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Abstract
The inherent complexity of biomedical systems is well recognized; they are multi-scale, multi-science systems,
bridging a wide range of temporal and spatial scales. This article reviews the currently emerging field of multi-scale
modelling in computational biomedicine. Many exciting multi-scale models exist or are under development.
However, an underpinning multi-scale modelling methodology seems to be missing. We propose a direction
that complements the classic dynamical systems approach and introduce two distinct case studies, transmission of
resistance in human immunodeficiency virus spreading and in-stent restenosis in coronary artery disease.
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INTRODUCTION
Humans are complex systems: from a biological cell

made of thousands of different molecules that work

together, to billions of cells that build our tissue,

organs and systems, to our society, 6 billion unique

interacting individuals. Such complex systems are not

made of identical and undistinguishable components:

rather each gene in a cell, each cell in the immune

system and each individual have their own charac-

teristic behaviour and provide unique value and

contributions to the systems in which they are con-

stituents. Biological systems span many orders of

magnitude through the scales in a continuous way,

from the smallest microscopic scales up to the largest

macroscopic ones. The sequence from the genome,

proteome, metabolome, physiome to health com-

prises multi-scale, multi-science systems [1–3]. A

pedagogical introduction to this concept and the

field of multi-scale modelling in biology is provided

by Schnell et al. [4].

In many cases, we can select an appropriate

scale at which we wish to study a natural system.

The history of science has shown how fruitful this

approach has been. Such scale selection is a model-

ling decision (however, in a way, one may argue

that such scale selection is an emergent property of

the system itself). In recent years the computational

biology community has developed extremely pow-

erful methods to model and simulate fundamental

processes of a natural system on a multitude of sep-

arate scales, see e.g. [5,6]. The wealth of experimen-

tal data that has become available has made such

in silico experimenting a viable methodology, which

should allow for testing hypotheses and formulating

predictions to be further tested in in vitro or

in vivo studies [7]. Two recent special issues of the

Philosophical Transactions of the Royal Society A,

devoted to the Virtual Physiological Human, offer

an impressive showcase of current state of the art

in modelling and simulating organ systems [8,9].

However, the papers in those two special issues

also clearly demonstrate the need to go beyond

studying a single-scale, and in most papers

approaches toward multi-scale modelling of human

physiology are proposed. Indeed, the next challenge

is to study not only fundamental processes on all

these separate scales, but also their mutual coupling

through the scales in the overall system, and the

resulting emergent structure and function. Multi-

scale biological systems display endless signatures
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of order, disorder, self-organization and self-

annihilation. Understanding, quantifying and hand-

ling this complexity is one of the biggest scientific

challenges of our time [10].

In this article, we provide a short review of multi-

scale modelling in computational biomedicine.

Next, we introduce a systematic approach to such

multi-scale modelling, complementing the classic

dynamical systems approach and its application

to two disparate complex biomedical processes:

transmission of resistance in human immuno-

deficiency virus (HIV) [11] and in-stent restenosis

(ISR) [12].

Kitano identifies two distinct, mutually depen-

dent scientific activities in computational biology:

knowledge discovery through data—and text

mining and modelling and simulation based analysis

[7]. We mainly focus on the latter, but the inherent

importance of the first will also be mentioned in

the case of transmission resistance in HIV. As an

aside one may ponder on the question how such

thing as multi-scale data—or text mining could

be realized, where one would specifically try to

extract knowledge on the multi-scale aspects of a bio-

logical system and correlate data on different scales,

in order to feed the now emerging multi-scale com-

putational models (see e.g. [13, 14]).

In order to close the computational gap in

Systems Biology, we need to construct, integrate

and manage a plethora of models. A bottom-up

data-driven approach will not work. Web and Grid

services are needed to integrate often incompatible

applications and tools for data acquisition, registra-

tion, storage, provenance, organization, analysis

and presentation, thus bridging the integration gap.

Even if we manage to solve the computational and

integration challenges, we still need a system-level

approach to share processes, data, information and

knowledge across geographic and organizational

boundaries within the context of distributed,

multi-disciplinary and multi-organizational colla-

borative teams, or ‘virtual organizations’ as they

are often called, thus closing the collaboration and

interaction gap [15]. Finally, we need intuitive

methods to streamline all these processes dynamically

depending on their availability, reliability and

the specific interests of the end-users. Such

methods can be captured into ‘scientific workflows’

in which the flow of data and control from

one step to another is expressed in a workflow

language [15].

MULTI-SCALEMODELLING
We live in four-dimensional space-time and multi-

scale modelling usually refers to processes that act

on widely separated spatial and/or temporal scales.

Three-dimensional space is usually collapsed into

a single spatial dimension, and biological systems

range from the molecular scale (10�9 m) to the

organism level (1 m) and from molecular interaction

timescales (10�3 s) to a (human) lifespan (109 s),

therefore encompassing a 109 range in spatial scales

and a 1015 range in temporal scales [16]. However,

as argued by Southern et al. [3], a more abstract scale

separation in terms of levels of biological organization
may be more natural to consider. They identify 10

different levels, from the quantum level, via the

molecular, cellular, tissue, organ and organism-level

to the environment, and for each level they

review methods/models, ranging from e.g. molecu-

lar dynamics simulation of ion channels on the

molecular scale, via continuous ordinary differential

equations (ODEs) based models of e.g. cardiac cells

on the cellular level, to stochastic compartmental

models of severe acute respiratory syndrome out-

break on the environmental level. No matter how

the scale separation is expressed, actual coupling

between scales is at the heart of multi-scale model-

ling, and in computational biology ‘this kind of

modelling is still at a very early stage’ [3]. This is

not only true for computational biology. Despite

the large body of literature on multi-scale models,

there seems to be a lack of (formal) methodology and

clearly specified strategies for multi-scale modelling

[17]. However, some convincing ideas were

recently published for biomolecular systems [18],

that could be carried over to the field of computa-

tional biomedicine. Moreover, as Burrowes et al. [19]

note: ‘Over the past several decades, our understand-

ing of dynamic biological phenomena . . . has

increased substantially. This has occurred over

many scales of interest, but certainly not in a system-

atic manner, nor proportionately at each scale’. This

will certainly have an impact on progress in multi-

scale modelling, as it is of no use to link in scales

on which no sufficient experimental data is available.

As a consequence, to date there is hardly critical

assessment available on the validity or accuracy of

multi-scale models, nor critical comparisons of pos-

sible alternative multi-scale modelling strategies. As

always, a strong integration of experimental work

and computational modelling will be key to any

progress in this field [7].
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Yaliraki and Barahona [20] discuss some non-

traditional ways to for multi-scale models for chem-

istry on the sub-cellular level, relying ‘on a series

of coarse-graining directions which, starting from

atomistic descriptions to using mechanical concepts,

aim to show how the traditional chemistry of

local interactions translates into global behaviours

in biological systems’.

Burrage et al. [21,22] describe their approaches

to multi-scale modelling for sub-cellular processes

in the cell and on the cell membrane. Southern dis-

cusses in some detail the case of multi-scale model-

ling of ion channels [3] coupling simulations on

the molecular scale, to obtain diffusion coefficients

of potassium ions with Brownian dynamics simula-

tions to obtain ion fluxes. In these examples

the main assumption is that the time scales are sepa-

rated, such that lower-level processes are much

faster, implying that the lower-level processes are

in quasi-equilibrium with the slower higher level

processes and can be included at the higher level

via e.g. constitutive equations or force fields. This

type of multi-scale modelling, where microscopic

processes (small spatial scales, fast dynamics) are

coupled to macroscopic processes (large spatial

scales, slow dynamics) has received most attention

in the literature. However, as discussed in the next

section, other types of multi-scale coupling also

occur and should be investigated in more detail.

Another advanced example of multi-scale model-

ling is from Xu et al. [23] who propose a model

for thrombus development. They couple a discrete

Cellular Potts model of cellular behaviour to con-

tinuous models of blood flow and biochemical

reactions. They assume that the growth of a throm-

bus is slow process, allowing a time splitting tech-

nique to be used where the transport equations

are solved first, providing boundary conditions to

the growth model. This is then iterated over

many time steps of the slow model. This allows

them to study in detail the growth of the

thrombus, where initially activated platelets arrive

at the front side of the thrombus, but as the throm-

bus grows, the flow fields change and activated

platelets and blood cell clusters are pushed

back and attached to the backside. This could

explain inhomogeneity and later thrombus

instability.

The most advanced multi-scale models and simu-

lations in computational biology to date are those

emerging from the IUPS Physiome project [16].

In this article, we can only scratch the surface of

the Physiome related research and we will only

mention a few highlights from the literature dealing

specifically with multi-scale modelling. The

Physiome aims at developing a standardized compu-

tational framework for human physiology. The main

idea behind the multi-scale modelling in the phy-

siome is ‘the application of continuum field concepts

and constitutive laws, whose parameters are derived

from separate, finer-scale models’, which is ‘the

key to linking molecular systems biology (with its

characterization of molecular processes and path-

ways) to larger-scale systems physiology (with its

characterization of the integrated function of the

body’s organ systems)’ [24]. This is again the

micro-macro coupling as discussed earlier. Most

advanced is the multi-scale model of the heart (see

ref. [2,16] and also ref. [25] for deeper discussion

on a multi-scale modelling paradigm to exploit tem-

poral scale separation in systems of coupled ODEs).

For other organ systems multi-scale models are on

the drawing table, and with the current wave of

projects in e.g. the Virtual Physiological Human

initiative (see http://ec.europa.eu/information

_society/activities/health/research/fp7vph/index_en

.htm), one may expect to see rapid progress. For

instance, in case of the pulmonary system, detailed

models on the organ level (anatomically based

models of the lung, airway and vascular trees),

the tissue level (tissue mechanics, microcirculatory

flow) and cell levels (erythrocyte gas kinetics) are

available [19] but their integration into a multi-

scale model for a virtual lung is only beginning to

appear in the literature [19,26]. Another challenging

organ system is the musculoskeletal system. The

case of multi-scale modelling of the human femur

is discussed in ref. [27], again demonstrating that

on many levels detailed models are available, and

that linking them together through the scales is

where the current challenge lies. Interestingly, this

article nicely demonstrates the ‘middle out’ approach

(as opposed to bottom–up or top–down), where one

picks the biological level of interest as the starting

point, and then works up and down the scales as

required [28]. The interesting event is the fracture

of the femur (the organ level), which also depends

on higher levels (the body level, providing bone

loading conditions) and lower levels (tissue level, to

provide constitutive equations and failure criteria;

cellular level to be able to account for bone remo-

delling) [27].
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AMULTI-SCALEMODELLING
STRATEGY
Despite the widely acknowledged need for multi-

scale modelling and simulation, there is a scarcity

of underpinning literature on the methodology and

generic description of the process. There are many

excellent papers that present multi-scale models (as

discussed above), and some specialized journals exist

(e.g. Multi-scale Modelling and Simulation, International
Journal on Multi-scale Computational Engineering), but

few methodological papers on multi-scale modelling

have appeared so far (some examples are [29, 30]).

The Complex Automata Simulation Technique

(COAST) Project (http://www.complexautomata

.org) aims to help filling this gap by developing

a multi-scale, multi-science framework, coined com-

plex autonoma (CxA), for modelling and simulation

of complex systems, based on a hierarchical aggrega-

tion of single scale models, which are assumed to

be Cellular Automata [31]. Note, however, that

the methodology is not restricted to Cellular

Automata, but also includes agent based models

[32], and is easily generalized to other modelling

paradigms. The CxA methodology is described in

detail in ref. [17] and references therein. Here we

will shortly review the main ingredients. Please

note that in further description of our strategy

there are a few issues at stake: (i) how to identify

the single scale processes; (ii) how to model the

single scale processes; (iii) how to couple them

between the scales. In this manuscript we do not

discuss the details of the single scale models (some

of them were mentioned in the previous section),

nor their limitations, but we assume that a well-

validated single scale model is available.

First, a system is decomposed into its subsystems

for which the characteristic scales are identified. So,

typical temporal scales could be based on e.g. the

inverse of reaction rates, diffusion time over a char-

acteristic spatial scale, or the duration of a cell cycle.

Spatial scales could reflect e.g. the levels of biological

organization as mentioned above, but could also

allude to typical spatial dimensions over which a

chemical agent diffuses, or other geometric charac-

terizations. A Scale Separation Map (SSM) is then

created, where the temporal scale is plotted on the

horizontal axis and the spatial scale on the vertical

and each subsystem is plotted as a rectangle (note that

the size of the rectangle has a clear meaning in the

CxA theory). Next, the coupling between subsys-

tems is drawn as directed edges between the boxes.

The SSM is therefore a graphical representation of all

single-scale subsystems that make up the full multi-

scale system in terms of their spatial and temporal

scales, and in terms of their mutual coupling.

Figure 1A shows an example of an SSM, in which

three subsystems have been identified. Subsystem 1

operates on small spatial scales, and short temporal

scales, subsystem 2 at intermediate scales and subsys-

tem 3 at large scales. This could represent processes

operating at the micro-, meso- and macro-scales,

for example.

By considering two mutually coupled processes

on the SSM, five interaction regions are identified,

each giving rise to specific multi-scale coupling

paradigms. Consider two processes, A and B, each

with their own spatial and temporal scales. Assume

that A has the largest spatial scale. We can now inves-

tigate the different possibilities of placing B on

the map relative to A. This leads to a classification

of interaction regions, as shown in Figure 1B.

Depending on the location of B, we can identify

A

B

Figure 1: Scale separation diagrams. (A) Scale map
showing three subsystems and an example of mutual
couplings. (B) Interaction regions on the scale map.
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the following five interaction regions (note that we

do not have to consider other regions of the scale

map, because the roles of A and B are simply

reversed, and we revert to one of the cases identified

below):

Region 0: A and B overlap, and there is no scale

separation;

Region 1: A separation of temporal scales at

the same spatial scale;

Region 2: A separation in spatial scales like

coarse and fine structures on the same temporal

scale;

Region 3: Separation in both temporal and

spatial scales.

If B is located in region 3.1, this leads to the classical

situation of micro,macro coupling, with a fast

process occurring on a small spatial scale coupled

to a slow process occurring on a large spatial scale.

This type of multi-scale model has received most

attention in the literature, and the coupling para-

digms explained earlier have mostly been

applied in this region. Note that the approach

taken by the Physiome project where lower level

models provide constitutive equations to higher-

level models also fall in this interaction region.

When B is in region 3.2, we have the reverse situ-

ation: a slow process acting on a small spatial

scale is coupled to a fast process acting on a large

spatial scale. We believe that this is very relevant

to the coupling of biological with physical processes,

where a biological process, such as the slow response

of cells, is coupled to a faster physical process on

a larger scale (e.g. endothelial cell in arteries reacting

to the cyclic blood flow).

Note that, it may not always be possible to have

a clear scale separation. In such case one would

hope that models with some form of hierarchy

could be applied (think of e.g. local mesh refinement

in fluid flow solvers). In terms of the SSM, this

would result in a hierarchy of overlapping spatio-

temporal scales.

The concept of the SSM is applicable to many

complex systems, for example, coral growth [33] or

thrombosis and snow transport/deposition [34].

Indeed, Evans et al. report on a SSM for ISR [12]

(see also Case 2, below), Lawford et al. report on

a SSM for the response of the native endothelium

to shear stress [35] and Fazekas et al. [36] used dia-

grams that are close to a SSM in multi-scale

modelling and time-scale analysis of the human

limb. Moreover, we are aware of ongoing

activities where SSMs have been set up for the

urothelium and for ovum transport and implantation

(P. Lawford, personal communication). The SSM

by itself is a qualitative modelling tool, as it

helps to disentangle and organize the often

large amount of relevant processes at stake, as e.g.

in the case of ISR [12]. However, the SMM is

just a starting point of the CxA methodology.

The next paragraphs introduce two other impor-

tant principles, that of the domain, and of coupling
templates.

Besides the interaction region, another important

characteristic of multi-scale coupling is that of the

domain. We identify single-domain (sD) coupling

when processes A and B act on the same domain

and multi-domain (mD) coupling when processes

A and B act on separate domain that are

coupled via a boundary or small overlap region.

The micro,macro coupling in interaction region

3.1 usually is of sD type. A nice example of interac-

tion region 3.2 would be endothelial cells in arteries

in contact with and reacting to oscillatory shear stress

due to oscillating blood flow, which is clearly an

example of mD coupling. In ref. [17], we provide

many more examples.

Another level of detail is to consider interaction
templates, where the actual coupling for each of the

interaction regions and for sD and mD cases for

specific types of single scale models are specified.

This is a new concept that opens up on the one

hand a way to investigate mathematical issues related

to scale separation errors [37], and on the other

hand provides the basis for generic multi-scale sim-

ulation environments. For further details on CxA we

refer to [17, 38].

We should point out that very few environments

exist that can handle the coordination of coupled

models whose component modules may be

expressed using different formalisms (ODE/PDE,

FEM, cellular automata, agent-based models, other

discrete approaches).This issue has been addressed

by Zeigler et al. [39]. We developed Multi-scale

Simulation Library and Environment (MUSCLE),

a multi-scale simulation environment that allows

to implement multi-scale scale models that are

expressed as a CxA, and allows coupling cellular

automata and agent-based models [40]. Another

example of such environment is the Model

Coupling Toolkit, which is designed to couple
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large scale parallel models together [41].

Hetherington et al. [42] discuss what they call

‘the challenges of multi-scale model management

in systems biology’ and introduce XML based ser-

vices for model integration, as well as for storing

of model parameters and results, and for storing

and analysis of the models themselves. They also

review a number of modelling frameworks relevant

to multi-scale simulations.

To summarize, the SSM itself is a graphical

description of complex multi-scale models. The

arrows on the graph have real meaning and this is

where the real multi-scale modelling is found.

The notion of interaction regions and coupling tem-

plates could guide the way in methods for actual

scale coupling. However, in the end, it is the details

of the application that dictate how this should

be done.

CASE 1:TRANSMISSIONOF
RESISTANCE IN HIV
During the past 10 years significant progress has

been made in the treatment of viral disease infected

patients. For instance, around 20 antiretroviral drugs

are now available for treatment of HIV with patients

taking a combination of usually three drugs from

at least two different classes of antiretroviral drugs

in order to achieve complete suppression of the

virus [43].

In a considerable proportion of patients, however,

complete suppression of viral replication is not

reached, resulting in the rapid selection of drug-

resistant viruses and loss of drug effectiveness.

Resistance can be achieved by a multitude of com-

binations of mutations, and frequent cross-resistance

exists between drugs from the same class, complicat-

ing the clinician’s decision process. Such a decision

process requires translating information on virus

mutations to in vitro changes in drug sensitivity or

to in vivo clinical responses to specific regimens.

ViroLab (http://www.virolab.org/) [44–46] was

developed to give medical doctors a decision support

system to rank drugs targeted at patients and to pro-

vide virologists an advanced environment to study

trends on an individual, population and epidemiolo-

gical level. Virolab is a multi-scale modelling, simu-

lation and datamining environment for infectious

diseases, going from molecule to man and back, see

Figure 2.

Statistical and immunological models are needed

to study the dynamics of the HIV populations and

molecular dynamics models to study drug affinities,

in addition to rule-based and parameter-based deci-

sion support. We added cellular automata (CA)

and molecular dynamics modelling of HIV infection

and AIDS onset. All these models operate on a large

range of length and time scales as sketched in the

SSM in Figure 3. The single-scale models appearing

here will be shortly discussed.

A mesoscopic model to study the evolution

of HIV infection and the onset of AIDS is used

that takes into account the global features of the

immune response to any pathogen, the fast mutation

rate of the HIV, and a fair amount of spatial local-

ization, which may occur in the lymph nodes. ODE

(or partial differential equation) models are insuffi-

cient for describing the two extreme time scales

involved in HIV infection (days and decades), as

well as the implicit spatial heterogeneity. Non-

uniform Cellular Automata models were developed

to study the dynamics of drug therapy of HIV infec-

tion, which simulates four-phases (acute, chronic,

drug treatment response and onset of AIDS). The

model for prediction of the temporal behavior of

the immune system to drug therapy qualitatively

corresponds to clinical data [47]. The influence

of patient specific mutations on the drug binding

affinities can be calculated through high performance

Molecular Dynamics Simulation. In a recent article

results were discussed for the prediction of bind-

ing free energies for Saquinavir-bound HIV-1

Proteases [48].

The bio-statistical analysis of the HIV-1 genotype

datasets aims to identify patterns of mutations

(or naturally occurring polymorphisms) associated

with resistance to antiviral drugs and to predict the

degree of in-vitro or in-vivo sensitivity to available

drugs from an HIV-1 genetic sequence. The statisti-

cal challenges in doing such analyses arise from

the high dimensionality of these data [49]. Direct

application of the well-known mathematical

approaches to analysis of HIV-1 genotype results in

a lot of problems. The problem stems from the fact

that in HIV DNA analysis, the main scope of interest

is the so-called relevant mutations [50], a set of

mutations associated specifically with the drug resis-

tance. These mutations might exist in different posi-

tions over the amino-acid chains. Moreover, the

sheer complexity of the disease and data require
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the development of the reliable statistical technique

for its analysis and modelling. A possible approach

is through Bayesian Network Learning [51, 52], a

datamining technique allowing graphical mapping of

conditional dependencies in genetic sequences. Such

a technique could take into account epistatic inter-

actions between mutations from which an in silico
model can be built, representing the in vivo fitness

of the virus under drug selective pressure [53].

The infection spreading is modelled as a stochastic

process taking place over a sociological sexual net-

work. Key ideas like network structure, network

generation, and node dynamics are applied. The

models are validated against real historical data. The

model has some distinctive features: it takes into con-

sideration all the existing kinds of HIV spreading.

Homosexual and heterosexual spreading is described

by a scale-free network, drug users spreading

is described with the assumption of homogeneous

mixing inside the exposure group. All the network

parameters have been taken from the medical

literature and were fixed during the numerical

experiments. The experiments show a promising

correspondence between the model results and real

demographic historical epidemiological data [11].

This model may be used as a ‘back-calculation’

Figure 2: The ViroLab Framework with its components. From the bottom going left-up: patient specific viral load,
mutations and CD4þ information is used by the Molecular Dynamics calculations to estimate the binding affinity of
various drugs with Reverse Transcriptase and Protease. The binding affinities as well as the mutations are used
to estimate the entry of the virus into the cell. Next the binding affinity, entry process and CD4þ count and viral
load are used to estimate the immune response, finally the immune response and the binding affinity are used in
modelling the individual nodes in a complex sexual interaction network. From the bottom to right-up: context-
sensitive text mining distills relations between drugs andmutations and presents these as ranking rules.The decision
support kernel integrates both types of information (simulation and text mining) into integrated decision support
for drug ranking.
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[54] model and as a predictive model, because the

complex network technique mimics the underlying

mechanism of HIV transmission.

CASE 2: ISR
Coronary artery disease refers to the accumulation

of atheromatous plaque within the wall of the cor-

onary arteries and remains the most common cause

of death in Europe. Percutaneous coronary interven-

tion is a possible treatment strategy where an inflat-

able balloon is used to reopen the stenosed artery.

A metal frame (stent) may also be deployed to pro-

vide a scaffold to maintain an open vessel lumen.

Unfortunately, restenosis, i.e. a return of the vessel

lumen to a size similar to that before intervention,

remains a significant complication. This ISR is

largely a result of vascular smooth muscle cell

(SMC) proliferation. ISR remains an increasing and

significant problem, given the ageing nature of

the population. Modelling ISR should aid in under-

standing of this complex pathophysiology, and

strategies to prevent it, and requires coupling bio-

logical processes acting on the micron scale up

to hemodynamic processes acting on the centimetre

scale (hydrodynamics, advection-reaction-diffusion,

fluid-structure interaction, particle transport in

boundary layers, tissue growth and single cell

response). These processes also involve widely sepa-

rated time scales, from seconds to months.

The key single scale processes involved in ISR

are (for details, see ref. [12] and references therein)

initial arterial injury due to stent deployment

(including details of geometry of stent); platelet

deposition and aggregation; RBC rich thrombus for-

mation; SMC hyperplasia; Cell signalling and the

Cell Cycle; SMC hyperplasia; vessel remodelling;

cyclic flow, shear, and strain; and in case of drug

eluting stents transmural diffusion and advection.

After a detailed study of all these relevant processes

Evans et al. proposed SSM for ISR [12], and Figure 4

reproduces a simplified version (without the drug

elution and vessel remodelling).

Currently all single-scale models have been devel-

oped and are being integrated into a coupled multi-

scale simulation using the COAST coupling libraries

[40]. Figure 5 shows an example of a two-

dimensional version of the model, showing the initial

conditions after stent deployment, as well as the

resulting restenosis for bare metal stents and drug

eluting stents [55]. The inhibitory effect of the

drugs on the restenosis is clearly visible. Currently

we are working on validating these simulations

against detailed experimental data.

Figure 3: An SSM for the case of transmission of resistance in HIV.
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Key Points

� Biological and biomedical systems are multi-scale, multi-science
systems and this multi-scale nature needs to be addressed
in order to fully understand their seemingly endless complexity.

� The amount of multi-scale models appearing in the literature
is slowly increasing, but a critical evaluation and comparison
of alternative multi-scale modelling strategies, including their
validation, is not yet available.

� The COAST and VIROLAB projects propose conceptual
methods for multi-scale modelling in computational biology
and demonstrated their use for modelling ISR in coro-
nary artery disease and in modelling transmission of resistance
in HIV.
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