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Abstract 

We propose a new way to model HIV infection spreading through the use of dynamic complex networks. 

The heterogeneous population of HIV exposure groups is described through a unique network degree 

probability distribution. The time evolution of the network nodes is modeled by a Markov process and 

gives insight in HIV disease progression. The results are validated against historical data of AIDS cases in 

the United States as recorded by the Center of Disease Control. We find a remarkably good 

correspondence between the number of simulated and registered HIV cases, indicating that our approach 

to modeling the dynamics of HIV spreading through a sexual network is a valid approach that opens up 

completely new ways of reasoning about various medication scenarios.   

 

1. Introduction 

Despite the availability of a large number of mathematical models describing the 

spreading of HIV, a good understanding of the spreading dynamics through numerical analyses 

is still a major challenge. It is essential to combine epidemiological processes with sociological 

models and network sciences. The true incidence of the HIV/AIDS-epidemic is quite uncertain 

since many people may be unaware of their infection; moreover HIV has a very long asymptotic 

incubation period which makes study of the actual infection spreading a very complicated task. 

The various routes of infection and the inhomogeneity of the involved population pose additional 

problems [5]. 

 Many mathematical models have been suggested to simulate HIV population dynamics. 

For instance statistical techniques, like the back-calculation method and its related modifications, 

are widely used to estimate the incidence and short-term projection of HIV. Generally these 
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methods are based on information from annual AIDS cases and incubation periods of the disease 

[11,18,19]. Popular epidemiological models like SIR models are often used to simulate HIV 

spreading. New ways to account for homogeneous mixing [21,22] and the impact of for instance 

demographic effects or drug resistance have been discussed [20,11,22]. An SIR model is an 

epidemiological model that computes the theoretical number of people infected with a 

contagious illness in a closed population over time. The name of this class of models derives 

from the fact that they involve coupled differential equations relating the number of susceptible 

people ‘S’, number of people infected ‘I’, and number of people who have recovered ‘R’. 

One of the key drawbacks of those models is the difficulty to represent population heterogeneity 

and related risk behavior. Heterogeneity in these models can only be implemented through 

different transmission probabilities or different number of contacts for people in risk groups 

[8,9]. An advantage of network based epidemical models is the natural way in which 

heterogeneity can be expressed through network degree probability distributions and assortative 

or disassortative mixing  [1,23,24]. The goal of the work presented here is to show that complex 

network based modeling techniques provide a universal and natural way to describe any kind of 

infection spreading and specifically HIV.  

The paper describes the infection spreading as a stochastic process taking place over a 

sociological sexual network. Key ideas like network structure, network generation and node 

dynamics are discussed and applied. The models are validated against real historical data. 

 

2. Methods 

 

2.1. Formal description of the model 

Let us consider a Complex Network model (CN-model) as a set of the pairs { }Γ,G , 

where G  is a graph, that is, an ordered pair of disjoint sets ),( EV  (vortices and edges), and Γ  is 

an evolutionary operator, governing network changes in discrete time steps t : 
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The evolutionary operator (1) can be represented as a composition of distinct operators 

kk
Γ⊗=Γ  corresponding to different dynamical aspects, ⊗ indicates a ‘direct’ non-commutative 

product of the independent operators. 

Figure 1 illustrates the effect of the evolution operators Γ  on a set of three basic models 

of epidemiological networks, each of them corresponds to different mechanisms of infection 



 3

spreading. The simplest one is infection spreading on a static network, i.e. the network structure 

doesn’t change in time (fig. 1(a)). At each step an infected node (marked with a cross) can infect 

its neighboring nodes with a given probability. An important issue is the impossibility of 

changing the links. This model of infection spreading corresponds to the so-called ‘nodes 

percolation problem’ for the static networks. This model is feasible for infection spreading of 

geographically segregated agents; this process is represented by the network percolation 

operator 1Γ . A more elaborate model takes into account the network dynamics (fig. 1(b)). This 

reflects the fact that network links are not stable and the network structure is evolving over time. 

The model is fully connected; even in the case of  a small number of links (for instance, only one 

for each node) the possibility to be connected to an infected node can not be disregarded. This 

advanced feature makes the model more applicable to infection spreading inside a large society 

(city or country) and for Sexual Transmittable Diseases (STD), where almost all the people can 

be infected. This process is controlled by the network link-dynamics operator 2Γ . Fig. 1(c) 

represents yet another kind of process occurring on network epidemics models; some epidemics 

are able to last over a long period of time and people that have been infected at the beginning of 

the epidemics may be removed from the initial population over time (due to death, age, 

migration etc.). This dynamics is captured by the network demographic operator 3Γ . 

Next we define an operator for HIV spreading as 321 Γ⊗Γ⊗Γ=Γ . Note that those 

operators are non-commutative.In addition, a realistic description of any epidemiological process 

implies a correct description of the state evolution of the nodes. In our case one can formalize the 

time evolution as an additional operator 4Γ , which is defined in the form of changes in the CD4 

T-cell count in the blood of infected individuals (Fig. 2). The rationale here is that the white 

blood cells (T-cell lymphocytes) that express CD4 on their membrane are an indication of the 

health of the individual. If the number of CD4 T-cells drop below ~ 200 copies per ml the patient 

is likely to enter the AIDS phase where opportunistic diseases like tuberculoses and cancer will 

emerge. 
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Fig. 1. Schematic models of infection spreading through complex networks. (a) static graph; (b) dynamic 

links; (c) dynamic nodes; The circles with crosses indicate infected individuals, the black circles are 

individuals removed from the network see the text for more details. 
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2.2. Analytical approximation of Complex Networks dynamics 

Generally, the interplay between the fraction of S, I and R is described in the form of a 

standard epidemic SIR model in terms of a system of differential equations. The simplest form 

can be expressed as: 

)()(

)()()()(

)()()(

t
dt

tdr

tstt
dt

td

tst
dt

tds

μρ

λρμρρ

λρ

=

+−=

−=

, (2)

where )(ts  – susceptible, )(tρ – infective, )(tr  – removed. This is equivalent to the dynamics 

described in fig. 1b, with exactly 1 link per node. Equation 2 can be interpreted as a mean-field 

approximation to the dynamics shown in figure 1 [35]. Note that if we disregard demographic 

effects we can put )(ts + )(tρ + )(tr = constant. Susceptible individuals could be infected; 

infective individuals are capable of transmitting the disease; removed individuals have had the 

disease and are dead. Parameters λ  and μ  are positive constants representing infection and 

removal rates. The value λ  is a characteristic of 1Γ  only and is determined by the details of the 

infection spreading. The value of μ  depends on the disease evolution inside an infected node 

before its death or isolated status in which it doesn’t pass on the infection anymore. 

 

 
Fig. 2. Infected nodes evolution as a function of CD4 T-cell counts 

 

 The graph of changing CD4 T-cell counts for a node (fig. 1(c)) is depicted in Fig. 2. The shape 

of that curve is prototypical for infected individuals without treatment [32]. The mean incubation 

time is close to 10 years, after which the CD4 T-Cell count drops to a lethal level where the 

immune system is not capable of fighting against opportunistic infections anymore. This 

condition is called AIDS and is considered as an isolated state for an infected node, which is 
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consequently removed from the network. The incubation period for an infected individual 

depends on individual features and social as well as economic factors. The mean value of the 

incubation time varies from 8.0 to 13.0 years [28,29]. 

The transition for each individual (per year) from state ρ  to state r  can be described in 

the form of an irreversible Markov chain with a matrix of transition probabilities given by: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=Π

100
10

001
μμ ,      (3) 

In particular, for HIV infected nodes μ may vary from 15.0=μ  for individuals without 

treatment to 08.0=μ  for individuals with treatment [1]. The generalized matrix of transition 

probabilities П may be easily extended to any number of intermediate stages of infection. 

Combining expressions (2) and (3) one can express the epidemic model with 

homogeneous mixing in the form of a discrete Markov chain with a corresponding state vector 

given by: [ ]TrsE ,,ρ= : 

  ))()(( 2111121 IEIEIIEE ttt
T

t −−− −+Π= λ      (4) 

[ ]T
def

E 0,,1 000 ρρ−=   

where [ ]TI 0011 = , [ ]TI 0102 = .          

Expression (4) might be an integral representation of the evolution process (1) in terms of 

a discrete distribution of rs ,,ρ . 

The SIR model represented in (4) is too simple to be useful for real applications but is a 

good starting point for more advanced models, these we will describe in the following 

paragraphs. 

 

2.3. Perspectives of HIV modeling 

As a rule, real HIV epidemiological processes are rather complicated. So it makes sense 

to list some of the procedures, proposed in the epidemiological literature, which make the SIR 

models more suitable for real situations. 

• In (2), the population is assumed closed, that is, the population size is fixed 

( consttrtts =++ )()()( ρ ). However, recent results reporting on the spread of HIV indicate 

the existence of a strong interplay between HIV epidemics and age structures. The 

demographic impact can not be neglected. For instance, in [1] the population in SIR models 

is randomly refreshed to correspond to the age structure for a given country. Another 
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approach has been proposed in [16] where a demographic rate has been introduced into a set 

of coupled differential equations for the related SIR model. 

• The SIR models expressed in the form of Equation (2) are only valid for homogeneous 

mixing, that is, all individuals are able to infect all others with an infectivityλ  almost 

identical for each individual [9]. Recent theoretical results on epidemics show that the rate of 

the epidemic changes is highly affected by the dynamical behavior of individuals. The 

inhomogeneity of behavior in the exposed groups can be taken into account by introducing a 

structured sexual contact network. A number of papers show a power-law behavior for such 

networks. An interesting result can be found in [8, 10] where a set of coupled differential 

equations with classes differentiated by connectivity is used for numerical evaluation. 

• The removal rate μ  in (2) and (4) results from a very simple model describing the 

progression of the time of infection to the final state of the disease. For infections with short 

incubation time this rate can be described by a single value, but for diseases like HIV the 

incubation time is comparable with the simulation time. Moreover some changes like 

diagnosis or treatment [20, 11] must be taken into account. This makes the model non-

stationary. 

 

Because of these observations we introduce a new method based on direct simulation of complex 

networks in the form given by Equations (1) and (4). 

 

3. The Network Simulation Procedure 

HIV is a very special epidemic. Let us list some challenges and approaches arising in 

HIV modeling: 

• It is very difficult to build up an HIV model for all the exposure groups simultaneously. 

Each of these groups has distinctive features and generally they are simulated 

independently. Some models are used for a general population [12], but others for 

different exposure groups like heterosexual [1] or homo/bisexual [11] groups only.  

• The HIV epidemic is inhomogeneous over time. Three epochs Pre-ARV (till 1987), 

AntiRetroViral therapy ARV (1988-1995) and Highly Active Antiretroviral Therapy 

(HAART)-treatment can be distinguished. The system of diagnosis has been improved as 

well. Those changes may be taken into consideration by non-stationary coefficients of the 

HIV progression and the probability of infection per partner [11,13]. 

• Despite the improvement of HIV diagnosis only AIDS cases are recorded with some 

certainty and there is a big uncertainty about early stages of the epidemics. Moreover 
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some important factors like the size of exposure groups and the interplay with 

demographic and geographical structures are far from obvious.  

• With construction of the model in the form given by Equation (1), one should take into 

account that HIV is primary an STD. In our model we identify three ways of HIV 

infection: 

• Men who have sex with men (MSM); 

• Heterosexual population; 

• Injection drug users (IDU). For this group HIV is not an STD; 

Each risk group has its own probability of infection per partner λ  and specific demographic 

factors as well as related contact networks. Obviously sexual contact networks may not be 

described as a homogeneous graph. Unfortunately the information concerning the structure of 

contact networks for the third largest exposure group (IDU) is absent. That is why we choose a 

network model (4) with homogeneous mixing only. 

 

3.1. Modeling of Sexual Contact Networks 

We construct a network model as a dynamical scale-free network, wherein each individual is 

represented by a node and the edges are the links between the individuals. The infection may 

spread along these edges. There are a number of papers which describe scale-free properties of 

sexual contact networks [3,4]. The scale-free property implies that network has a power-law 

distribution in the number of outgoing links, with an exponent γ  that determines the specific 

structure of the network for each type of HIV spreading implemented in the model [2]: 

max,~)( kkkkP ≤−γ , (5)

where  k  - the number of sexual partners per year and γ  - a parameter of the distribution. Small 

γ  denotes more limited sexual contact behavior and corresponds to a smaller value of maxk  

indicating the promiscuity and vice versa. 

  We use for the homosexual contact network the following parameters of the power-law 

distribution  6.11 =γ and 300250 max << k  (see [3] for more details). For the heterosexual 

network we can take 7060  and  7.2 max2 <<= kγ . The cut-off maxk  of the distribution is very 

important as it indicates the possible number of superspreaders in the network. Actually we may 

use lifetime statistics and build up the model on a static graph but the associated statistics is 

absent or unreliable. 

With respect to Equation (2), we use at each step a configuration model for the contact 

network generation. This flexible approach is based on the generation of a degree sequence 
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which allows generating links between any two nodes according to its degrees taken from a 

specific distribution. In Fig. 3 the simulated network patterns for a heterosexual population (a) 

and MSM (b) are depicted using recorded data. 
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a) b) 

Figure 3. Sexual contact networks over a one year period. Visualisation is done using the Pajek software 

system [36]. (a) – heterosexual network; (b) – MSM network 

 

From Fig. 3 we observe that in the heterosexual contact network there is (at least) one big 

component and a lot of pairs. For MSM network almost all the nodes belong to one giant 

component. 

 

3.2. Modeling the dynamics of the infected nodes 

The Markov chain model with the matrix of transition probabilities given by Equation (3) 

is a reductive model of infected nodes dynamics, which is equivalent to the model described by 

Equations (2). Taking into account duration of the incubation period, availability of treatment 

and the effect of diagnosis (awareness about infection may affect the transmission probability), 

more advanced models with a larger number of states could be used. In particular, Aalen et al. 

[11] proposed a multi-state Markov model to represent stages of HIV infection and the diagnosis 

and treatment. This model is very convenient for back-calculation models [11,18,19], SIR 

models, and for including SIR models into a network model.  

The pre-AIDS stages of HIV infection are defined in terms of the level of CD4+ T 

lymphocytes (CD4 counts). Four states are specified corresponding to CD4 counts of 500 or 

higher (x 106 cells/l), 350–499, 200–349 and below 200. The mean occupancy times for states 1, 

2, 3 and 4 are 5.5, 2, 2, and 1 year, respectively. It reflects a median incubation time of 8.6 years 

and a mean of 10.5 years. It is assumed that HIV testing became available gradually during 1984, 

and that general access to testing was available from the beginning of 1985. After years of 

improvement these tests are assumed to be constant since 1990. Furthermore we assume that 

treatment was introduced in 1988 and has been substantially improved after the introduction of 
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combined therapies in 1996. The rates of diagnosis, treatment and other coefficients for this 

model can be found in a series of papers [11,18]. 

 

3.3. Modeling of demographic effects 

As was shown in Fig. 1(c), a demographic rule for the network implies permanent changes 

inside the network that have a strong interplay with the age structure of the population. The 

easiest way to describe this feature is to define two coefficients 1d and 2d  which reflect the 

percentage of the nodes removed (infected and healthy) or embedded (healthy only) in the 

network at random respectively. If 21 dd >  the population (network size) is decreasing, if 21 dd <  

the population is growing. Our assumption is that the population size (i.e. the risk group) is 

stationary, that is 21 dd = . This assumption has proven to be quite realistic for last three decades 

for many developed countries [25]. For instance, if the network describes the population in the 

ages of 15-39 years, the coefficient 21 ddd == would be roughly %4 , due to the lack of precise 

information on the size of this risk group we allow this value be ‘tunable’. 

 

3.4. Modeling of spreading process 

The structure of the operator 1Γ is quite simple. For each kind of infection an infected node 

can infect its neighboring nodes with a given probabilityλ . The problem is how to estimate this 

unknown value. Many papers report a probability value of infection per unprotected sexual 

contact in the range of 0.002% to 40% [e.g.: 31, 32]. For this we have chosen to make this value 

as a free ‘tunable’ parameter as well. Optimization of λ  with a numerical solution )(tr  of the 

model system described in equation (2) is done through minimization of the following 

functional: 

[ ]∑
=

→−
2005

1981

2 min),(
Y

YNYr λ , (6)

Here YN  is the annual officially registered number of AIDS cases in a given country. For 

instance, data for United Sates and Europe can be found in [26,27].  

The advantage of this model is the relative scale of modeling, this allows us to avoid a direct 

approximation of exposure groups’ size and to recalculate the scale of the simulation by data 

reported in literature. For the optimization procedure we use a standard steepest decent method 

with adaptive step-sizes.  
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The optimization result for the  population in the United States showed a value 44.0=λ . Of 

course, this value is much larger than the infection probability per sexual partner which is hard to 

compare since the number of unprotected sexual contacts is not well known.  

Additional ‘tunable’ parameters are the demographic coefficients 21,dd and the initial size of 

the infected group for the first years of simulation 0ρ  (for 1975), that define the initial conditions 

for our model in Equation (4). 

 

3.5. The Direct Simulation Algorithm 

The basic simulation procedure can be written down in a number of consequent steps: 

(1) Generate a network using a given node degree probability distribution with an initial 

number of randomly infected nodes 0ρ ;  

(2) Infect nodes with probability λ  for every link (per partner); 

(3) For each infected node apply a rule of progression from HIV to AIDS (see paragraph 

3.2.).  Nodes with AIDS are removed from the network; 

(4) Apply the demographic rule; 

(5) Store the current nodes state and generate a new random network; 

(6) Shift current time to one step forward and repeat (2)-(5) 

(7)  Repeat (1)-(7) till statistical significance has been obtained; 

For simulation of heterosexual spreading the network is represented as a bipartite graph and 

the transmission probability from men to women is taken to be twice as efficient. Note that 

operators 1Γ , 2Γ , 3Γ , 4Γ  correspond to steps (2), (1), (4) and (3) respectively. 

The 3 different types of infection (Heterosexual, MSM, IDU), are simulated independently.  

 

4. Results 

 

4.1. HIV data  

The United States data [26] are used for model identification and tuning mainly because 

they provide relative good statistics of AIDS cases, several kinds of infection spreading and a 

possibility to explore the effects of treatment. These data include at least three epochs of the 

epidemic evolution: Pre-ARV, ARV and HAART-treatment; and three kind of HIV spreading. 

For each of these epochs and the 3 distinct kinds of infection, HIV spreading behavior was 

studied. 
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4.2. Validation: comparison with annual AIDS data 

As we can observe from Fig. 4 the simulation results are very close to the estimation of 

the officially registered annual AIDS cases. We should however consider these result very 

carefully, since some of model deficiencies may have been diminished by the free ‘tunable’ 

parameters. The obvious effect on all the figures shown, is a substantial decline of AIDS cases 

after introduction of HAART (1996). As can be observed for the homosexual and heterosexual 

populations, the peaks of the AIDS epidemic are not the same. From a computational point of 

view the existence of these peaks can be explained as a result of depletion of people with high 

risk behavior and a shift of the epidemic to the generic population (with ‘normal’ risk behavior), 

for instance through bisexual contacts. The stable number of AIDS cases in recent years may be 

explained by the stationary number of HIV infection over a long period of time (see Fig. 5). 

 

4.3. Reconstruction:  annual HIV cases  

The simulation result of annual HIV cases reconstruction for different exposure groups is 

presented in Fig. 5. It is encouranging that those estimations are close to the official estimation 

by the Center for Disease Control CDC [17] which represents approximately 40,000 new 

transmissions per year all the way from 1990 to the present time, after the peak of 1985 with 

approximately 150,000 annual HIV cases (for all groups simultaneously). 

Some of the effects that we observe from Fig. 4 for AIDS cases are present in the graphs 

for HIV as well. For instance, the stationary flow of HIV epidemics over more than a decade is 

reflected in the stationary flow of the number of annual AIDS cases. The largest and not obvious 

difference is a lack of decline of HIV cases after introduction of HAART. It probably means that 

the process of HIV infection is quite independent from the effect of treatment and that a 

stationary flow of epidemics may be explained by the balance of rate of infection, incubation 

period and demographic factors (supporting the size of risk groups).  

We note that the best fit of the demographic coefficient ( %53− ) is closely related to the 

group size (20-40 years) which is generally considered as the size of the exposure groups for 

different kinds of HIV spreading. 

 

5. Conclusions 

We present a parameterized Complex Network (CN) model describing the dynamics of 

HIV spreading. The model has some distinctive features: It takes into consideration all the 

existing kinds of HIV spreading. Homosexual, and heterosexual spreading is described by a 

scale-free network, drug users spreading is described with the assumption of homogeneous 
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mixing inside the exposure group. All the network parameters have been taken from the medical 

literature and were fixed  during the numerical experiments. The experiments show a promising 

correspondence between the model results and real demographic historical epidemiological data. 

This CN model will be included into a generic system of predictive models for HIV infections 

and associated drug-ranking strategies [33]. As such it will be part of the ViroLab decision 

support system [34]. 
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Figure 4. Simulation results and reported data for the AIDS epidemic in USA. (a) – MSM exposure 
groups, power-law distribution with 250  and  6.1 max == kγ , %,32.00 =I  ,04.0 =d  44.0=λ ; (b) 
– heterosexual exposure group, power-law distribution with 60  and  7.2 max == kγ , 
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28.0 ,05.0 %,2.00 === λdI  ; (c) – IDU exposure group, homogeneous mixing, simulation 

parameters are 72.0 ,025.0 %,16.00 === λdI . Circles are the annual officially registered number of 
AIDS cases; the solid line indicates the simulation results. 
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Figure 5. Simulation result for annual HIV cases in USA. (a) – MSM exposure groups, power-law 
distribution with 250  and  6.1 max == kγ , %,32.00 =I  ,04.0 =d  44.0=λ ; (b) – heterosexual 

exposure group, power-law distribution with 60  and  7.2 max == kγ , 28.0 ,05.0 %,2.00 === λdI  ; 
(c) – IDU exposure group, homogeneous mixing, simulation parameters are 

72.0 ,025.0 %,16.00 === λdI . Measured data are not shown on this figure, because statistic about 
annual HIV cases is relatively good for past decade only and there is a big uncertainty about early stages 
of epidemic.  
 
 
• Sexual contact network dynamics is coupled to an  inhomogeneous Markov model of 

HIV infection, diagnosis and AIDS progression; 

• The model was inititalized by real historical data. Annual HIV cases were reconstructed 

by historical annual AIDS cases; 

 

The proposed model may be used as a “back-calculation” [6] model and as a predictive model, 

because the complex network (CN) technique mimics the underlying mechanism of HIV 

transmission. 
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