

Code Fragments:
.code
main: cre loop # create family of threads

Bsync
p: Lw $L1 A($L0)

Mul $L2 $L1 $L1
Kill

q: Lw $L3 B($L0)
Mul $L4 $L3 $L3
Swch
Add $L3 $L2 $L4
Swch
Sw $L3 C($L0)
Kill

First note that both A[i] and B[i] are squared independently. The loop
can therefore be executed using a family of microthreads comprising 20
threads. For each i, the thread p loads and computes A[i]2, and thread q
computes B[i]2, waits for A[i]2, completes the summation and stores the
result. Instructions in these threads execute in order and no branch predic-
tion is required. Below is the binary code that is hand compiled from above
test program fragment. The .Code segment is from address 0x100 and the
.TCB segment begins from address 0x400.



48 Simulation results

clear
address 64
00000000 - -00000100 nop
70000400 - -00000104 Main:Cre loop
00000000 - -00000108 nop
68000000 - -0000010c Bsync
8c110010 - -00000110 p:Lw $L1 A($L0)
02320018 - -00000114 Mul $L2 $L1 $L1
64000000 - -00000118 Kill
8c310010 - -0000011c q:Lw $L3 B($L0)
02740018 - -00000120 Mul $L4 $L3 $L3
60000000 - -00000124 Swch
02549820 - -00000128 Add $L3 $L2 $L4
60000000 - -0000012c Swch
ac530010 - -00000130 Sw $L3 C($L0)
64000000 - -00000134 Kill
address 256 - -Loop:Thread control block
00000000 - -00000400 Empty
00000002 - -00000404 Threads per iteration
00000000 - -00000408 Dependency distance
00000001 - -0000040c Loop start
00000010 - -00000410 Loop limit 4096
00000001 - -00000414 Loop step
00000005 - -00000418 Number of Local registers
00000000 - -0000041c Number of shared registers
0000011c - -00000420 Pointer to code fragment p
00000110 - -00000424 Pointer to code fragment q
00000108 - -00000428 Return to instruction memory

Because the time reason, we restrict the qualification of this local Sched-
uler that it runs independent in the IF stage on a single processor. And no
dependence between those threads. The test elements about the behavior
of Local Scheduler are described below:

• If the I-cache is ready, the scheduler can initiate an allocation imme-
diately, which completes in a single cycle.

• The local scheduler can read the binary code from the I-cache. And
can partition different segments of the code.

• It can read all parameters in the Thread Control Block (TCB). And
completes reading one element in one cycle



Local Scheduler 49

• When the scheduler is reading the TCB, it can stall the pipeline. And
after it finishes reading TCB it can resume the pipeline.

• After reading the TCB, it also can trigger the thread-create process.
The program begins to run from .code segment.

• Send the request to the I-cache to test if the code inside the cache. And
pre-fetch the instruction on every cycle.

• Schedule and re-schedule the threads, store the thread inside contin-
uation queue and manage the corresponding head and tail registers.

The figure 4.4, 4.5 and 4.6 show the last VHDL simulation results for
the local scheduler. The results presented in Figure 4.4 which shows the
first microsecond results. It shows that the microprocessor begins to read
the TCB from the I-Cache after initialization. Figure 4.5 is the second mi-
crosecond simulation result. This graph displays that the microprocessor
begins to create the threads after half cycle when it finishes reading the
TCB parameters. From this figure we can see that reading TCB parame-
ters needs ten cycles. And half cycle later it begins to latch the first active
thread. So it is just one cycle delay for starting the threads. The total cy-
cles delay for initialization are 11. In this figure, it also shows the local
scheduler begins to do the first register allocation at the same time with
the thread creation. Figure 4.6 is the third microsecond simulation result.
It shows the behaves which are latching and switching the threads. It also
shows the time for create the last thread. Meanwhile, it finishes sending the
request to the RAU for register allocation. This figure also proves that the
we can create one thread just using one cycle. For all of those figures, we
do not show the kill action and the deallocation request to the RAU. When
the context switch happens, all the threads are suspended on the register
file. The wake up mechanism is realized on this stage. Because we do not
implement the second stage of microthread pipeline, we do not simulate
the signal for waking up the suspended threads. But these behaves can be
easily simulated later after the full development. From what we mentioned
above, we can see that the functions of this local scheduler satisfy the desire
of this project.



50 Simulation results

Figure 4.4: The first microsecond VHDL simulation result for the Local
Scheduler. This graph displays that the microprocessor begins to read the
TCB from the I-Cache after initialization.



Local Scheduler 51

Figure 4.5: The second microsecond VHDL simulation result for the Local
Scheduler. This graph displays that the microprocessor begins to create the
threads after half cycle when it finishes reading the TCB parameters. And
half cycle later it begins to latch the first active thread. So it is just one cycle
delay for starting the threads. It also shows the local scheduler begins to
do the first register allocation at the same time with the thread creation.



52 Simulation results

Figure 4.6: The third microsecond VHDL simulation result for the Local
Scheduler. It shows the behaves which are latching and switching the
threads. It also shows the time to create the last thread. Meanwhile, it
finishes sending the request to the RAU for register allocation.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This project is the implementation of a microthreaded microprocessor in
VHDL. This process is based on a model which decomposes a sequential
program into samll fragments of code called microthreads. This model can
obviously improve the instruction-level prarllelism (ILP) and thread-level
parallelism (TLP), as it can eliminate speculation and memory lantency
by scheduling and rescheduling new threads if it has available one. The
microthreads are scheduled dynamically and can communicate and syn-
chronise with each other efficiently. The pre-fetching mechanism also can
avoids many instruction-cache misses in the pipeline.

During this project, we finished designing a microthreaded processor’s
pipeline in detail. Microthreaded pipeline has 4 stages. We described its
whole architecture which includes a complete data and contrl path. After
that, we implemented the first stage of this pipeline, which comprises a lo-
cal scheduler that is also the most important component of a microthreaded
processor. As limited by time, this implementation is just based on a sin-
gle processor, which has no commnication between neighbour processors.
And the program fragmentes executed are independent, which do not have
any dependence between each other.

We implemented those functions of this microthreaded processor, which
can be summarized as follows:

• It can load the microrthreaded program fragmentes including thread
control block (TCB) into the instruction-cache.

• The local scheduler can be initialized by the parameters in the TCB.



54 Conclusions and Future Work

• By the pre-fetching mechanism, the local scheduler can test wehether
the instruciton-cache misses or not. And also can decide whether the
instruction following the current one is ISA-µt or not.

• Select the corresponding program counter (PC) depending on the
prefetched instruction.

• It can dynamically allocate and de-allocated registers to families of
microthreads.

• Those threads can be dynamically scheduled and re-scheduled on de-
mand.

• It can propagate the thread state from IF stage to the next stage.

5.2 Future Work

Untill now, we already designed the complete structure of the microthreaded
pipeline and realized its first stage which comprises the most important
component — local scheduer. It is a good start of this ambitious project.
Later work can implement other components including the register file,
asynchronous communicator. It can be implemented under much more
complex conditions. The threads can be distributed into multi-processor.
After the design pass the simulation, it should be synthesised into FPGA,
which we can test it under real environment. This design should also can
be implemented as a SOC system or become a large CMP system in the
future.



Bibliography

[1] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, third edition,
2003.

[2] A. Bolychevsky, C.R. Jesshope, and V.B. Muchnick. Dynamic schedul-
ing in risc architectures. IEE Trans. E, Computers and Digital Techniques,
143:309–317, 1996.

[3] Jesshope C. R. Microthreading - a model for dis-
tributed instruction-level concurrency. unpublished,
http://staff.science.uva.nl/∼jesshope/Papers/%c2%b5-thread.pdf,
2005.

[4] Jesshope C. R. Scalable instruction-level parallelism. Computer Sys-
tems: Architectures, Modelling and Simulation, Proc 3rd and 4th Int,
July 2004. l. Workshhops, SAMOS 2003, SAMOS 2004, (LNCS 3133,
Springer), ISBN 3-540-22377-0, pp383-392, presented Samos, Greece,
July 2004.

[5] Jesshope C. R. A concurrency model for
instruction-level distributed computing. unpublished,
http://staff.science.uva.nl/∼jesshope/Papers/NPC%20paper.pdf,
2005.

[6] Chris R. Jesshope. Multi-threaded microprocessors - evolution or rev-
olution. In Asia-Pacific Computer Systems Architecture Conference, pages
21–45, 2003.

[7] C. R. Jesshope and Luo B. A microthreaded chip mul-
tiprocessor with a vector instruction set. unpublished,
http://staff.science.uva.nl/∼jesshope/Papers/isca2002.pdf, 2002.



56 Bibliography

[8] Bing Luo and Chris Jesshope. Performance of a micro-threaded
pipeline. In CRPITS ’02: Proceedings of the seventh Asia-Pacific conference
on Computer systems architecture, pages 83–90, Darlinghurst, Australia,
Australia, 2002. Australian Computer Society, Inc.

[9] Chris Jesshope. Implementing an efficient vector instruction set in a
chip multi-processor using micro-threaded pipelines. In ACSAC ’01:
Proceedings of the 6th Australasian conference on Computer systems archi-
tecture, pages 80–88, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[10] Chris Jesshope and Bing Luo. Micro-threading: A new approach to fu-
ture risc. In ACAC ’00: Proceedings of the 5th Australasian Computer Ar-
chitecture Conference, page 34, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[11] Radhakrishna Hiremane. From moore’s law to intel innovation-
prediction to reality. Technology@ Intel Magazine, pages 4–9, April 2005.

[12] R. Ronen, A. Mendelson, K. Lai, S. Lu, F. Pollack, and J. Shen. Com-
ing challenges in microarchitecture and architecture. Proc. IEEE,
89(3):325–340, March 2001.

[13] Doug Burger. Tiled architectures, ACACES 2005 (L’Aquila).

[14] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro,
19(4):23–29, 1999.

[15] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug
Burger. Clock rate versus IPC: the end of the road for conventional
microarchitectures. In ISCA, pages 248–259, 2000.

[16] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith.
Complexity-effective superscalar processors. In ISCA, pages 206–218,
1997.

[17] H. Wang, L. Peh, and S. Malik. Power-driven design of router microar-
chitectures in on-chip networks, 2003.

[18] Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir.
Interconnect-power dissipation in a microprocessor. In SLIP ’04: Pro-
ceedings of the 2004 international workshop on System level interconnect
prediction, pages 7–13, New York, NY, USA, 2004. ACM Press.



Bibliography 57

[19] Wikipedia. http://en.wikipedia.org/wiki/Superscalar.

[20] Michael S. Schlansker and B. Ramakrishna Rau. Epic: Explicitly par-
allel instruction computing. Computer, 33(2):37–45, 2000.

[21] Walter A. Triebel. Itanium Architecture for Software Developers. Intel
press, July 2000.

[22] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin,
Lizy K. John, Calvin Lin, Charles R. Moore, James Burrill, Robert G.
McDonald, William Yoder, and the TRIPS Team. Scaling to the end of
silicon with edge architectures. Computer, 37(7):44–55, 2004.

[23] Stephen W. Keckler, Doug Burger, and Chuck Moore. Trips: Extend-
ing the range of programmable processors. Computer Architecture
and Technology Laboratory, Department of Computer Sciences, The
University of Texas at Austin, www.cs.utexas.edu/users/cart.

[24] Theo Ungerer, Borut Robiĉ;, and Jurij Ŝilc. A survey of processors with
explicit multithreading. ACM Comput. Surv., 35(1):29–63, 2003.

[25] Wikipedia. http://en.wikipedia.org/wiki/Chip-
level multithreading.

[26] Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh,
Brian D. Carlstrom, Lance Hammond, Christos Kozyrakis, and Kunle
Olukotun. Characterization of tcc on chip-multiprocessors. In PACT
’05: Proceedings of the 14th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’05), pages 63–74, Washington,
DC, USA, 2005. IEEE Computer Society.

[27] Lan Bell, Nabil Hasasneh, and Jesshope C R. Microgrids
and micro-contexts: Support structures for microthread
scheduling and synchronisation. submitted to IJPP (Spe-
cial issue and Proc. 1st MicroGrid Conference, Amsterdam,
http://staff.science.uva.nl/ jesshope/Papers/Scheduling Synchronisation.pdf,
July, 2005.

[28] Kostas Bousias, Nabil Hasasneh, and Chris Jesshope. Instruction-
level parallelism through microthreading - a scalable approach to
chip multiprocessors. The Computer Journal Advance Access, 2005.
http://staff.science.uva.nl/ jesshope/Papers/ACSAC05.pdf.


