
Comparison of Vector and Parallel Implementations of the
Simulated Annealing Algorithm

J.M. Voogd*, P.M.A. Sloot*, R. v. Dantzig**

*Parallel Scientific Computing and Simulation group

University of Amsterdam, Kruislaan 403

1098 SJ Amsterdam, The Netherlands

**NIKHEF, PO Box 41882

1009 DB Amsterdam, The Netherlands

1 Introduction

The Parallel Scientific Computing and Simulation group at the University of Amsterdam is
pursuing research in the field of parallel natural solvers. Natural solvers are algorithms that are
inspired by processes from nature. In parallel computing especially the class of natural solvers
provides a very promising approach, since the characteristics of the original physical
phenomenon remain visible in the solving method and the implicit and explicit parallelism of
the problem remains conserved. One of the natural solvers is an optimisation algorithm called
Simulated Annealing (SA) which is the topic of this paper. Because of the inherent sequential
nature of the algorithm, this particular method however, turns out to be hard to parallellize.

The SA algorithm is applied to a case study where simulation of crystallisation with
spherical boundary conditions is studied. Since this is a problem that requires an enormous
amount of computing power, even for modest problem sizes, we started looking for methods
to speed up the simulations.

In this report we compare a vector implementation of SA on a super computer (CRAY Y-
MP 4/464) with parallel implementations on a transputer platform (Parsytec GCel with 512
nodes). We have investigated the scalability of the parallel implementations with the number of
particles (N) and the number of processors (P) and compared it with the scalability of the
vector implementation.

In section 2 we explain the background of our study, in section 3 we discuss the algorithms
and time complexities for the sequential, vector and parallel implementations. Section 4
contains the conclusions.

2 Background

Particle dynamics simulations with spherical boundary conditions for large numbers (≥ 103)
of particles with Lennard-Jones or similar interactions at high density, provide an important
testing ground for the study of closed 2D systems. Crystallisation with this type of constraints
is poorly understood. As a model for such (bio)physically relevant systems, we started with
particles, e.g. molecules, confined to a spherical surface. Examples of actual systems are
buckyballs, viruses and membrane vesicles. Particle simulations on a spherical surface are also
an alternative to simulations with periodic boundary conditions to approximate bulk systems in

2

a non-solid state. Although the spherical topology has only a limited effect on the properties of
such bulk systems, they do affect the properties of the crystalline state in an essential way.
Particularly the short range and long range order as a function of curvature and aggregation
number and the tendency for hierarchical clustering of defects in a spherical matrix allow
challenging ‘close packing’ studies [1].

Many problems in physics, chemistry and mathematics, like our case study, can be
formulated as a global multidimensional optimisation problem. A vast majority of these
problems involve the determination of the absolute minimum of an underlying cost-function.
Usually optimisation of these complex systems is far from trivial since the solution must be
attained from a very large and irregular candidate space, containing many local extrema. As a
consequence the computational effort required for an exact solution grows more rapidly than a
polynomial function of the problem size; the problem is said to be NP (non-polynomial time)
complete. Because it is impossible to examine all solution candidates, approximation methods
are required.

The Simulated Annealing method is a stochastic optimisation procedure that mimics the
essentials of physical (thermodynamic) annealing and which is therefore closely related to the
crystallisation phenomena we are studying.

In physical annealing a material is heated to a high temperature and then allowed to cool
slowly. At high temperature the molecules move freely with respect to one another. As the
liquid is cooled slowly, the molecules search for the lowest energy, consistent with the
physical constraints. In this way, for example, large single crystals are formed in nature and in
industry.

In simulated annealing the system is initialised in a highly disordered state at a high
temperature and then allowed to equilibrate. The temperature is lowered in small steps while
maintaining equilibrium. At high temperature the system can explore most of the phase space.
During cooling the system will spend more time in minima from which it can still escape;
molecules move relatively freely with respect to each other. When thermal mobility is lost, all
molecules tend to search for the lowest energy, consistent with the global physical and
topological constraints.

Although SA can guarantee, in principle, to find the global minimum, the time required for
the algorithm to converge increases rapidly with the number of particles and/or local minima. In
the crystallisation problem we are dealing with a large number of particles and the number of
local minima (quasi-stable particle configurations) can also be large. Therefore conventional
sequential annealing implementations are too slow, and more efficient methods need to be
investigated. A standard method to reduce the computational time is to use vector super
computers. But also with the new breed of parallel machines and programming paradigms, fast
implementations come within reach, which however require tests and specific development [2].

3 Functional aspects and time complexities of simulated
annealing

3 . 1 The sequential version

The SA algorithm for solving combinatorial optimisation problems was formulated in 1983
by Kirkpatrick et al.[3]. It is based on a method developed by Metropolis et al.[4] to study the

3

equilibrium properties of large systems of interacting particles at temperature T. For the
crystallisation problem at hand the procedure works as follows. First, N particles are randomly
placed on a supporting sphere. The annealing begins by creating a Markov chain of given
length at a high temperature. The Markov chain grows by randomly displacing particles and
calculating the corresponding change in energy of the system, while deciding on acceptance of
the displacement. The length of the chain is made sufficient for the system to equilibrate.

Moves result in an energy change ∆E, the energy of the proposed situation minus the
energy of the current situation. The moves are accepted with probability P(∆E,T) according to
the following scheme :

P ∆E,T() = exp −∆E / T() if ∆E > 0 1()
P ∆E,T() = 1 if ∆E ≤ 0

This choice of P(∆E,T) guarantees that the system asymptotically reaches a Boltzmann
distribution [4].

After a certain number of steps the radius is optimised in a similar way as the particles. This
is done by calculating the energy of the system at a new radius, randomly generated near the
current value of the radius, and subtracting the current energy. Acceptance is also decided
according to the probability scheme given above.

After a chain has ended, and the system is in equilibrium, the temperature is lowered. For
the sequential and vector version we use a fixed cooling schedule. For the parallel
implementation we use a fixed and a dynamic cooling schedule. In the fixed cooling case the
temperature is multiplied by the cool-rate, which is a number slightly less than unity (for
example 0.9), to obtain the new temperature of the system. The dynamic temperature
decrement is only used in the parallel implementation (see section 3.3). After the temperature
decrease a new chain is started. This process continues until a stop criterion is met, i.e. when
the standard deviation in the final energies of the last ten chains falls below a certain value (for
example 10−8). The energy of the system is defined as the average energy per particle. This
removes the main dependency of the energy on the number of particles such that the stop
criterion can be fixed. In the SA procedure the calculations of potential energies for the particle
and radius steps are the most time consuming parts.

Usually the SA method is applied to combinatorial optimisation with discrete perturbation
steps. However, in our research we are dealing with particles on a continuous surface and thus
we need a continuous algorithm. We have developed the following method to apply the SA in
our studies. The displacement of a particle is constructed by generating a random distance and a
random direction. The distance is drawn from a Cauchy distribution of a variable width. The
Cauchy distribution makes large perturbations (and thus escapes from local minima) probable.
The width of the Cauchy distribution is dynamically changed such that about half of the particle
moves are accepted.

Time complexity of the sequential algorithm

Each step in a Markov chain consists of a particle move and the calculation of the energy
difference, with an update if the move is accepted. The execution time needed for a particle
move and update is constant, that of the energy calculation is proportional to N. The radius is

4

only perturbed and updated every N steps. Since the calculation of the energy for the radius

perturbation is of order N2, while it is performed once every N steps, the contribution to the
time complexity is of order N. One step in the Markov chain has complexity

T1
seq = c1 + c2∗N 2()

where c1 and c2 are constants.

We have to multiply the time for one step with the number of steps in one chain and the
number of chains generated to reach a stable minimum to get the time complexity of the
complete annealing algorithm :

Tseq = T1
seq∗L∗M 3()

where L=L(N) is the length of the Markov chain, and M the number of chains generated
during the annealing process.

3 . 2 The vector version

The target machine, the CRAY Y-MP 4/464, is used for vector processing. We have not
exploited the parallelism provided by the 4 processors. The algorithm for the vector version is
largely the same as for the sequential version above. Some changes are made to improve the
vector processing. The parts of the algorithm best suited for vector processing are the
calculations of the energy of one particle and the calculation of the energy of the total system,
which are the most time consuming parts in the sequential version.

The time complexity of the vector version

It is hard to find the time complexity of the vector version by studying the code of the
program. Many important contributions, like cache performance and memory bottlenecks, can
not be modelled easily although they do have a large effect on the execution time (see [5]). The
constants that appear in the time complexity of the sequential version are measured for the
vector implementation. The time complexity of the complete vector version is given by (in µs
units) :

Tvec N() = T1
vec N()∗L∗M = 147.2 + 0.133∗N()∗L∗M 4()

We have made a comparison of the experimental timings of the complete program running
on the CRAY Y-MP and the values following from equation (4). The results are given in the
following table:

5

N L M Ttimed
vec N() (sec) Ttheoretical

vec N() (sec)

50 3000 393 156 181
100 11000 407 652 717

Table 1: A comparison of the theoretical and measured execution times on the CRAY Y-MP of the vectorised

SA-program.

The data indicate that the predicted results are in reasonable correspondence with the timed
values.

3 . 3 The parallel version

The parallel version involves two kinds of decompositions. The first is a systolic [6]
decomposition of the Markov chains, the second a functional decomposition of the energy
calculation in each step in the Markov chain.

In the systolic case a Markov chain is assigned to each of the available processors. All
chains have equal length but correspond to different temperatures. The chains are executed in
parallel and during execution information is transferred from a given chain to the successing
chain in the cooling schedule. Each Markov chain is divided into sub-chains. The execution of
chain k+1 is started as soon as the first sub-chain of chain k is completed. Equilibrium is not
yet established at this point. By allowing a sub-chain to choose between the configuration of
the previous Markov chain and its own configuration at the end of the previous sub-chain (see
Fig. 1), quasi-equilibrium of the system is preserved. The choice is made according to eq 1.

initiate X1,1,1
calculate T1

M1,1 initiate X1,2,1

initiate X2,1,1
calculate T2

initiate X3,1,1
calculate T3

initiate X1,3,1M1,2

M2,1 initiate X2,2,1 initiate X2,3,1

M1,3
initiate X4,1,1
calculate T4

initiate X3,2,1M3,1

M4,1

M2,2 M2,3

M3,2

P1

P2

P3
Figure 1: Diagram of a three processor implementation of systolic simulated annealing.

In addition to this parallel algorithm we have exploited the parallelism that can be obtained in
an ordinary Monte Carlo algorithm. Here the most time consuming part of the program is the
calculation of the energy difference resulting from the perturbations. Since these calculations
are independent, we parallelize this part of the program by a functional decomposition [7]. A
farm of processors is connected to a master processor that generates Markov chains which can
assign the calculation of the energy difference to the farm.

The systolic algorithm has a simple communication pattern suited for implementation in a
ring topology. The communication overhead is small since each processor contains a complete
independent set of coordinates for the optimisation problem. To interchange information about
the intermediate state it only has to send and receive at the end of each sub-chain. This SIMD
scheme can be implemented efficiently on a MIMD architecture. If we use a hybrid

6

implementation, systolic SA with energy calculations in a farm, we need a farm attached to
every processor in the systolic decomposition, see Fig. 2. The farm processors are connected
as a tree.

Figure 2: Diagram of hybrid implementation. Ring processors perform the annealing process, tree-slave

processors (7 in our implementation) perform energy function calculations.

The time complexity of the parallel version

For the systolic implementation one step in the Markov chain has the same complexity as the
sequential version. With functional decomposition the time complexity has to be adapted to
account for the energy calculations in a tree of processors. The time complexity for the systolic
implementation is different from the sequential time complexity because of the parallel
execution of the Markov chains. Between the sub-chains there is communication that takes
some time. The communication time is short compared to the generation of the Markov chains.
But since the processors have to wait for their predecessors, the actual waiting time takes
longer than the communication time estimated from the length of the message and the
communication speed. The number of Markov chains, M, that have to be generated before a
stable configuration is reached should not change because of the parallel implementation. But
the processors in the systolic ring have to be started one by one, so for the time complexity the
number of chains is M+P-1.

We have determined the constants appearing in our estimation of the time complexity by
measuring execution times of subroutines and communication primitives. For the systolic and
the hybrid (systolic and functional decomposition) implementations we find (in µs units) :

7

Tsys N() = 1.4∗103 + 45∗N()∗ L N,P()
P

+ 75 *103




∗ M + P −1() 5()

Thyb N() = 2.4∗103 + 9.6∗102

N
+ 6.4∗N







∗ L N,P()

P
+ 75∗103









∗ M + P −1() 6()

Results for the parallel version

For N=50 and N=100, we find good agreement (see Fig 3) with the predicted execution
times (eq. 6). The experiments show that the number of chains M increases with the number of
processors in the systolic ring.

403020100

0

200

400

600

800

1000

1200

T50sys,calc
T50sys,timed
T100sys,calc
T100sys,timed

number of systolic processors

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 3: The calculated and measured execution times for N=50 and N=100 of systolic SA.

The SA algorithm is an inherently sequential scheme. Parallellizing it by the systolic SA
method we introduce a functional difference with the sequential version. This parallelization is
detrimental to the accuracy of the iterative processes so that more chains have to be generated.
This counteracts the speed increase due to the parallelism. Also, the quality of the solutions
decreases as the number of processors increases. It turns out that the fraction of configurations,
adopted from a previous chain is very low (a few percent). Thus the configuration at the end of
the first sub-chain is likely to be the only one used for the next chain. If more systolic
processors are used, the sub-chains get smaller and consequently the system is further from

8

equilibrium if the next chain is started. We can balance the effects of increasing number of
chains and decreasing quality by using a larger chain length than in the sequential case. So we
have to find the relation L(N,P).

If we determine what the chain length L(N,P) should be to keep the quality of the solutions
the same as in the sequential case we find for N=100 :

P L
4 90
8 140
16 275
32 700

Table 2: Chain length as a function of the number of systolic processors for N=100.

The execution times for these new chain lengths are such that a large part of the speedup is
lost. Here we have used the fixed cooling schedule (see below), the results are plotted in Fig 5.

In sequential annealing the chain length and number of chains are dependent on the cooling
schedule. Until now we have used a fixed cooling schedule where the temperature of the next
chain is given by the temperature of the previous chain as

 Tk = cool-rate ∗ Tk-1 . 7()

We can also try a different cooling schedule, based on extra information of the current state
of the system, and study its influence on the behaviour of the systolic implementation. The
cooling schedule that we have tried is given by the formula

Tk = Tk-1∗ 1 + ln(1 + δ)∗Tk-1

3∗σ(Tk-1)







. 8()

This adaptive rule is based on the principle that the stationary distribution of states of two
successive chains should be close to each other. This strategy uses additional information about
the previous chain to determine the temperature of the new chain. This additional information
comes from σ(Tk-1) which is the standard deviation in the energy values of the previous chain.

The parameter δ controls how much the stationary distributions of the successive chains differ;
it has a small value (0.1) which is kept constant for the experiments we present here. It is
observed for this dynamic cooling schedule that the quality is not decreasing with increasing
number of chains. This is because the configuration that is adopted from the previous chains is
not in equilibrium yet. Therefore the deviation in the energy is high, which has as a
consequence that the temperature is only slightly lowered. This means however that the number
of Markov chains needed is increasing with increasing number of systolic processors. The
speed-up gained by parallellizing the code is lost for larger numbers of systolic processors.

In order to give a fair comparison between the two cooling strategies we have looked for the
chain lengths that gave the same quality of solutions. For the fixed cooling schedule this means
that we have used a larger chain length for larger numbers of processors and for the
dynamically adjusted temperature we could in some cases use lower chain lengths with

9

increasing number of processors. In Fig. 4 we give the execution times for both strategies for
N=20. We can see that the execution times for both cooling schedules increase after a certain
number of systolic processors. In the fixed cooling case the execution time increases because
of the longer chain length that have to be used. In the dynamically adjusted temperature case the
increase is due to the larger number of Markov chains that have to be generated before a stable
configuration is found.

98765432

80

100

120

140

160

180

200

Fixed

Dynamic

#systolic processors

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Figure 4: Execution times of the parallel implementation with different cooling schedules for N=20.

In Fig. 4 we show that, for the example N=20, the dynamic adjustment has a minimum in
the execution time at 4 systolic processors, while the fixed temperature adjustment has its
minimum at 6 processors. The execution time that can be achieved is lowest for the fixed
temperature adjustment strategy.

4 Conclusions and discussion

Vector computing can be very efficient for sequential programs with a large number of
parallel executable equivalent algorithmic steps. However, it can not be adapted to a specific
problem in a flexible way.

A massively parallel machine has a large degree of freedom in connectivity so that the
(virtual) processor topology can be adapted to the parallelism in the algorithm. Therefore, at the
cost of much time, all kinds of implementations can be tested to find the one which performs
best.

The SA scheme is inherently sequential. Parallellizing it by the systolic SA method, dividing
Markov chains in sub-chains with communication between them, introduces a functional
difference with the sequential version. This parallelization has a negative effect on the accuracy
of the iterative processes. We observe that the quality of the solutions tends to be influenced by

10

the number of processors used in the systolic algorithm. For the two cooling rules which were
used, we had to optimise chain lengths in order to ensure that the quality of the solutions is
independent of the number of processors.

The descriptions of the time complexities have been compared to the execution times found
in experiments. The agreement was good; the important parts which contain the parameters for
scaling, P and N, are well modelled. This shows that the derived time complexity of the
computational model is a good approximation for our test computations so that we can use this
model for predictions.

Comparing the obtained results for the two cooling schedules, we find that the fixed cooling
rule has its minimum in the execution time at a larger number of processors than the dynamic
temperature adjustment. Therefore the fixed rule implementation gives shorter execution times.

Next we compare the time complexities of the vector version with the best performing
parallel version. The results are given in Fig. 5 for N=100.

Our calculations show that the systolic implementation does not have good scaling
properties and therefore it is not possible to outrun the CRAY computer.

The computing power of the CRAY is 333 MFlop/s while that of a T805 transputer is about
1 MFlop/s. If we look at the data of Fig. 5, at 16 systolic processors we have 112 processors
for the hybrid implementation. This is equivalent with 112 MFlop/s which is three times lower
than the CRAY. The execution time, however, is 6 times longer for the hybrid version. This
means that a factor 2 is lost on communication and on the decrease of precision in the iterative
scheme of the parallel version.

403020100

0

1000

2000

3000

Cray

Hybrid

Number of systolic processors

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Figure 5: The execution times of a N=100 simulation for the vector implementation on the

CRAY (horizontal line) is compared with the execution time of the hybrid implementation as a

function of the number of processors. The total number of processors is 7 times the number of

systolic processors.

11

Acknowledgements

The authors wish to thank Prof. D. Frenkel (AMOLF) for fruitful discussions on the
physics of the experiments.

The research was supported by the 'Stichting Fundamenteel Onderzoek der Materie' (FOM)
under number FI-A-a-3640.

Reference List

[1] J.M. Voogd, P.M.A. Sloot, R. v. Dantzig, Two-dimensional crystallisation on spherical surfaces,

Proceedings of the 6th joint EPS-APS international conference on physics computing, eds R. Gruber, M.

Tomassini, Lugano Switzerland (Aug. 1994), pp. 463-466

[2] P.M.A. Sloot, J.M. Voogd, D. de Kanter, L.O. Hertzberger, Simulated annealing: Comparison of vector

and parallel implementations, Technical report CS-93-06, Dept. of Computer systems, University of

Amsterdam (Oct. 1993)

[3] S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vechi, Optimization by Simulated Annealing, Science 220,

number 4598 (May 1983), pp. 671-680

[4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of State

Calculations by Fast Computing Machines, J. of chem. physics, Volume 21, number 6 (1953), pp.

1087-1092.

[5] W. Schönauer and H. Häfner, Explaining the gap between theoretical peak performance and real

performance for supercomputer architectures, Scientific Programming, 3, pp 157-168, 1994

[6] E.H.L. Aarts, F.M.J. de Bont, E.H.A. Habers and P.J.M van Laarhoven, Parallel implementations of the

Statistical Cooling algorithm, North Holland Integration, the VLSI journal 4 (2986), pp. 209-238

[7] A. ter Laak, L.O. Hertzberger, P.M.A. Sloot, NonConvex Continuous Optimization Experiments on a

Transputer System, Transputer Systems - Ongoing Research, ed. A.R. Allen (IOS Press, Amsterdam,

1992) p.251

