Exploring OGSA Interoperability
with LCG-based Production Grids
for Biomedical Applications

Alfredo Tirado-Ramos, Derek Groen, Peter M.A. Sloot

Faculty of Science, Section Computational Science,
University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
emails: [alfredo, djgroen, sloot]@science.uva.nl

Abstract

Interconnected Grids that communicate and transfer data and com-
putation among different infrastructures allow scientists to create
distributed systems that support complex computational science.
Large production Grids that support biomedical applications, for in-
stance, start now to become more common, connecting infrastructures
and services via standard architectures such as the new Open Grid
Services Architecture (OGSA) or the more mature Large Hadron
Collider Computing Grid (LCG). Complex biomedical applications,
nevertheless, require some degree of structural interoperability on
top of available Grid connectivity in order to access data distributed
among different Grid infrastructures and to submit computational
jobs transparently. We present our results after performing a series
of data transfer and computational job submission using a blood-flow
simulation application within our biomedical problem solving environ-
ment, using Globus Toolkit 4 (OGSA) services interoperating with
our current extended LCG 2.6 production-level infrastructure. We
study this hybrid approach to Grid-based biomedical data access and
computation, and present our conclusions.

Keywords: Computational Grids, LCG, OGSA, GT4, Interoperabili-
ty, Biomedical Applications

1 Introduction

High-performance Grid distributed computing continues to evolve and to become
a standard tool for data access and computational job submission in scientific
organizations. Virtual scientific communities and organizations are currently
being created and maintained which support large, distributed and diverse in-
formation sources [1]. Access to such resources is inherently complex, and is
aggravated by structural heterogeinity of both the resources and the software
infrastructures that support them. In the case of biomedical applications data
are usually available in heterogeneous formats and from various legacy sources,
and computational job submission is often supported by infrastructure-specific
frameworks [2], [3] that may be required to intercommunicate; as Rambadt et

367



al [4] state: “Different (Grid) projects focus on different aspects and it is only
natural to combine them”. Wide-area access to biomedical information and com-
putation usually requires higher degrees of interoperability. Currently available
Grid technology supports data access and computational job sumission within
specific toolkits, though the diverse biomedical informatics tools that generate
and consume data rarely come from within a single source or project [5], re-
quiring resource and infrastructure interoperability in order to access resources
seamlessly across Grid virtual organizations. A. Ouksel et al [6] differentiate four
types of interoperability: semantic, syntactic, system, and structural. In Grid
computing, while there are a number of efforts currently at work in the fields of
semantic [7], [8], syntactic [9], [10], [11], [2], [3] and system [12], [13], [14] inter-
operability, there is still much work to do into the issues related to structural
interoperability (e.g., seamless access to a set of shared infrastructure services)
[15], [16]. On one hand, the Open Grid Services Architecture (OGSA) [17] is one
of the main results of a global effort to advance Grid interoperability, extending
the Web Services [18] paradigm to include Grid concepts, and to manage the
creation and termination of resources as real services. This Service Oriented Ar-
chitecture (SOA) approach to Grid computing is now implemented in the Globus
Toolkit 4 (GT4) [19], one of the most popular implementations of the OGSA ar-
chitecture and Web Services Resource Framework (WSRF) specification [20].
The GT4 is currently being deployed among new Grid development projects,
and is expected to become a de-facto standard for Grid services. On the other
hand, more mature frameworks such as the CERN’s Large Hadron Collider Com-
puting Grid (LCG) [21] have been successfully deployed by production-type Grid
infrastuctures like the European CrossGrid project [3], providing scientists with
a production testbed that is maintained continuously. Our Grid infrastructure is
based on and supported by the CrossGrid project’s testbed, including resources
spread across Europe, which range from relatively small computing facilities in
universities to large research computing centers. The CrossGrid testbed largely
inherits from the European DataGrid (EDG) [22] experience on setup and it is
fully based on LCG middleware distributions for services.

We present our results after performing a series of interoperability tests be-
tween recently added GT4 and LCG resources within our testbed for biomedical
applications. We study biomedical data transfer and job submission among
these infrastructures, focusing on biomedical dataset transfer times, CPU usage
overhead, as well as job submission using both intra and inter cluster compu-
tational runs, and present our conclusions. The structure of the paper is as
follows: Section 2 briefly describes the Grid Virtual Organization (VO) concept
and the SOA-based OGSA. Section 3 elaborates on one of the most common ap-
proaches to production-type Grids, a European infrastructure based on it, and
the biomedical application used for our experiments. In Section 4 we present
the results of our interoperability experiments from the data and computational
viewpoints, whereas Sections 5 and 6 offer a discussion on the results and futnre
work,

368



2 A Service Oriented Approach to the Grid

2.1 The Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) extends the Web Services termi-
nology to include Grid concepts, and to manage the creation and termination of
resources as services. Its main focus is on the definition of abstract interfaces that
allow services to cooperate without too much concern about the actual proto-
cols being used. OGSA is an architecture which is under constant development,
changing continuously in response to feedback from the user community. Grid
Services, as defined by OGSA, integrate Grid technologies from Globus toolkits
with Web Services mechanisms to construct a Grid-based distributed framework.
A Grid Service instance is a potentially transient service that conforms to a set
of conventions, expressed as Web Service Description Language (WSDL) [23|
interfaces, extensions, and behaviors. Grid Services provide controlled manage-
ment of the distributed and often long-lived state that is commonly required in
sophisticated distributed applications.

The release of the Globus Toolkit 4 (GT4) provides a simple approach to
implementing OGSA. Instead of adding web service functionality to existing
Grid middleware, as done before in previous versions, web services are now used
as a fundamental core for the Grid middleware with a specification called the
Web Service Resource Framework (WSRF) [20]. The WSRF is a set of six
Web services specifications that define the Web Service Resource approach to
modeling and managing state in a Web services context.

3 Production Grids

3.1 The Large Hadron Collider Computing Grid
and CrossGrid

The Large Hadron Collider (LHC), which is currently being built at CERN, is
a scientific instrument capable of producing millions of Gigabytes of scientific
data. In order to allow thousands of scientists to analyse this data, a data storage
and analysis infrastructure capable of handling such amounts of information is
to be developed. The current production middleware used in this project is
called Large Hadron Collider Computing Grid (LCG). It is based on previous
efforts from the European DataGrid project and the Globus Toolkit 2 release.
The LCG middleware is one of the most popular production Grid middleware
used today, with over 100 sites in more than 30 different countries participating
with the LCG project. For our biomedical experiments on the Grid, we rely
on the CrossGrid testbed, which is built on the LCG middleware. The testbed
includes a local step, typically inside a research center or university via Fast or
Gigabit Ethernet, a jump via a national network provider at speeds that will
range from 34Mbits/s to 622Mbits/s or even Gigabit, and a link to the Geant
European network at 155 Mbits/s to 2.5 Gbits/s.

369




3.2 The VRE Parallel Biomedical Application on the Grid

For our interoperability experiments we use a parallel solver from the Virtual Ra-
diology Explorer (VRE), a Grid-based problem solving environment developed
by the University of Amsterdam. We deployed our problem solving environment
within the European Crossgrid project [26], laying out our system architecture
using the Grid as a medium, with a validated case study in vascular reconstruc-
tion. The biomedical application at the core consists of a parallel computational
hemodynamics solver [27] that computes pressure, velocities, and shear stresses
during a full systolic cycle. The data used as input for simulation can be obtained
from several imaging techniques used to detect vascular disorders; for instance,
3D data acquired by Computed Tomography or Magnetic Resonance Imaging,
or particularly Magnetic Resonance Angiography for imaging blood vessels that
contain flowing blood.

4 Grid Interoperability Analysis

4.1 Data Grid Analysis

One of the main goals in our distributed biomedical project is the development
and maintenace of a next generation production system that scales well while
our Grid testbed grows and our virtual organization is expanded with OGSA
resources. Our basic security requirements are covered by the Grid Security
Infrastructure (GSI) and its public key services, so our priority is to make sure
that our biomedical data access from Storage Elements (SEs) remains reliable,
and that the data management services do not overwhelm our resources. For our
data-centered experiments, our focus is on enabling our users transparent data
access for analysis and computational job submission, acccording to a basic usage
scenario. The user of our application loads the biomedical medical data, selects a
region of interest, and submits the analized data for simulation. After the job has
been completed, the results are transferred to the local machine for visualization
and rendering. This scenario assumes a number of data transfers, both input
segmented data for the simulation kernel, as well as simulation output to be
visualized. In our current LCG-based infrastructure we nuse Globus GridFTP
and DataGrid Replica Locator Service (RLS) to transfer our data between Grid
nodes. We set out to replicate some characteristics of this behaviour between
our current testbed and a few newly added GT4 nodes. We tranfered a number
of representative compressed geometry input datasets between new GT4 and
CrossGrid LCG SEs spread out across Europe, measuring transfer times for
comparing performance of the GridFTP implementations, as shown in Fig. 1.
Once we successfully transfered the input geometry data files between GT4,
LCG2.0, LCG2.3 and LCG 2.6 resources, we then made a number of transfers
using larger simulation output files, studying CPU usage to get an idea of the
overhead caused by the transfers. Fig. 1 shows some of our results, e.g., that the
transfer times for the input geometries were consistently below 2 seconds and
below 30 seconds for the simulation output (taking more time due to network

370



file transfer performance small.bs (16kb) large.bs{107kb) velocity.bs (43392kb)

hilde-ridgrid2 ave 0.64 0.61 4.51
ridgrid2-hilde ave 0.65 0.68 5.59
se010.fzk.de-ridgrid2 ave 1.45 1.55 26.74
ridgrid2-se010.fzk.de ave 0.85 1.07 26.55
ds2d-ridgrid2 ave 0.49 0.51 4.33
ridgrid2-ds2d X X X

Fig. 1: Overview of file transfer performance between different machines in
our experimental testbed, showing average transfer times in seconds between
hilde (LCG2.6) to ridgrid2(GT4), se010.fzk.de (LCG2.3) and ridgrid2, and ds2d
(LCG2.0) and ridgrid2; note that transfer from GT4 to LCG2.0 does not work
due to protocol issues.

latency between Dutch and German sites). Transfers from GT4 machines to
LCG 2.0 CG production machines failed due to protocol incompatibilities.

4.2 Computational Grid Analysis

The recent addition of new resources to our Grid infrastructure continuously
provides us with potential increased computational capacity. However, con-
tinual evolution in Grid middleware raises issues of structural interoperability,
specially when migrating from established architectural paradigms to new ones.
The main focus of this computation-centered experiments is on finding means
to make use of these new resources for Job submission, across Grid middleware
architectures. In our current Grid infrastructure, which relies on the CrossGrid
middleware, we make use of both MPICH-P4 and MPICH-G2 MPI devices to
run our application. Although support for MPICH-P4 is available for more re-
cent Grid production middleware releases, MPICH-G2 support is usually known
to be unstable, at best. In order to explore the support for both MPICH-P4 and
MPICH-G2, we proceeded to execute and measure the performance of the ap-
plication on three different platforms. These three platforms include our current
infrastructure (LCG2.0 for production and LCG 2.3 for development versions),
the latest LCG 2.6 production middleware release of the EGEE project, and the
Globus Toolkit 4. We used globus-job-run and globusrun-ws, where available, for
our MPICH-P4 runs, while MPICH-G2 runs were initiated directly by Globus
Resource Specification Language.

5 Discussion and Conclusions

During our experiments we found that, given the relatively immaturity of the
core transfer utilities in GT4, job submission and data management services
running on the SEs used for our experiments were quite stable, even though
the resources are shared across different middleware architectures. Qur experi-
ments showed fairly good interoperability for data access, except when using a
GT4 client accessing a LCG2.0 gsiftp server, for reasons discussed earlier. Data

-

371



et |
1000 00 /f !
Fid |
i |
J
800,00
i J
i #0000 /F'_- ——
0000 -
4
f 1
200.00 o .—_j
000
fortima (2) o (2) o) et} e {10) tima (10)
mensurament type (# of fRerations) .

Fig. 2: Total execution time (time measured from submission to completion) and
iterating time (time per iteration*number of iterations) in seconds for 2, 6 and 10
simulation time steps). The LCG2.0 machine (ce2) performs significantly faster
due to superior hardware specifications. The iterating time of Hilde(LCG 2.6)
is slightly lower than that of ridgrid2(GT4), but the total execution time tends
to be equal or slightly higher. Entries marked with “G2” are job runs performed
with MPICH-G2. The ridgrid2:globusrun-ws indicates a run using the GT4 WS-
based job submission tool. All other entries are runs using globus-job-run. All
the runs were made using 2 processes.

transfer times were not noticeably different between toolkits, with globusrun-
ws showing about 3 seconds of overhead over globus-job-run; the overhead for
LCG 2.6 due to scheduling policies of the job manager, where the queue is only
checked periodically. Also, GT4 interoperated surprisingly well for job submis-
sion, and across site submissions using MPICH-G2, which performance proved
comparable to MPICH-P4, to our surprise. Job submissions run well on all of
the three tested platforms for MPICH-P4. We were pleasantly surprised by our
relatively smooth experience running MPICH-G2 simultaneously on both the
LCG 2.6 and GT4 middleware, with runs performed on both platforms and pro-
viding a competitive total execution time, regardless of the location where the
run was initiated. To the best of our knowledge, this is the first work to report
successful runs of a real computationally intensive application using multiple
nodes featuring different middleware in a production-type testbed.

6 Future Work

For future work we plan to perform wider-scale experiments including the inten-
sive use of RLS, dynamically staging of large output datasets using the MPICH-

"

372



]

-

k

i

£

‘I 0

] |
£ - _:::;-___:__ ______ T |

Fig. 3: Detail of job submission performance shown in Fig 2. Iterating time is
subtracted from total execution time in order to measure scheduling and initial-
ization overhead. Executing globusrun-ws instead of globus-job-run on ridgrid2
introduces an additional overhead of approximately 3 seconds. The Hilde ma-
chine displays a much higher and variable overhead.

G2 device in order to get a better insight into issues of cross-site interoperability
and performance overhead associated with such a hybrid approach to Grid-based
biomedical data access. We also plan to look into the ability of staging files that
serve as input for the BStream job, and the capacity to provide and manage
sandboxes for both job input and output. Future releases of EGEE project mid-
dleware, such as Glite, provide yet another new platform to examine. Examining
these future production releases is also considered to be future work. Finally, we
plan to perform more extensive and intensive runs so that we can present a more
accurate view of the exact performance of our Biomedical PSE on our testing
sites, particularly with new implementations of the WSRF.net architecture.

Acknowledgements. The authors wish to acknowledge the CrossGrid team,
Lilit Abrahamyan, and Dennis Kaarsemaker for their support and help.

References

1. L Foster, C. Kesselmann, and S. Tuecke; The anatomy of the grid: Enabling scal-
able virtual organizations, International Journal of Supercomputer Applications,
vol. 15, no. 3, 2001

2. Breton V., Medina R. and Montagnat J. 2003; DataGrid, prototype of a biomed-
ical grid Methods Inf. Med. 42, 143-7

3. CrossGrid, http://www.crossgrid.org

4. M. Rambadt, P. Wieder; UNICORE — Globus Interoperability: Getting the Best
of Both Worlds, HPDC, 2002

-

373



10.
1
12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

24,

25.
26.

27.

374

K.H. Buetow; Cyberinfrastructure: Empowering a “Third Way” in Biomedical
Research, Science, Vol. 308. no. 5723, pp. 821-824, 2005

. A. Ouksel, A. Sheth, Editorial; Special Section on Semantic Interoperability in

Global Information Systems, ACM SIGMOD Record 28, No.1, 5-12, 1999

. C. Goble, R. Stevens, G. Ng, S. Bechhofer, N. Paton, P. Baker, M. Peim and A.

Brass; Transparent access to multiple bioinformatics information sources. IBM
Systems Journal 40(2), 2001, 532-551

A. Borgida; Description Logics in Data Management, IEEE Transactions on
Knowledge and Data Engineering 7, No. 5, 671-682, 1995

Introduction to grid computing and the Globus Toolkit. Tutorial, October 2001.
http://www.globus.org/training/grids-and-globus-toolkit/IntroToGrids-
AndGlobusToolkit.pdf

European DataTAG Project: http://www.datatag.org

iVDGL Project, http://www.ivdgl.org

Global Grid Forum, http://www.gridforum.org

D.W. Erwin and D.F. Snelling; UNICORE: A grid computing environment, in
Proceedings of Euro-Par 2001, pp. 825-834, Springer LNCS 2150, August 2001.
F. Donno, V. Ciaschini, D. Rebatto, L. Vaccarossa, M. Verlato; The WorldGrid
transatlantic testbed: a successful example of Grid interoperability across EU
and US domains. Proceedings of the Conference on Computing in High-Energy
Physics, La Jolla CA, USA, March 24-28, 2003.

GRIP, http://www.grid-interoperability.org

Ricardo Manuel Brito da Rocha; Evaluation of Emerging Grid Technologies OGSI
and the Globus Toolkit 3, CERN Genebra. FEUP Porto, Relatorio do Estagio
Curricular da LEIC 2002/2003

Foster, 1., Kesselman, C., Nick, J.M. and Tuecke, S.; The Physiology of the Grid.
Computer, 35(6), 2002

Kreger, H. 2001; Web Services Conceptual Architecture (WSCA 1.0).
http://www-4.ibm.com/software/solutions/webservices/.

1. Foster; Globus Toolkit Version 4: Software for Service-Oriented Systems, IFIP
International Conference on Network and Parallel Computing, 2005

Foster, 1., J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Ley-
mann, M. Nally, T. Storey, and S. Weerawaranna; Modeling Stateful Resources
with Web Services. 2004, Globus Alliance.

The LHC Computing Grid, http://lcg.web.cern.ch

The European Data Grid, http://www.eu-datagrid.org

R. Chinnici, M, Gudgin, J.J. Moreau, J. Schlimmer; Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language, W3C Working Draft.
http://www.w3.org/TR/2004/WD-wsd120, 2004

B. Sotomayor; The Globus Toolkit 4 Programmer’s Tutorial,
http://gdp.globus.org/gt4-tutorial/singlehtml/progtutorial0.2. html

F. Carminati; GEANT Users Guide, CERN Program Library, 1991 (unpublished).
A. Tirado-Ramos, P.M.A. Sloot, A.G. Hoekstra and M. Bubak; An Integrative
Approach to High-Performance Biomedical Problem Solving Environments on
the Grid, Parallel Computing, (special issue on High-Performance Parallel Bio-
computing) vol, 30, nr 9-10 pp. 1037-1055. (Chun-Hsi Huang and Sanguthevar
Rajasekaran, editors), 2004.

Simulation of a systolic cycle in a realistic artery with the Lattice Boltzmann
BGK method, A.M. Artoli, A.G. Hoekstra, P.M.A. Sloot, Int. J. Mod. Phys. B,
2003.



	Scan Exploring OGSA
	Scan Exploring OGSA 001
	Scan Exploring OGSA 002
	Scan Exploring OGSA 003
	Scan Exploring OGSA 004
	Scan Exploring OGSA 005
	Scan Exploring OGSA 006
	Scan Exploring OGSA 007

