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Abstract

Parameter estimation or model calibration is a common problem in many areas of process modeling, both in on-line

applications such as real-time flood forecasting, and in off-line applications such as the modeling of reaction kinetics and

phase equilibrium. The goal is to determine values of model parameters that provide the best fit to measured data,

generally based on some type of least-squares or maximum likelihood criterion. Usually, this requires the solution of a

non-linear and frequently non-convex optimization problem. In this paper we describe a user-friendly, computationally

efficient parallel implementation of the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization

algorithm for stochastic estimation of parameters in environmental models. Our parallel implementation takes better

advantage of the computational power of a distributed computer system. Three case studies of increasing complexity

demonstrate that parallel parameter estimation results in a considerable time savings when compared with traditional

sequential optimization runs. The proposed method therefore provides an ideal means to solve complex optimization

problems.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and scope

The field of earth sciences is experiencing rapid
changes as a result of the growing understanding of
e front matter r 2005 Elsevier Ltd. All rights reserved
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environmental physics, along with recent advances
in measurement technologies, and dramatic in-
creases in computing power. More complex, spa-
tially explicit computer models are now possible,
allowing for a more realistic representation of
systems of interest. The increasing complexity of
these models has, however, resulted in a larger
number of parameters that must be estimated.
While the values of some of these parameters might
.
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be estimated directly from knowledge of the under-
lying system, most represent effective properties
that cannot, in practice, be measured via direction
observation. Therefore, it is common practice to
estimate values for model parameters by calibrating
the model against a historical record of input–out-
put data. The successful application of these models
depends critically on how well the model is
calibrated.

Because of the time-consuming nature of manual
trial-and-error model calibration, there has been a
great deal of research into the development of
automatic methods for parameter estimation
(Levenberg, 1944; Marquardt, 1963; Nelder and
Mead, 1965; Kirkpatrick et al., 1983; Glover, 1986;
Goldberg, 1989; Duan et al., 1993; Bahren et al.,
1997; Zitzler and Thiele, 1999; among many others).
Automatic parameter estimation methods seek to
take advantage of the speed and power of digital
computers while being objective and relatively easy
to implement. Over the years, many studies have
demonstrated that population-based global-search
approaches have desirable properties that allow
them to overcome many of the difficulties related to
the shape of the response surface (the objective
function mapped out in the parameter space). These
methods have therefore become standard for
solving complex non-convex optimization pro-
blems. However, application of global optimization
methods to high-dimensional parameter estimation
problems requires the solution of a large number of
deterministic model runs. The computational
burden of these models often hampers the use
of advanced global optimization algorithms for
calibrating parameters in complex environmental
models.

Fortunately, during the past decade there has
been considerable progress in the development of
distributed computer systems using the power of
multiple processors to efficiently solve complex,
high-dimensional computational problems (Byrd
et al., 1993; Coleman et al., 1993a,b; Moré and
Wu, 1995). Parallel computing offers the possibility
of solving computationally challenging optimization
problems in less time than is possible using ordinary
serial computing (Abramson, 1991; Goldberg et al.,
1995; Alba and Troya, 1999; Herrera et al., 1998;
Alba et al., 2004; Eklund, 2004; de Toro Negro
et al., 2004; amongst various others). Despite these
prospects, parallel computing has not entered into
widespread use in the field due to difficulties with
implementation and barriers posed by technical
jargon. This is unfortunate, as many optimization
problems in earth science are ‘‘embarrassingly
parallel’’ and thus are ideally suited for solution
on distributed computer systems.

In this paper we describe a parallel computing
implementation of the Shuffled Complex Evolution
Metropolis (SCEM-UA) global optimization algo-
rithm for computationally efficient stochastic esti-
mation of parameters in environmental models. Our
implementation uses the recently developed MPITB
toolbox for GNU Octave (Eaton, 19981; Fernández
Baldomero, 20042; Fernández Baldomero et al.,
20043), which is designed to take advantage of the
computational power of a distributed computer
system. The implementation of parallelization in the
SCEM-UA algorithm is done in a user-friendly way,
such that the software can be easily adapted without
in-depth knowledge of parallel computing. The
features and capability of the parallel SCEM-UA
implementation are illustrated using a diverse set of
modeling case studies of increasing complexity: (1) a
synthetic 20-dimensional benchmark problem; (2)
the calibration of the conceptual Sacramento Soil
Moisture Accounting (SAC-SMA) model, and (3)
the prediction of flight routes of migratory birds.

The remainder of this paper is organized as
follows. Section 2 presents a short introduction on
parameter estimation in environmental models. In
Sections 3 and 4 we describe the SCEM-UA
algorithm and its parallel implementation on a
distributed computer system, briefly describe the
MPITB toolbox for GNU Octave for paralleliza-
tion, and discuss the MPI (Message Passing Inter-
face, 1997) implementation used to distribute tasks
between different computers. In Section 5, we
illustrate the power and applicability of parallel
SCEM-UA parameter optimization using three case
studies of increasing complexity. There we focus on
the relationship between the computational time
needed for parameter estimation and number of
nodes used. Finally, in Section 6 we summarize the
results and conclusions.

http://www.octave.org/
http://atc.ugr.es/javier-bin/mpitb
http://atc.ugr.es
http://atc.ugr.es
http://atc.ugr.es
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2. Parameter estimation

Consider an environmental system F for which a
model f is to be calibrated. Assume that the
mathematical structure of the model is essentially
predetermined and fixed, and that realistic upper
and lower bounds on each of the p model
parameters can be specified a priori. Let ~Y ¼
f ~y1; . . . ; ~ytg denote the vector of measurement data
available at time steps 1,y,t and let Y ðyÞ ¼
fy1ðyÞ; . . . ; ytðyÞg represent the corresponding vector
of model output predictions using the model e with
parameter values y. The difference between the
model-simulated output and measured data can be
represented by the residual vector, E:

EðyÞ ¼ G½Y ðyÞ� � G½ ~Y � ¼ fe1ðyÞ; . . . ; etðyÞg, (1)

where the function G( � ) allows for various user-
selected linear or non-linear transformations. The
aim of model calibration is to determine a
set of model parameters y such that the measure E

is in some sense forced to be as close to zero as
possible. The formulation of a criterion that
mathematically measures the ‘‘size’’ of EðyÞ is
typically based on assumptions regarding the
distribution of the measurement errors presented
in the data.

The classical approach to estimating the para-
meters in Eq. (1) is to ignore input data uncertainty
and to assume that the predictive model e is a
correct representation of the underlying physical
data-generating system (F). In line with classical
statistical estimation theory, the residuals in Eq. (1)
are then assumed to be mutually independent
(uncorrelated) and Gaussian-distributed with a
constant variance. Under these circumstances, the
traditional ‘‘best’’ parameter set in Eq. (1) can be
found by minimizing the following additive simple
least-squares (SLS) objective function with respect
to y:

FSLSðyÞ ¼
Xt

i¼1

eiðyÞ
2. (2)

For cases where the residuals in Eq. (1) are
correlated a covariance structure of the residuals
(or measurement noise) can be included in the
definition of Eq. (2) so that the error terms become
uncorrelated. Many algorithms have been devel-
oped to solve the non-linear SLS optimization
problem stated in Eq. (2). These algorithms include
local search methodologies, which seek to improve
the objective function using an iterative search
starting from a single arbitrary initial point in
parameter space; and global search methods, in
which multiple, concurrent searches are conducted
from different starting points within parameter
space.
3. The SCEM-UA algorithm

The SCEM-UA algorithm is a general-purpose,
global optimization algorithm that provides an
efficient estimate of the most likely parameter set
and its underlying posterior probability distribution
within a single optimization run (see Vrugt et al.,
2003b). A condensed description of the method is
given below and is illustrated in Fig. 1.
1.
 Generate sample: Sample s parameter combina-
tions fy1; . . . ; ysg randomly from the prior dis-
tribution and compute the posterior density of
each of these points using a slightly modified
implementation of Eq. (2) as presented in Box
and Tiao (1973).
2.
 Rank points: Sort the s points in order of
decreasing posterior density and store them in
array D[1:s,1:n+1], where n denotes the number
of parameters.
3.
 Initialize Markov Chains: Initialize the starting
locations of k sequences using the first k elements
of D;Sk ¼ D½k; 1 : nþ 1�.
4.
 Partition into complexes: Partition the s points
of D into k complexes fC1; . . . ;Ckg, each contain-
ing m points. The first complex contains every
kðj � 1Þ þ 1 point of D, the second complex every
kðj � 1Þ þ 2 of D, and so on, where j ¼ 1; . . . ;m.
5.
 Evolve each sequence/complex: Evolve each se-
quence and complex using the Sequence Evolu-
tion Metropolis algorithm, described in detail in
Vrugt et al. (2003b).
6.
 Shuffle complexes: Unpack all complexes C back
into D, and rank the points in order of decreasing
posterior density.
7.
 Check convergence: If convergence criteria are
satisfied, stop; otherwise return to step 4.

The algorithm is an approximate Markov Chain
Monte Carlo (MCMC) sampler, which generates k

sequences of parameter sets fyð1Þ; yð2Þ; . . . ; yðNÞg
that converges to the stationary posterior dis-
tribution for a large enough number of simula-
tions N.
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START

Input: n = dimension,k = numberof complexes

s = population size

Compute number of points in complex (m = s /k).

1. Generatesample
Sample s points in the feasible space usingprior distribution

Compute the posterior density at each point.

2. Rank points
Sort de s points inorder of decreasing posterior density.

Store them in D.

3. Initialize Markov Chains
Initialize k independent sequences S starting at

the k points of D with highest posterior density.

4. Partition into complexes
Partition D into k complexes Cq, q = 1,…,k of m points.

5. Evolve each sequence/complex
Evolve each sequence k,Sq, q = 1,…,k

SEM algorithm

(Vrugt et al., 2003a)

6. Shuffle complexes
Replace Cq, q= 1,...,k back into D and sort D in

order of decreasing posterior density.

7. Check convergence
Convergence criteria

satisfied?

STOP

No

Yes

Fig. 1. Flowchart of a typical sequential implementation of a parameter optimization algorithm: SCEM-UA algorithm.
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The SCEM-UA algorithm is related to the
successful SCE-UA global optimization method
(Duan et al., 1993), but uses the Metropolis–
Hastings (MH) search strategy (Metropolis et al.,
1953; Hastings, 1970) instead of the Downhill
Simplex method for population evolution. This
approach enables the SCEM-UA algorithm to
simultaneously infer the most likely parameter set
and its underlying posterior probability distribution
within a single optimization run. Although the
former is not inferred directly, it can be inferred
from the sample set of points generated with the
algorithm. A detailed description and explanation
of the method appears in Vrugt et al. (2003b), and
so will not be repeated here.
3.1. Sequential implementation

The traditional implementation and application
of many local and global optimization methods
involves sequential execution of the algorithm using
the computational power of a single Central
Processing Unit (CPU). For example, the SCEM-
UA algorithm described in the previous section is
set up such that the various steps and associated
model evaluations are executed sequentially, one
after another. Such an implementation works
acceptably well for relatively simple optimization
problems, and those optimization problems with
models that do not require much computational
time to execute. However, for high-dimensional
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optimization problems involving complex spatially
distributed models, such as are frequently used in
the field of earth science, this sequential implemen-
tation needs to be revisited (Abramson, 1991;
Goldberg et al., 1995; Alba and Troya, 1999;
Herrera et al., 1998; Vrugt et al., 2001; Alba et al.,
2004; Eklund, 2004; de Toro Negro et al., 2004;
Vrugt et al., 2004; amongst various others).

Most computational time required for calibrating
parameters in complex environmental models is
spent running the model code and generating the
desired output. Thus, there should be large compu-
tational efficiency gains from parallelizing the
algorithm so that independent model simulations
are run on different nodes in a distributed computer
system.

3.2. Parallel implementation

With modifications to the original sequential
SCEM-UA code, the generation of the initial
sample (Step 1) and evolution of sequences/com-
plexes (Step 5) can be solved on different nodes. In
this section we describe a parallel implementation of
the SCEM-UA algorithm for computationally
efficient use on multiprocessor distributed computer
systems.

A condensed description of our parallel imple-
mentation of the SCEM-UA method is given below
and is illustrated in Fig. 2. A distinction is made
between MASTER and SLAVE processors.
1.
 MASTER—Generate sample: Sample s para-
meter combinations fy1; . . . ; ysg randomly from
the prior distribution.
SLAVE—Compute posterior density: Each slave
processor is assigned to evaluate a subset of s.
2.
 MASTER—Rank points: Sort the s points in
order of decreasing posterior density and store
them in array D½1 : s; 1 : nþ 1�, where n denotes
the number of parameters.
3.
 MASTER—Initialize Markov Chains: Initialize
the starting locations of k sequences using the
first k elements of D; Sk ¼ D½k; 1 : nþ 1�.
4.
 MASTER—Partition into complexes: Partition
the s points of D into k complexes fC1; . . . ;Ckg,
each containing m points. The first complex
contains every kðj � 1Þ þ 1 point of D, the second
complex every kðj � 1Þ þ 2 of D, and so on,
where j ¼ 1; . . . ;m.
5.
 MASTER—Evolve complexes: Generate and dis-
tribute new candidate points to slaves.
SLAVE—Compute posterior density: Each slave
processor is assigned to evaluate a different set of
candidate points.
6.
 MASTER—Shuffle complexes: Unpack all com-
plexes C back into D, and rank the points in
order of decreasing posterior density.
7.
 MASTER—Check convergence: If convergence
criteria are satisfied, stop; otherwise return to
step 4.

This parallel implementation of the SCEM-UA
algorithm is different from its sequential counter-
part in two important ways. First, the evaluation of
the fitness function for the individuals in the
population is distributed over the slave processors,
thereby avoiding excessively long execution times
on a single processor. Second, each slave computer
is set up to evolve a different sequence and complex,
as this step does not require information exchange
and communication between different nodes. In
fact, this type of parallelism can be applied to
almost any optimization algorithm which involves
sequential evaluation of fitness functions (Cantú
Paz and Goldberg, 1998). Both modifications are in
line with our arguments set forth in the previous
section, and significantly reduce the computational
burden needed to solve complex high-dimensional
optimization problems.
4. Parallel computing

4.1. The MPITB toolbox for Octave

Distributed computers have the potential to
provide an enormous computational resource
for solving complex environmental problems, and
there is active research in this area to take better
advantage of parallel computing resources. For
example, in hydrology applications, parallel com-
puting is being exploited to improve computational
efficiency of individual, large-scale groundwater
flow (Wu et al., 2002) and reactive transport
(Hammond et al., 2005) models. Efforts to couple
hydrologic models consisting of a network of
individual submodels (groundwater, surface water,
and atmospheric models) also are being designed in
a way that submodels can be partitioned to different
processors (Winter et al., 2004). Finally, parallel
versions of model inversion and sensitivity analysis
software such as PEST (Doherty, 2004) have been
developed.
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Input: n = dimension, k = number of complexes
s = population size

Compute number of points in complex (m = s /k).

Split s points between T available nodes.
Broadcast (s /T) points to each slave.

Receive parameter combinations

On each slave independently run
(s /T) combinations and compute
posterior density of each point.

Collect results and send s posterior
densities to master

No

Yes

STOP

Receive and run the model with the k
points on the slaves

Compute posterior density of each of
the k points and send results to master

1. Generate sample
Sample s points in the feasible space 

using prior distribution.

2. Rank points
Sort de s points in order of decreasing

posterior density. Store them in D. 

3. Initialize Markov Chains
Initialize k independent sequences S starting at the

k points of D with highest posterior density.

4. Partition into complexes
Partition D into k complexes Cq, q = 1,…,k.

5. Evolve each sequence/complex
Generate k candidate points in each sequence
using the SEM algorithm(Vrugt et al., 2003a).

Broadcast k points to slave.

6. Shuffle complexes
Replace Cq, q= 1,...,k back into D and sort D in

order of decreasing posterior density.

7. Check convergence
Convergence criteria

satisfied?

Fig. 2. Flowchart of a parallel implementation of SCEM-UA algorithm. Master computer performs various algorithmic steps in SCEM-

UA algorithm (on left-hand side of flowsheet), while slave computers run simulation model (on right-hand side of flowsheet).

J.A. Vrugt et al. / Computers & Geosciences 32 (2006) 1139–11551144
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Despite the potential, to date there is limited use
of parallel computing resources in the field of earth
science, probably because parallel computing re-
quires familiarity with technical jargon, as well as
major restructuring of existing source codes. Re-
cognizing these problems, Fernandez Baldomero
et al. (2004) recently developed a user-friendly MPI
toolbox for Octave (Eaton, 1998), called MPITB
that provides a hands-on, command-line environ-
ment for performing parallel computations. The
excellent functionality and completeness of MPITB,
along with the ease of use and free availability of the
source code, make this toolbox an excellent choice
for developers of parallel computing applications.
Indeed, MPITB allows Octave users to build their
own MPI-based parallel applications, by simply
installing the required software and adding the
required MPI calls to their source Octave code,
without patching their Octave installation.

The Message Passing Interface (MPI: Message
Passing Interface Forum, 1997) is a specification of
a mechanism for passing instructions between
different computational resources, which may run
on different nodes of a cluster of computers. The
MPITB for the GNU Octave program environment
developed by Fernandez Baldomero et al. (2004)
makes use of the LAM/MPI implementation. This
LAM/MPI is a high-quality open-source implemen-
tation of the MPI specification, including all of
MPI-1.2, and much of MPI-2 (LAM team, 20044).
GNU Octave (Eaton, 1998) is a freely available
high-level language with a syntax that is mostly
compatible with MATLABTM, and is primarily
intended for numerical computations. It contains a
large number of built-in functions, and additional
extensions are available from the Octave-forge
package available at http://octave.sourceforge.net/.
Both Octave and octave-forge extensions run under
the Windows, Linux, and Mac OS X operating
systems.

4.2. Implementation of parallel SCEM-UA using

MPITB

In this section we describe how the parallel
SCEM-UA algorithm is implemented in Octave
using MPITB. MPITB follows the LAM/MPI
syntax, so function names, arguments, and returns
are all the same if one were directly using the LAM/
4LAM team 2004. LAM/MPI parallel computing, http://

lam-mpi.org/
MPI C or FORTRAN libraries. Since extensive
documentation is available for each of the MPI
functions (http://www.lam-mpi.org/tutorials/) we
will not go into detail of how to use MPI functions.
Instead, we focus on the unique elements of our
implementation, following the parallel outline of the
SCEM-UA algorithm in the previous section.

Fig. 3 presents a flowchart of the parallel SCEM-
UA implementation in Octave using pseudo-code.
Figs. 3a and b describe the algorithmic steps
undertaken by the Master computer, including the
communication with the slaves, and Fig. 3c presents
that part of the Octave code being run on the slave
computers. The pseudo-code describes in detail each
line of the Octave implementation of the parallel
SCEM-UA code. Function names are indicated
with capital letters, whereas lines that start with the
symbols ‘##’ represent comments. In short, the
optimization problem is distributed over a pre-
specified number of computational nodes on which
an independent search of the parameter space is
conducted. After a sufficient number of evolution-
ary steps, information between processors is
shuffled and new complexes are generated. This
iterative process continues until convergence has
been achieved.

The most important MPI calls that are used to
facilitate communication between the master and
slave computers are: (1) MPI_Send—to send a
package with parameter combinations (master) or
model simulation outputs (slave), (2) MPI_Prob—
to check whether there are any incoming messages,
(3) MPI_Get_elements—to track the number of
basic elements in the package, and (4) MPI_Recv—
to retrieve the information in the package. A
detailed description of each of these functions
appears in tutorials from the LAM team (2004:
http://www.lam-mpi.org/tutorials/) and so will not
be repeated here.

5. Case studies

We demonstrate the power and applicability of
the parallel SCEM-UA algorithm for three case
studies with increasing complexity. The first case
study is a synthetic, highly non-linear benchmarking
problem designed to illustrate the ability of our
parallel implementation to infer the known poster-
ior target distribution. This problem contains 20
parameters. The second case study considers the
calibration of the SAC-SMA conceptual watershed
model involving the estimation of 14 parameters.

http://octave.sourceforge.net/
http://www.lam-mpi.org/tutorials/
http://www.lam-mpi.org/tutorials/
http://lam-mpi.org/
http://lam-mpi.org/
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PROGRAM RUNNING ON MASTER COMPUTER

OUT:

1. Generate sample
## Generate initial sample using Latin Hypercube ##
x = LATIN(n,s,minn,maxn);
## Distribute individuals of population over different nodes (Fig. 3B) ##
[SimAllData] = DISTTASK(x,s,n,nodes,Nmeas); 

SLAVE – Run model on slaves and return output for each point (Fig. 3C)

## Compute the posterior density of each point from simulation results ##
[pset ] = COMPUTEDENSITY(SimAllData, Measurement);
## Collect results in array ParSet ##
ParSet = [x, pset(1:end, 1)];

2. Rank points
## Sort in order of decreasing posterior density and store results in array D ##
D = -SORTROWS(-pset, 1);

3. Initialize Markov Chains
## Initialize the starting locations of the k sequences ##
Seq = INITSEQUENCES(D, x, k); notconverged = 1;

4. Partition into complexes
## Partition D into k complexes ##
C = PARTCOMPLEXES(D, x, k);

5. Evolve complexes
------ Sequence Evolution Metropolis algorithm (see Vrugt et al., 2003a) ------
## First generate new candidate point for each complex and sequence ##
[newpar, Ratio ] = OFFMETRO(Seq, C, minn, maxn, Measurement );
## Distribute new points over different nodes ##
[SimAllData] = DISTTASK(newpar, s, n, nodes, Nmeas);

SLAVE –Run model on slaves and return output for each point (Fig. 3C)

## Compute the posterior density of the new points ##
[pset ] = COMPUTEDENSITY(SimAllData, Measurement);
## Apply the Metropolis accept /reject rule ##
[C, newgen] = METROPOLIS(pset, newpar, C, Seq, Ratio, Measurement );
## Now update sequences and add combinations to ParSet ##
[Seq, ParSet ] = COLLECTS(Sequences, newgen, ParSet );

6. Shuffle complexes
## Reshuffle the points ##
[D, x] = RESHUFFLE(C, k);

7. Check convergence

## Computer Gelman and Rubin convergence statistics ##
[notconverged ] = GELMAN(Sequences);

while (notconverged == 1)

ParSet

IN:
s
n
minn
maxn
k
Measurement
Nmeas
nodes

population size
number of model parameters subject to optimization 
vector with minimum value of each parameter
vector with maximum value of each parameter
number of complexes/sequences used in search
calibration data time series
number of measurements in calibration time series
number of computational nodes

(Posterior parameter distribution)

end

(A)

Fig. 3. Pseudo-code describing our parallel implementation of SCEM-UA algorithm in octave: (A, B) algorithmic steps undertaken by

master computer, and (C) octave program running on slave computers.

J.A. Vrugt et al. / Computers & Geosciences 32 (2006) 1139–11551146
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PROGRAM RUNNING ON MASTER COMPUTER

## Distribute individuals population over different nodes and return model output for each point ##

IN:

GLOBAL:

OUT:

## Distribute individuals over different slave nodes ##
for slave = 1:nodes-1,

## Divide the population so each slave is assigned a different subset ##
[lhs rhs] = DIVVY(s, nodes-1, slave);
## Generate package for each slave ##
package = RESHAPE(x (lhs:rhs, :),1, (rhs-lhs +1)∗n);
## Send the package tothe slave with MPI ##
MPI_SEND (package, slave, tag,-1);

## Collect results from different nodes##
for slave = 1:nodes-1,

## Compute the indicesagain, so that output slaves corresponds to the right individual ##
[lhs rhs] = DIVVY(s,nodes-1, slave);
## Checking for incoming message using MPI ##
[minfomstat] = MPI_PROBE(slave, tag, -1);
## Compute and return the number of basic elements ofmessage using MPI ##
[minfodbls ] = MPI_GET_ELEMENTS (mstat,[ ]);
## Pre-generate a vector Nslavein which results fromslaves will be collected ##
Nslave = zeros(1, dbls);
## Receive results fromslaves using MPI and store result in Nslave##
[minfomstat] = MPI_RECV(Nslave, slave, tag,-1);
## Reshape Nslaveto generate desired shape for use in the algorithm ##
SimAllData (lhs:rhs,:) =RESHAPE(Nslave, rhs-lhs +1, Nmeas);

function [SimAllData] = DISTTASK(x,s,n,nodes,N );

n

x

s
nodes

Nmeas

tag

SimAllData

number of model parameters subject to optimization

population of points

population size
number of computational nodes

number of measurements in calibration time series

Unique tag id for message ( just a constant number )

(model output for each point )

end

end

(B)

Fig. 3. (Continued)
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Finally, the third case study focuses on the
prediction of migratory trajectories of passerine
birds over continental Europe using a two-dimen-
sional, spatially explicit model having eight calibra-
tion parameters. In case studies 2 and 3, we examine
algorithm efficiency, particularly the relationship
between computational time and number of parallel
processors used. The calculations reported in this
paper were performed on the state-of-the-art 272
node (2 Intels Xeon 3.4GHz) Lisa cluster of the
SARA Computing & Network Services in Amster-
dam, The Netherlands.

5.1. Case study 1: a 20-dimensional banana-shaped

posterior target distribution

This case study is a benchmarking problem for
testing our parallel SCEM-UA algorithm. The 20-
dimensional, non-linear, banana-shaped distribu-
tion is constructed from the standard multivariate
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Gaussian distribution as follows (see Haario et al.,
1999). Let e be the density of the multivariate
normal distribution, Nð0;SÞ with covariance matrix
given by S ¼ diagð100; 1; . . . 1Þ. The twisted Gaus-
sian density function with non-linearity parameter b

is given by

f b ¼ f � fb (3a)

where the function fb is

fbðyÞ ¼ ðy1; y2 þ by21 � 100b; y3; . . . ; ypÞ. (3b)

Our test used b ¼ 0:1 to generate a strongly twisted
banana-shaped posterior target distribution. Given
a combination of values for y, Eq. (3) directly
computes the corresponding posterior density. So,
for this specific example, one does not need to
evaluate an objective function, such as done in
Eq. (2). The population size s in the SCEM-UA
algorithm was set to 2000, and the number of
parallel sequences k and slave processors nodes were
set to 50.

Fig. 4 presents a scatterplot of the ðy1; y2Þ
sampled SCEM-UA points that were generated
after convergence of the parallel sequences had been
achieved to a stationary posterior distribution. The
solid black line defines the theoretical posterior
distribution. Notice that our parallel implementa-
tion of the SCEM-UA algorithm has sampled
points that are fully consistent with the prior-
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defined target distribution. This suggests that
the sampler provides a correct estimate of the
underlying posterior distribution, and that our
parallel implementation has been successful.

5.2. Case study 2: the Sacramento soil moisture

accounting (SAC-SMA) model

We investigate the benefits of using parallel
computing by applying the method to the calibra-
tion of the SAC-SMA conceptual watershed model
(see Fig. 5) using data from the Leaf River
watershed (1950 km2) near Collins, Mississippi. This
model is used extensively by the National Weather
Service for streamflow forecasting and flood warn-
ing throughout the United States. The model has 13
user-specified (and 3 fixed) parameters (see Table 1)
and an evapotranspiration demand curve (or
adjustment curve). Inputs to the model include
mean areal precipitation (MAP) and potential
evapotranspiration (PET), while the outputs are
estimated evapotranspiration and channel inflow. A
simple Nash Cascade (NC) of three linear reservoirs
(with one tunable parameter) is used to route the
upper zone (quick response) channel inflow (Z1),
while the lower zone (slow flow recession compo-
nents Z2 and Z3) are passed directly to the gauging
point. Therefore, our calibration problem has 14
time-invariant parameters. The feasible parameter
space was defined by fixing the upper and lower
bounds at their ‘‘level zero’’ estimates presented in
Boyle et al. (2000).

The hydrologic data, obtained from the National
Weather Service Hydrology Laboratory (HL),
consists of 6 h MAP (mm/day), daily streamflow
(m3/s) and PET (mm/day). Because the SAC-SMA
model and Leaf River data have been discussed
extensively in previous work (Burnash et al., 1973;
Brazil and Hudlow, 1981; Sorooshian et al., 1993;
Yapo et al., 1996; Boyle et al., 2000; Vrugt et al.,
2003a,b), details of the modeling and data set will
not be reported here. In this study we use 11 years
(WY 1953–1962) of data for calibration and
uncertainty assessment of the SAC-SMA model
parameters.

To estimate the model parameters we adopt a
classical Bayesian approach using the following
posterior density criterion, pðyjY Þ (Box and Tiao,
1973):

pðyjY Þ ¼ FSLSðyÞ
�ð1=2Þt, (4)

where t denotes the total number of streamflow
observations, and FSLS is computed according to
Eq. (2). Based on recommendations in previous
work (Vrugt et al., 2003b), the stationary posterior
distribution corresponding to the density criterion
defined in Eq. (4) was estimated using a population
size of s ¼ 1000 points and k ¼ 25 parallel se-
quences.

Table 1 summarizes the SCEM-UA derived
posterior uncertainty ranges of the SAC-SMA
parameters. The listed ranges pertain to a con-
fidence level of 99.5%. In relation to the Level Zero
or prior parameter ranges, most of the SAC-SMA
parameters are well identified by calibration to
streamflow data. In particular, the capacity para-
meters UZTWM, UZFWM, LZTWM, LZFSM
and LZFPM are well determined, while parameters
ZPERC and REXP (that control percolation),
ADIMP (additional impervious area), and the rate
parameters LZSK and LZPK are less well deter-
mined. These results suggest that most uncertainty
in the model structure is associated with percolation
from the upper zone and depletion from the lower
zone.

We now demonstrate the computational benefits
of using parallel parameter estimation. Fig. 6 is a
plot of computational time versus the number of
computational nodes used in the Lisa cluster. The
solid curve represents the average result of 10 trials,
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while the box plots denote the spread among the
replicates. The dashed black line denotes a theore-
tical 1:1 speed up. The use of one computational
node represents a classical sequential SAC-SMA
model calibration, which for this case required
approximately 25min on a Pentium 3.4GHz
computer. With the use of more computational
nodes, the time needed for SAC-SMA model
calibration steadily decreases to about 3.5min
(a 90% reduction in computational time) when the
number of slave processors is identical to the
number of parallel sequences/complexes used to
explore parameter space. Note that the reported
computational time closely tracks the 1:1 speed up
curve, suggesting that the communication time
between master and slave computers is small
compared to the time needed to run the SAC-
SMA model. Finally, we note that the number of
processors that can be efficiently used with the
parallel algorithm, as currently implemented, is
limited to no more than the number of parallel
sequences/complexes chosen.
5.3. Case study 3: bird migration modeling

The third and final case study reported in this
paper illustrates the application of parallel comput-
ing to help understand and examine spatial and
temporal variations in optimal migration direction
for migratory birds. For this purpose we developed
a two-dimensional, spatially explicit, individual-
based simulation model. The model combines the
strengths of flight mechanical theory (Pennycuick,
1998) and two-dimensional, spatially explicit mod-
eling (Erni et al., 2002) to simulate the time
evolution of the spatial location and fat amount of
an individual bird. For an extensive description of
the model and its most important parameters see
Vrugt and Bouten (2005), Vrugt et al. (2005).

The spatial domain of the model, which covers
continental Europe and northern Africa, is discre-
tized into a two-dimensional rectangular grid of
cells ranging from �20� 401 longitude to 10� 701
latitude using a grid resolution of 0.51 in both
directions. Each spatial cell was assigned a different
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Table 1

Parameter and state variables in Sacramento Soil Moisture Accounting (SAC-SMA) model

States Description Initial ranges Posterior ranges

Capacity thresholds

UZTWM Upper zone tension water maximum storage (mm) 1.0–150.0 3.3–9.9

UZFWM Upper zone free water maximum storage (mm) 1.0–150.0 28.3–36.3

LZTWM Lower zone tension water maximum storage (mm) 1.0–500.0 249.9–316.3

LZFPM Lower zone free water primary maximum storage (mm) 1.0–1000.0 67.4–93.1

LZFSM Lower zone free water supplemental maximum storage (mm) 1.0–1000.0 1.1–6.9

ADIMP Additional impervious area 0.0–0.40 0.03–0.23

Recession parameters

UZK Upper zone free water lateral depletion rate (d�1) 0.1–0.5 0.45–0.50

LZPK Lower zone primary free water depletion rate (d�1) 0.0001–0.025 0.011–0.018

LZSK Lower zone supplemental free water depletion rate (d�1) 0.01–0.25 0.12–0.25

Percolation and other

ZPERC Maximum percolation rate 1.0–250.0 164.7–250.0

REXP Exponent of percolation equation 1.0–5.0 1.0–1.5

PCTIM Impervious fraction of watershed area 0.0–0.1 0.0–0.003

PFREE Fraction percolating from upper to lower zone free water storage 0.0–0.6 0.00–0.021

Not optimized

RIVA Riparian vegetation area 0.0

SIDE Ratio of deep recharge to channel base flow 0.0

RSERV Fraction of lower zone free water not transferable to tension water 0.3

UZTWC Upper zone tension water storage content (mm)

UZFWC Upper zone free water storage content (mm)

LZTWC Lower zone tension water storage content (mm)

LZFPC Lower zone free primary water storage content (mm)

LZFSC Lower zone free secondary water storage content (mm)

ADIMC Additional impervious area content (mm)
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Fig. 6. Computational time needed for a complete SAC-SMA

model calibration against number of Pentium IV 3.4GHz

processors used. Curve represents average of 10 independent
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Fuel Deposition Rate (FDR: Erni et al., 2002). The
meteorological conditions (wind direction and
speed) at each spatial cell are updated hourly using
linear interpolation between two consecutive 6-h
predicted wind maps from reanalysis runs of the
NCEP model of the National Oceanic and Atmo-
spheric Administration (NOAA). The orientation
and navigation direction of the bird is computed
during the initialization of the model from the
location of the breeding ground (60.01N, 10.01W)
and endogenous direction (Dendog) using an arrival
location at 151 north latitude. For autumn migra-
tion, the computer simulation is conducted at equal
time intervals of 1 h, starting on August 1, 2004.
This time-marching computation continues until the
bird either covers the required distance to the
wintering grounds, or runs out of consumable fat
reserves, or when the simulation time exceeds 100
days. In this illustrative study we focus on the
willow warbler, a small passerine bird.

Table 2 lists the most important parameters in
the bird migration model. A distinction is made
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between default values and parameters subject to
optimization. The uncertainty ranges of the calibra-
tion parameters correspond to those of the willow
warbler. The total set of parameters in Table 2
defines how the willow warbler reacts to its fat
reserve and spatially and temporally varying envir-
onmental conditions. Each parameter combination
therefore results in a different simulated flight route
trajectory.

To implement and test our parallel SCEM-UA
algorithm, we must specify a life-history objective
that the willow warbler is trying to satisfy, after
which the algorithm can be used to estimate the
parameters in Table 2. Most optimality models that
have been developed in the avian migration
literature consider flight time to be the main
objective. In light of these considerations, we seek
to identify all parameter combinations that result in
a migration time close to the observed migration
time of the willow warbler. Extensive ringing
recoveries (Hedenström and Pettersson, 1987) have
established this to be approximately 60 days. To
conduct the parameter search with the SCEM-UA
algorithm, we used a population size of 500 points,
in combination with 10 parallel sequences. The
results of our analysis are presented in Figs. 7 and 8
and discussed.

Fig. 7 depicts the model-predicted migratory
pathways corresponding to a randomly chosen
Table 2

Most important parameters in bird migration model: distinction is ma

Parameter Description

Default valuesa

mmusc Flight muscle mass

mframe Airframe mass

b Wing span

S Wing area

mmaxfat Maximum fat mass

Calibration parametersa

Initfat Fat mass at start autumn migration

mminfat Minimum fat mass during flight

mcrossfat Minimum fat mass to cross barrier

Dendog Endogenous direction autumn

Pwind Wind compensation factor

Vmin Minimum net speed to take-off

Nfly Number of consecutive fly days

Nrest Number of consecutive rest days

aValues and ranges are based on experiments with willow warblers re

(2005) for details.
sample set of 25 SCEM-UA derived parameter
combinations of the posterior distribution. The
results presented illustrate that the willow warblers
have significant flexibility in choosing an ‘‘optimal’’
migration strategy, as evidenced by the variability in
simulated flight route trajectories. Nevertheless, this
optimization suggests a co-existence of two main
migratory pathways over continental Europe. This
result corresponds very well with radar tracking
data, ring recovery studies and other field investiga-
tions (Hedenström and Pettersson, 1987; Alerstam,
1996) supporting the validity of our model and
optimization hypothesis.

To examine the computational efficiencies of the
parallel algorithm for this case study, Fig. 8 presents
a plot of the computational time needed to derive
the posterior parameter distribution versus the
number of slave processors used. The curve
represents the average result of 10 independent
trials. Note that parallel parameter estimation
results in a considerable time savings when com-
pared with a traditional sequential optimization
run. Again, a reduction in computational time of
about 90% is feasible when sufficient slave compu-
ters are used to evolve the parallel sequences. Also
note that the computational requirements for
calibration of this spatially explicit model are much
higher than for the lumped conceptual SAC-SMA
watershed model.
de between default values and those subject to optimization

Unit Value/range

(g) 1.19

(g) 5.81

(m) 0.193

(m2) 0.0070

(g) 6.30

(g) 0–6.30

(g) 0–4.00

(g) 0–6.30

(deg) 130–230

(%) 0–100

(m s�1) 0–10

(d) 1–10

(d) 1–10

ported in literature. See Vrugt et al. (2005) and Vrugt and Bouten
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6. Summary and conclusions

This paper presents a parallel implementation of
the SCEM-UA algorithm to facilitate a computa-
tionally efficient solution of complex optimization
problems on distributed computer systems. The
method implements the recently developed MPITB
toolbox in GNU Octave. The algorithm operates by
evolving each SCEM-UA generated parallel se-
quence on a different slave computer. The commu-
nication between the master and slave computer is
conducted using the Message Passing Interface
(MPI). Only minor modifications were needed to
the original sequential SCEM-UA source code to
facilitate implementation on a distributed computer
system.

The power and applicability of the parallel
SCEM-UA algorithm was demonstrated for three
case studies of increasing complexity. The first study
considered a classic mathematical highly non-linear
20-dimensional benchmark problem, and served to
demonstrate that our parallel implementation does
indeed successfully infer the known posterior target
distribution. The second and third cases explored
the use of parallel SCEM-UA for calibration of the
Sacramento Soil Moisture Accounting (SAC-SMA)
conceptual watershed model, and the prediction of
flight route trajectories of migrating birds. Both
studies clearly demonstrated that parallel parameter
estimation results in a considerable time savings
when compared with traditional sequential optimi-
zation runs. In fact, the reported speed up closely
follows the theoretical 1:1 line, up to the point at
which the number of processors equals the number
of sequences being evolved.

In conclusion, the complexity and scientific
diversity of the modeling problems that can be
treated using the parallel SCEM-UA algorithm
suggests that this work could open new avenues of
research in environmental modeling. Our long-term
goal is to improve the algorithms further, while
making them available for use by others. The code
for the parallel SCEM-UA algorithm is available
from the first author (vrugt@lanl.gov). The MPITB
toolbox and GNU octave are free software and can
be downloaded from the internet.

Acknowledgments

The first author is supported by the LANL
Director’s Funded Postdoctoral program. We are
grateful for using the Lisa cluster of the SARA



ARTICLE IN PRESS
J.A. Vrugt et al. / Computers & Geosciences 32 (2006) 1139–11551154
Computing & Network Services in Amsterdam, The
Netherlands.
References

Abramson, D.A., 1991. Constructing school timetables using

simulated annealing: sequential and parallel algorithms.

Management Science 37 (1), 98–113.

Alba, E., Troya, J.M., 1999. A survey of parallel distributed

genetic algorithms. Complexity 4, 31–52.

Alba, E., Luna, F., Nebro, A.J., Troya, J.M., 2004. Parallel

heterogeneous genetic algorithms for continuous optimiza-

tion. Parallel Computing 30, 699–719.

Alerstam, T., 1996. The geographical scale factor in orientation

of migrating birds. Journal of Experimental Biology 199,

9–19.

Bahren, J., Protopopescu, V., Reister, D., 1997. TRUST: a

deterministic algorithm for global optimization. Science 276,

1094–1097.

Box, G.E.P., Tiao, G.C., 1973. Bayesian Inference in Statistical

Analyses. Addison-Wesley, Longman, Reading, MA

585pp.

Boyle, D.P., Gupta, H.V., Sorooshian, S., 2000. Towards

improved calibration of hydrologic models: combining the

strengths of manual and automatic methods. Water Re-

sources Research 36 (12), 3663–3674.

Brazil, L.E., Hudlow, M.D., 1981. Calibration procedures used

with the National Weather Service forecast system. In:

Haimes, Y.Y., Kindler, J. (Eds.), Water and Related Land

Resources. Pergamon, New York, pp. 457–466.

Burnash, R.J.C., Ferral, R.L., McGuire, R.A., 1973. A general-

ized streamflow simulation system: conceptual models for

digital computers. National Weather Service, NOAA, and the

State of California Department Of Water Resources Techni-

cal Report, Joint Federal-State River Forecast Center,

Sacramento, CA, 68pp.

Byrd, R.H., Eskow, E., Schnabel, R.B., Smith, S.L., 1993.

Parallel global optimization: numerical methods, dynamic

scheduling methods, and application to nonlinear con-

figuration. In: Ford, B., Fincham, A. (Eds.), Parallel

Computation. Oxford University Press, New York, NY,

pp. 187–207.
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