Experiments in Dynamic Load Balancing for Parallel
Cluster Computing

J.J.J. Vesseur = R.N. Heederik  B.J. Overeinder = P.M.A. Sloot
Parallel Scientific Computing and Simulation Group
Department of Mathematics and Computer Science
University of Amsterdam
Kruislaan 403, 1098 SJ, Amsterdam

June 21, 1995

1 Introduction

In academic and industrial institutions, a shift of emphasis in High Performance Computing from par-
allel monolithes to clusters of high performance workstations is taking place. These loosely coupled
parallel systems require new programming paradigms and environments that provide the user with
tools to explore the full potential of the available distributed resources.

Although such cluster computing systems provide the user with large amounts of processing power,
their usability and efficiency is mainly determined by environmental changes like variation in the de-
mand for processing power and the varying number of available processors.

To optimize the resource utilization under these environmental changes it is necessary to migrate
running tasks between processors, i.e., to perform dynamic load balancing. We introduced a scheduling
mechanism in PVM that supports such load balancing for parallel tasks running on loosely coupled
parallel systems. The enhanced system is called DynamicPVM.

Our primary objective is to study models describing adaptive systems like DynamicPVM. To validate
these models, experiments with actual implementations of such dynamic systems are required. The
work presented here reports on a pilot implementation of DynamicPVM.

The choice for PVM [5] as the basic parallel programming environment is motivated by the fact that
PVM is the most widely used environment to date and is considered the de facto standard. The pro-
cess migration primitives used in DynamicPVM were initially based on the checkpoint-restart mech-
anisms found in a well established global scheduling system, Condor [3] but have been replaced our
own routines order support our pool of Solaris workstations and to reduce checkpoint overhead.

Table 1 shows different aspects of load managing for the three systems discussed in this paper. We
use the term job to indicate the largest entity of execution (program) consisting of one (serial program)
or more cooperating tasks (parallel program).

Condor PVM | DynamicPVM

intended usage longer running parallelized distributed application programs

background jobs
unit of execution job task
load managing objective load distribution load decomposition both
schedule policy dynamic load sharing cyclic allocation dynamic load balancing
schedule objective resource utilization | application response time both
performance objective efficiency effectiveness both

Table 1: Different aspects of load managing for Condor, PVM, and DynamicPVM.



2 PVM: Runtime Support System for Parallel Programs

PVM (Parallel Virtual Machine) provides primitives for remote task creation and Inter Process Com-
munication (IPC). It supports both point to point and global communication primitives. Tasks are as-
signed to available processors using a cyclic allocation scheme. Jobs are placed statically, i.e., once a
job is started, it runs on the assigned processors until completion.

Each processor in the PVM pool is represented by a daemon that takes care of task creation and all
IPC to and from tasks running on the processor. To enable the use of heterogeneous processor pools,
messages are encoded using an external data representation (XDR [4]). With the current version PVM
(3.3.x) direct IPC between two PVM processes, without interference of the PVM daemons is supported,
thereby enhancing communication performance.

3 Condor: Runtime Support for Job Scheduling

The Condor system stems from the observation that many of the—constantly increasing number of—
workstations in academic and industrial institutions are lightly loaded on the average. Most worksta-
tions are intended for personal usage, which has a typical activity pattern where machines are only
used for a small part of the day. As a consequence many computing cycles are unused during the day.
Typical figures of large pools of workstations have a mean idle time of 80% [3].

To address this problem, Condor implements a global scheduling based on dynamic load balancing
by job migration. Condor monitors the nodes in its pool by keeping track of their load. New jobs are
spawned on lightly loaded nodes and jobs from heavily loaded machines can be migrated to less loaded
ones. When Condor detects interactive usage of a workstation all Condor jobs can be evacuated from
that workstation in order to retain the sympathy of the workstation’s owner. To implement this job
migration Condor creates checkpoints on a regular basis, which can be restarted on another machine.

The Condor scheduler consists of both a centralized and a distributed part. Each node in the pool
runs a small daemon that gathers statistics about the node and forwards this information to the central
scheduler. This information is used to optimize the available processing power.

By automatically redirecting all system calls made by a Condor job to the machine that initiated the
computation, the migration of jobs is made completely transparent to the programmer. In this way the
programmer is freed from the complications of checkpointing.

Using Condor, it is not possible to migrate jobs consisting of cooperating parallel tasks since Condor
does not provide any support for IPC primitives.

Combining PVM with an extended version of Condor’s checkpoint-restart facility makes it possible
to apply global scheduling to parallel tasks.

4 DynamicPVM: Runtime Support System for Job Scheduling
Parallel Tasks

In DynamicPVM we add checkpoint-restart mechanisms to the PVM environment. Most of PVM’s fea-
tures are compatible with the checkpoint-restart mechanism we use and can be incorporated in Dynam-
icPVM without problems. The Inter Process Communication is an exception to this rule.

We present a protocol that ensures that no messages get lost whenever a task is migrated. This
protocol involves a special role for the PVM daemon that initiated the computation, the Master daemon.
We also present an extension to the PVM IPC routing mechanism in order to redirect messages to tasks
that are migrated.

DynamicPVM’s task migration facility consists of four principal components:

1. A global scheduler that initiates job migration (not addressed in this paper).
2. Task checkpointing, including a method to indicate checkpoint save moments.

3. Actual task migration.



4. Task restart and updating of routing tables to reflect the task’s new location.

These components are briefly described below.

4.1 Task Checkpointing

In order to migrate a process, a dump of the process’ data and state, together with some additional
information to recreate the process, has to be made. We have implemented two different strategies for
dumping this information: direct and indirect.

Using direct checkpointing, the host where the checkpoint is migrated from opens a TCP connection
to the destination host and writes the process’ data and status to the destination host.

With indirect checkpointing, a dump of the process’ state and data is made to a shared (NFS-
mounted) file system. In this way, the process can be restarted by a machine at a later stage.

Since direct checkpointing involves only one transfer of the migrating process, compared to two
transfers (write/read) when using NFS it is approximately twice as fast.

Checkpointing cooperating tasks introduces new conditions as compared to checkpointing stand
alone tasks. For instance, checkpoints should be avoided when a task is communicating with another
task. To safely checkpoint DynamicPVM tasks, we introduce the notion of a critical section and em-
bed all IPC operations in such sections. Checkpointing is prohibited whenever the task is in a critical
section; checkpointing can only take place when the task is not participating in a communication oper-
ation.

4.2 Task Migration

The main demand on the DynamicPVM task migration facility is transparency, i.e., to allow the move-
ment of tasks without affecting the operation of other tasks in the system. With respect to a PVM task
selected for migration, this implies transparent suspension and resumption of execution. With respect
to the total of cooperating PVM tasks in a job, communication can be delayed due to the migration of
one of the tasks.

The first step of the migration protocol is to create a new, empty, process context at the destination
processor by sending a message to the daemon representing that node.

Next, the Master-Daemon updates it’s routing tables to reflect the new location of the process. The
task to be migrated is suspended and messages arriving for that task are refused by the task’s original
daemon. Such messages are queued by the sending daemon, to be processed after the new location has
been broadcasted.

In the next phase, the Master-Daemon broadcasts the new location to all nodes, so that any sub-
sequent messages are directed to the task’s new location.

The last phase is the actual migration of the process. As stated in the previous section, there are
two strategies implemented and the user can choose the appropriate mechanism.

4.3 Task Restart

The newly created process on the destination processor is requested to restart the checkpoint. If direct
checkpointing is used, it opens a TCP socket and waits for the checkpointing task to begin transmission
of the checkpoint.
Using indirect checkpointing, the task opens the checkpoint file and reads the checkpoint from disk.
After the checkpoint is read, the original state of the process is restored (data/stack/signal mask/reg-
isters) and the process is restarted with a | ongj np. Any messages that arrived during the checkpoint-
restart phase are then delivered to the restarted process.



5 Current Status and Results

DynamicPVM is currently implemented on a cluster of IBM RS/6000, AIX32 machines [1, 2] and cluster
Sun workstations, operating under SunOS4 and Solaris. The pilot implementation presented is not yet
able to migrate tasks that perform file-1/0.

5.1 Checkpointing

Table 2 shows some results obtained by migrating a 75Kbyte process with data segments of various
sizes in both direct and indirect mode. As can be seen in the table, the time needed for the migration is
linear to the size of the program. The migration using NFS takes twice as long as the migration over
TCP which is due to the fact that migration over NF'S requires a separate write and read cycle, while
in direct mode the write and read are overlapped. The data is displayed in Fig. 1.

Data Size Direct Indirect
(Mb) (sec) (sec)
0 0.1 0.3
0.5 0.6 1.0
1 1.1 1.6
2 2.1 2.9
4 4.1 5.8
8 7.9 12.5
12 11.9 19.8
16 15.9 29.0

Table 2: Times needed for migration of tasks for various sizes. These times were acquired on lightly
loaded machines (Sun SPARCs running Solaris 2.4), with little network traffic.

30 T T T

Checkpoint over NFS" ——
Checkpoint over TEP -+--

25 E

Time (seconds)
-
[§)]

10 | .

0 il 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Data size (Mbytes)

Figure 1: Migration times (in seconds) for checkpointing using NF'S and direct TCP/IP.

The systems used in these tests had enough free physical memory to restart the checkpoint without



swapping pages to disk. If a process needs to swap pages to secondary storage, performance drops with
approximately 50%.

5.2 Real Applications

Our first test results are obtained with PVM implementations of the NAS Parallel Benchmarks (NPB),
see Table 3. The typical applications within the NPB are:

EP Embarrassingly Parallel

FT 3-D Fast Fourier Transformation
MG 3-D Multigrid Solver

CG Conjugate Gradient

The experiments were performed on two sets of eight “approximate equally loaded” Sparc Classic’s
during daytime. One set was reserved for PVM measurements and one set was reserved for Dynam-
icPVM.

The DynamicPVM tasks are migrated to lightly loaded workstations, if available. The checkpoints
are made to disk, thus two times slower than the TCP/IP checkpoint.

Benchmark | PVM DynamicPVM Speedup
time | time | migrations | chkp. size

EP 13:34 | 10:55 4 1300K 1.24

FT 3:09 | 3:13 0 9500K 0.98

MG 48:01 | 42:40 2 2500K 1.13

CG 21:26 | 19:37 5 9000K 1.09

Table 3: Execution times of PVM versus DynamicPVM.

From Table 3 one can see that during the execution of the FT benchmark no migrations were per-
formed. This is due to the fact that no workstations were available to migrate to, but also because the
execution run is actually to short to take advantage of the characteristics of DynamicPVM. What is
does show, is that the overhead of DynamicPVM is only within 2%. In general, better results in terms
of speedup and resource utilization can be achieved by introducing a more advanced schedular that
makes well-thought decisions on the placement of tasks over the workstations, and by experimenting
with long running jobs of several days instead of minutes.

6 Conclusions

Tests performed with the pilot implementation indicate the usability of the integrated approach. In
the near future we will design additional experiments for quantitative testing of the behaviour of Dy-
namicPVM as well as extend the checkpoint mechanism to support checkpointing of tasks performing
file-1/0.

Our final goal is to develop probabilistic models of jobs in a dynamic environment and validate them
by experiments with an actual implementation. We have added several primitives to PVM that allow
us to monitor PVM tasks. Using these primitives we will implement a scheduler based on these mod-
els. Simulations using our models should provide detailed insight in the dynamics of the behaviour of
systems like DynamicPVM and can be used to improve scheduling mechanisms. The actual scheduler
is a topic of future research.



References

[1] L. Dikken, “DynamicPVM: Task migration in PVM,” Tech. Rep. TR-ICS/155.1, Shell Research, Nov.
1993.

[2] L. Dikken, F. van der Linden, J. Vesseur, and P. Sloot, “DPVM: Dynamic load balancing on parallel
systems,” in High Performance Computing and Networking, pp. 273-277, 1994.

[3] M. Litzkow, M. Livny, and M. W. Mutka, “Condor—a hunter of idle workstations,” in 8th IEEE In-
ternational Conference on Distributed Computing Systems, pp. 104-111, 1988.

[4] XDR: External Data Representation Standard. Sun Microsystems, Inc., 1987.

[5] V.S. Sunderam, “PVM: A framework for parallel and distributed computing,” Concurrency: Practice
and Experience, vol. 2, no. 4, pp. 315-339, Dec. 1990.



