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ABSTRACT

We report results of a computational study on 2D crystallisation for a
25-particle Lennard-Jones system on a spherical surface, as a function of
radius. The energy is minimised using simulated annealing and steepest
descent methods. Different crystalline arrangements with clear energy
minima are found at different radii. Qualitatively, most of the observed
phenomena are representative also for systems with much larger numbers of
particles.

1 Introduction

Spherical boundary conditions can be used as an alternative to periodic boundary
conditions to approximate 2D bulk systems at sufficiently high temperature. However,
crystallisation is affected in an essential way by any curvature of the 2D geometry.
Specifically, phase transitions are expected to be influenced by curvature, because of the
introduction of topological defects. These defects themselves tend to "crystallise", i.e. form
regular patterns under spherical curvature. Crystalline arrangements on a spherical surface
can also be of help to understand the arrangements in certain natural systems, for example
bucky balls, sunflowers and viruses.

Using computer simulations we study 2D N-particle systems with two-body
Lennard-Jones (LJ) interactions on a spherically curved surface, with parametric variation
of the radius, such that the radius is fixed for each energy minimisation. Intuitively we can
expect different arrangements to exist at different curvatures. Since our LJ potential has a
minimum at unit distance, this distance is energetically favoured for neighbouring particles.
If the surface of the sphere is larger than typically N surface units, the particles flock
together leaving part of the sphere open (see figure 1a). For a particular radius the true
global minimum is reached. This radius, the equilibrium radius Req, is energetically most
preferred by the system. It will be searched for by the system, minimising the global
energy, if the radius is a free parameter.

In section 2 we summarise our computational approach in the simulations and in
section 3 we present results for the N = 25 system. In section 4 we give a preliminary
conclusion derived from our data.

2 Computational Approach

To study crystallisation we use a simulated annealing (SA) algorithm to obtain
minimum energy arrangements. SA is an optimisation technique closely related to the
physics of the system. In physical annealing a material is heated to a high temperature and
then allowed to cool slowly. In principle, this algorithm can "guarantee" finding the global



energy minimum, but the time required for convergence increases rapidly with increasing
number of degrees of freedom and/or local minima. We have adapted SA to model the
crystallisation on a spherical surface and made a sequential and a parallel implementation
[1]; both were used in the present study. In our SA algorithm a compromise is sought
between running time and cooling rate. In practical cases one can never be sure that SA
reaches the global minimum for the given free parameter space. Therefore we perform a
number of SA runs with different random start configurations. After annealing, the system
is usually - but not always - close to the global minimum. From there we use an iterative
steepest descent (SD) algorithm, see [2] [3], to search for the nearest true minimum. The
SD method seeks a balance of forces on the particles within a given tolerance.

We also use SD alone to investigate the energy behaviour of a certain topological
arrangement as a function of the radius of curvature. We start from an arrangement
obtained by SA+SD and change the radius in small steps. After each step the SD method is
used to obtain the energy minimum at the new radius.

Figure 1 : a) The cap arrangement at R=1.52.
b) The particle energies of the cap and global minimum.

3 Results

In this paper we illustrate some general properties of the crystalline phase on a
spherical surface, using by way of example a system of N = 25 LJ-particles. This N-value
is sufficiently small to allow us to perform a great number of simulation runs and it is
relatively far from values with a built-in tendency for an obvious global symmetry, like N =
20 or 32. Figure 2 shows the minimum energies obtained by applying SA and SD to
random initial configurations on spheres with randomly chosen (fixed) radii. In this figure
we see the global minimum at Req = 1.37. For R < Req the system is compressed implying
that the particles are pushed close to each other, where the LJ-potential has a repulsive core.
For R > Req the system loses all external constraints except those arising from the curved
geometry of its configuration space. Those arrangements cannot be closed around the
sphere and they form a cap as shown in figure 1a. Particles at the edge of the cap do not
have the optimal number of neighbours. Their energy is consequently higher than for
closed configurations near the global minimum. Figure 1b displays the single particle
energies for all 25 particles at two different radii, the one corresponding to Figure 1a and
the other to the arrangement at Req. Due to the specific choice of N = 25, the equilibrium
arrangement does not even have two particles at the same energy, which implies a total lack
of symmetry. However, the cap arrangement of figure 1a has a clear 3 fold global
symmetry.
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Figure 2 : The energies of the obtained arrangements.
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Figure 3 : Energy of an arrangement if the radius is changed.
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Figure 4 : A number of minima as a function of the radius.



We can see that the points, which correspond to energy minima obtained with the
SA+SD procedure, form strings along curves. These lines correspond to (meta)stable
topological arrangements. A curve below which no points fall, is clearly visible. This curve
is the global minimum as a function of R. From the concentrations of the points we infer
that the configuration with the lowest energy is not always the one with largest probability,
for the particular set of random starts used.

The change of radius may also enforce a transformation to a new topological
arrangement. If we take an arrangement from figure 2 and change the radius in small steps
while the SD technique keeps the arrangement in a (meta)stable minimum, we observe that
at certain points the arrangement is no longer stable. At those points the arrangement
"breaks up" and the particles undergo a reordering in their positions until an arrangement is
achieved that is stable at the new curvature. Figure 3 shows how the energy of an
arrangement changes with R. Starting from the point at R = 1.52, we let R run up and
down while applying SD until the system is back at the starting radius. An interesting curve
is traced in this way with minima corresponding to different arrangements and sharp
transitions between them. The inset shows a simple case. It is clear that there exists a re-
arrangement barrier; the energy difference has to become large before the transition to a
lower energy arrangement is realised. This causes the remarkable hysteresis effect. When
the procedure described in the previous paragraph is applied to a number of arrangements
we find that many of them exhibit a minimum in the energy-radius diagram. Prominent
minima obtained in this way are shown in figure 4. When R is a free parameter, the system
may be trapped in any of such minima.

4 Conclusion

As shown by our N = 25 LJ-study and in agreement with much larger spherical
systems (N up to 1000), we find a number of different (meta)stable crystalline
arrangements on a spherical surface, which correspond to certain energetically preferred
values of R.
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