Distributed Simulation with Cellular Automata:
Architecture and Applications

P. M. A. Sloot, J. A. Kaandorp, A. G. Hoekstra, and B. J. Overeinder

Faculty of Sciences, University of Amsterdam
Section Computational Science
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{sloot, jaapk,alfons,bjo}@wins.uva.nl
www.wins.uva.nl/research/scs/

1 Introduction

Many fundamental problems from natural sciences deal with complex systems.
We define a complex system as a population of unique elements with well defined
microscopic attributes and interactions, showing emerging macroscopic behav-
ior. This emergent behavior can, in general, not be predicted from the individual
elements and their interactions. A typical example of emergent behavior is self-
organization, e.g. Turing patterns in reaction-diffusion systems. Complex sys-
tems are often irreducible! and can not be solved in an analytical way. The only
available option to obtain more insight into these systems is through explicit sim-
ulation. Many of these problems are intractable: in order to obtain the required
macroscopic information, extensive and computationally expensive simulation
is necessary. Since simulation models of complex systems require an enormous
computational effort, the only feasible way is to apply massively parallel compu-
tation. A major challenge is to apply High Performance Computing in research
on complex systems and, in addition, to offer a parallel computing environment
that is easily accessible for applications [62,63].

Traditionally, science has studied the properties of large systems composed of
basic entities that obey simple microscopic equations reflecting the fundamental
laws of nature. These natural systems may be studied by computer simulations
in a variety of ways. Generally, the first step in any computer simulation is to
develop some continuous mathematical model that is subsequently discretized
for implementation on a computer. An alternative, less widely used approach is
to develop solvers that conserve the characteristic intrinsic parallel properties
of the applications and that allow for optimal mapping to a massively parallel
computing system. These solvers have the properties that they map the paral-
lelism in the application via a simple transformation to the parallelism in the
machine. With these transformations the necessity to express the application
into complex mathematical formulations becomes obsolete.

One example is the modeling of a fluid flow. Traditionally this problem is sim-
ulated through mathematical description of the phenomenon via Navier-Stokes

! TIrreducible problems can only be solved by direct simulation

J. Pavelka, G. Tel, M. Bartosek (Eds.): SOFSEM’99, LNCS 1725, pp. 203-248, 1999.
© Springer-Verlag Berlin Heidelberg 1999

204 P. M. A. Sloot et al.

equations, and discretization of these equations into numerical constructs for
algorithmic presentation on a computer. This process of simulation involves a
number of approximations and abstractions to the real fluid flow problem: intrin-
sic properties and explicit information of the physical phenomenon is obscured.
Even worse, the possible implicit parallelism of the problem becomes completely
indistinct in the abstraction process. An alternative approach would be to model
the microscopic properties of the fluid flow with cellular automata, where the
macroscopic processes of interest can be explored through computer simulation.
This approach has the advantage that the physical characteristics of the fluid
flow problem remain visible in the solving method and that the method con-
serves the parallelism in the problem. Although this type of simulation methods
is not yet completely understood and certainly not fully exploited, it is of cru-
cial importance when massively parallel computers are concerned. We define this
type of solvers as natural solvers. These techniques have in common that they
are inspired by processes from nature [64]. Important examples of natural solvers
are Genetic Algorithms (inspired by the process of natural selection), Simulated
Annealing (inspired by the process of cooling heated material which converges to
a state of minimal energy), Lattice Gases and the Lattice Boltzmann method (a
many particle system, or cellular automaton method with a macroscopic behav-
ior that corresponds to the hydrodynamic equations), and artificial Neural Net-
works. We argue that in parallel computing the class of natural solvers results
in a very promising approach, since the physical characteristics of the original
phenomenon remain visible in the solving method and the implicit and explicit
parallelism of the problem remain conserved.

In Fig. 1 a “bird’s eye view” of the different steps of the mapping process
from application to parallel machines is presented. As can be seen, an application
is first transformed into a solver method. Here, detailed knowledge of the prob-
lem domain is obligatory. Next, the intrinsic parallelism in the solver is passed
through the Decomposition layer that captures the parallelism and dependen-
cies into objects and communication relationships. Finally these two classes are
mapped onto a Virtual Parallel Machine model that allows for implementation
on a large suite of parallel systems [52].

To be able to capture the generic aspects of parallel solvers and to express
the basic properties of the natural system, we will define our own abstract solver
model indicated as the Virtual Particle model. The Virtual Particle (VIP) can
be defined as the basic element in the simulation model. The VIP can be defined
on several levels of abstraction. For example in a simulation model of a bio-
logical system, the VIP can correspond to a certain level of organization and
aggregation in the system (e.g. molecule-organelle-cell-tissue-organ-organism-
population). The choice of the abstraction level is determined by a combina-
tion of the desired refining of the model and the computational requirements. In
the VIP model the microscopic, temporal or spatial, rules have to be specified
in such a way that they approximate the microscopic rules as observed in the
actual system. In the VIP model, the VIPs may correspond to the individual
particles in the natural solver, as for example in lattice gases. Alternatively,

Distributed Simulation with Cellular Automata 205

Application

Genetic
Algorithms

Simulated
Annealing

Molecular
Dynamics

Neural
Networks

Cellular
Automata

[Hierarchical]
Decomposition

Virtual Massive Parallel Machine

Workstation Cray IBM
Cluster T3D SP2

Fig. 1. Outline of a Parallel Programming Model for Dynamic Complex Systems
on Massively Parallel Computers

the particles can be organized hierarchically, where VIPs can be an individual
particle or clusters of VIPs. The application model is mapped onto the Virtual
Parallel Machine Model (see Fig. 2), which can be another instance of a dynamic
complex system consisting of a population of processors. In this case both load
balancing and minimization of communication can be taken into account in a
graph representation [56,59].

In this paper we will focus on cellular automata methods for modeling phe-
nomena from natural sciences. In Section 2 the theoretical background of Cellular
Automata (CA) will be briefly discussed. In Section 3 different execution mod-
els for CA will be discussed. Section 4 presents an example of a very specific
CA that can be used as a model of fluid flow. In Section 5 we will demon-
strate the use of two types of execution models. The first application shows how
synchronous cellular automata can model growth processes in a moving fluid.
The second application demonstrates an asynchronous execution scheme for a
continuous-time Ising spin model.

206 P. M. A. Sloot et al.

[Applications] [MPP Platforms]

Model

. . Virtual MPP Machine
Virtual Particle Models

Fig. 2. Basic structure of Dynamic Complex System Paradigm: the mapping
of the application model onto the machine model. The internal transformation
denotes the mapping of the application graph onto the machine graph

2 Background of Cellular Automata Concepts

2.1 Introduction

Cellular Automata are discrete, decentralized, and spatially extended systems
consisting of large numbers of simple identical components with local connec-
tivity. The meaning of discrete here is, that space, time, and features of an
automaton can have only a finite number of states. The rational of cellular
automata is not to try to describe a complex system from a global point of view
as it is described using for instance differential equations, but modeling this
system starting from the elementary dynamics of its interacting parts. In other
words, not to describe a complex system with complex equations, but let the
complexity emerge by interaction of simple individuals following simple rules.
In this way, a physical process may be naturally represented as a computational
process and directly simulated on a computer. The original concept of cellular
automata was introduced by von Neumann and Ulam to model biological repro-
duction and crystal growth respectively [66,68]. Von Neumann was interested
in the connections between biology and computation. Specifically the biological
phenomenon of self-reproduction modeled by automata triggered his research in
this field. According to Burks [7], Stanislaw Ulam suggested the notion of cellu-
lar automata to von Neumann as a possible concept to study self-reproduction.
Since then it has been applied to model a wide variety of (complex) systems, in
particular physical systems containing many discrete elements with local inter-
actions [44,73]. Cellular Automata have been used to model fluid flow, galaxy

Distributed Simulation with Cellular Automata 207

formation, biological pattern formation, avalanches, traffic jams, parallel com-
puters, earthquakes, and many more. In these examples, simple microscopic rules
display macroscopic emergent behavior. For some Cellular Automata it can be
proven that they are equivalent to Universal Computers, thus in principle able
to compute any given algorithm, comparable to Turings Universal Computing
Machine (see for instance [5]). Furthermore Cellular Automata can provide an
alternative to differential equations for the modeling of physical systems. It is
this combination of

— simple local rules,

— association with universal computing automata,

— alternative to differential equations,

— models of complex systems with emergent behavior,

— and bridging the gap between microscopic rules and macroscopic observables

that has renewed interest in Cellular Automata (CA’s). The locality in the rules
facilitate parallel implementations based on domain decomposition, the Univer-
sal Computing behavior supports fundamental research into the intrinsics of
computation in CA’s, and the modeling power of CA’s is of utmost importance
to study a huge variety of complex systems. Although John von Neumann intro-
duced the cellular automata theory several decades ago, only in recent years it
became significant as a method for modeling and simulation of complex systems.
This occurred due to the implementation of cellular automata on massively par-
allel computers. Based on the inherent parallelism of cellular automata, these
new architectures made possible the design and development of high-performance
software environments. These environments exploit the inherent parallelism of
the CA model for efficient simulation of complex systems modeled by a large
number of simple elements with local interactions. By means of these environ-
ments, cellular automata have been used recently to solve complex problems in
many fields of science, engineering, computer science, and economy. In partic-
ular, parallel cellular automata models are successfully used in fluid dynamics,
molecular dynamics, biology, genetics, chemistry, road traffic flow, cryptography,
image processing, environmental modeling, and finance [65].

2.2 Simple 1D Cellular Automata

A CA consists of two components: a lattice of N identical finite-state machines
called cells, each with an identical pattern of local connections to other cells for
input and output, and a transition rule. Let X denote the set of states in the
cell’s finite state machine, and k& = |X| denote the number of states per cell. The
state of cell ¢ at time ¢ is denote by s!, with st € X. The state of cell i together
with the states of the cells to which cell 7 is connected is called the neighborhood
nt of cell i. The transition rule ¢ (n!) gives the updated state s?“ for each cell i
as a function of nf. In a CA a global clock usually provides the update signal for
all the cells; cells update their states synchronously. In Section 3 we will discuss
the consequences of asynchronous updates.

208 P. M. A. Sloot et al.

Fig. 3. The “space-time” behavior of CA 110, where black = 0 and white = 1.
Space is on the horizontal axis, time flows from top to bottom

Consider for instance the following one-dimensional CA with £ = 2 (i.e.
¥ =1{0,1}) and a transition rule given by

Neighborhood: 111 110 101 100 011 010 001 000 (1)
Output bit: O 1 1 0 1 1 1 0

then the transition rule number (due to Wolfram [73]) is given by “110”, being
the decimal representation of the output bit-string “01101110”. The “space-
time” behavior of CA 110 is shown in Fig. 3. Starting from a random initialization
of the CA with length 250, the transition rule is iteratively applied 50 time steps.
The “time” runs from top to bottom. For a one-dimensional CA the size of the
neighborhood n'! is given by 2r+1 with r the radius of the CA (in CA 110, r = 1).
Wolfram studied in great detail the 256 possible one-dimensional &k = 2, r = 1
CAs (so-called elementary CAs) and classified them accordingly to dynamical
systems [72].

— Class 1: Fixed point behavior. Almost all initial configurations relax after a
transient period to the same fixed configuration.

— Class 2: Periodic behavior. Behavior like in class one but with temporally
periodic cycles of configurations included.

— Class 3: Chaotic behavior. Unpredictable space-time behavior.

— Class 4: Complex behavior. Complicated localized patterns occur, sometimes
“long-lived”.

For infinite Class 4 CAs it is effectively undecidable whether a particular
rule operating on a particular initial seed will ultimately lead to a frozen state
or not, this is the CA analog of Turings Halting problem. It is speculated that
all CAs with Class 4 behavior are capable of universal computation [72]. In 1990
it was shown by Lindgren and Nordahl for the first time that a one-dimensional
CA (r =1, k = 7) exhibit universal computing behavior [38]. If Class 4 CAs are
capable of universal computing, then CA 110, shown in Fig. 3, is a very good
elementary CA candidate for universal computation [37].

Distributed Simulation with Cellular Automata 209

2.3 Requirements for Computability in Cellular Automata

Some authors [13,35,72] suggest that when a system displays complex behavior,
universal computations can be performed. Mechanically speaking a computa-
tional system requires transmission, storage and modification of information.
So, whenever we identify those three components in some dynamical system, the
system could be computationally universal. But then the question remains when
does this happen? Loosely speaking we can say, using information theoretical
results, that it must take place at an intermediate level of entropy: stored infor-
mation lowers the entropy, but transmission of information increases the entropy
level. Therefore we will briefly review entropy measures of Cellular Automata in
Section 2.3.1. In a number of papers, Christopher Langton has tried to answer
this question by considering Cellular Automata as a theoretical model for a
physical system. The hypothesis “Computation at the Edge of Chaos” resulted
from this research. Briefly it states that universal computations can take place
at the border between order and chaos. This statement partly resulted from the
observation that correlations can become infinite during, or at a second order
phase transition between, for example, a solid and a liquid phase. Recall that
a discontinuous change in an order parameter of the system corresponds to a
first order transition. A sudden, but continuous, change corresponds to a second
order transition. At such a transition, the system is in a critical state. Langton
and Kauffman [33,35] believe that the resulting infinite correlations can be inter-
preted as long-term memory needed to store information. We will review these
notions and recent objections to this hypothesis briefly in Section 2.3.2.

2.3.1 Information in CA In order to observe phase transitions in CA evolu-
tion, quantitative order parameters are needed. These order parameters need to
distinguish between ordered and disordered states. A commonly used quantity
for this purpose is the Shannon entropy [60], defined on a discrete probability
distribution p;:

H == pilogp; (2)

This measure H can be associated with the degree of uncertainty about a system.
In a Cellular Automata, entropy can be defined on the k% possible subsequences
of N-length blocks in a k-state CA. In a random sequence all subsequences
must occur with equal probability. With probabilities p; for the k~ possible
subsequences:

kN
Hy =— ZpiZOQPi (3)
=1

The spatial block entropy [21] is now defined as:

h%) =Hyy1— Hy (4)

210 P. M. A. Sloot et al.

The superscripts (x) indicate that spatial sequences are considered. From Eq. 4
follows the spatial measure entropy, or entropy rate [21]:
h®) = lim A (5)
N—o00
The measure entropy gives the average information content per site. Analogous
to the spatial entropy, one can define temporal entropy, where blocks of N x T
sites are considered:

®— O
O =m0 ©

Eq. 4 decreases monotonically with N, while hg\t,)T decreases with T'. The differ-

ence,
ohy = by = iy, (7)

is the amount of information by which a state s;;n of a cell i + N becomes
less uncertain if the cell state s; is known. 5h§$) is called the N-th order mutual
information in space. Intuitively one could regard mutual information as the
stored information in one variable about another variable and the degree of
predictability of a second variable by knowing the first.

The space-time (random) processes that occur in deterministic CA can also
be studied through Kolmogorov-Sinai entropy per unit time [19]: the so-called
(e, T)-entropy

space, time _ : 1
h (e,7) = T‘l/lgloo WH(E7 T, V),
where H(T,V) denotes the entropy of the process over a simulation time 7" and
volume V. For instance H (T, V) for rule 132 ~ VlogT and for rule 250 where
the initial state is attracted towards spatially uniform (or periodic) configuration
H(T,V) ~ logTV. In all cases the entropy per unit time and unit volume
(Rspace: time (2 1)) ig vanishing.

2.3.2 Computation in Cellular Automata If we have a k-state CA with
a neighborhood size r, the total number of possible transition rules is ER
which can become very large, even for a moderate number of states and/or a
small neighborhood. If a structure is present in this enormous space, it should
be possible to identify areas of equal complexity (i.e. the Wolfram classes) and
show how these areas are connected to each other. Using this ordering one can
locate those areas which support the transmission, storage and modification of
information. Langton [35,30], suggested the parameter A to structure the CA
rule-space. An arbitrary state s € X is assigned the quiescent state sq,. Let
there be n transitions to this quiescent state in an arbitrary transition rule. The
remaining k" — n transitions are filled randomly by picking uniformly over the
other k — 1 states:

3

k" —n
- (®)

A=

Distributed Simulation with Cellular Automata 211

If A = 0.0 then all transitions in the rule will be to the quiescent state s,. If A =
1.0 there will be no transitions to s,. All states are represented equally in the rule
if A =1—1/k. With the aid of the A-parameter it should be possible to examine
the assumption that complex behavior is located at the intermediate regime
between ordered and disordered behavior. The spectrum of dynamical behavior
can be explored with the so-called table-walk-through-method which increases
the A-parameter at successive time steps. At each new time step a transition
table is incrementally updated using the transition table at the previous time
step. Because the described method is actually a “random walk” through a coarse
grained version of the CA state-space, each table-walk displays quantitatively
different behavior. Several measures can be used to characterize the dynamical
behavior of the CA at each new value of the A-parameter. These measures include
the numerical determination of block entropies, and both temporal and spatial
mutual information statistics.

At intermediate values of A, i.e. at the edge between ordered and disordered
dynamics, several events seem to occur:

— transient lengths grow rapidly, analogously to the physical event of critical
slowing down,

— transient lengths depend exponentially on the size of the CA,

mutual information measures (see Eq. 7) reach their maximum values, see

Fig. 4 (left), at the entropy transition, see Fig. 4 (right).

0.035

Temporal mutual information —

0.03

0.025

0.02

0.015

0.01

0.005

01 02 03 04 05 06 07 08
A

Fig. 4. Temporal mutual information between two sites separated by one time
step, and site entropy, both for 4-state 2-neighbor Cellular Automata

The exponential dependence of transient lengths on the size of the CA is anal-
ogous to the exponential dependence on problem size in the NP and PSPACE
complexity classes. As for the halting-computations, it will be formally undecid-
able for an arbitrary CA in the vicinity of a phase transition whether transients
will ever die out. The increase in mutual information indicates that the correla-
tion length is growing, which implies further evidence for a phase transition in
that region. Of course we cannot observe a real phase transition other than in the

212 P. M. A. Sloot et al.

thermodynamic limit. Other discussions for the “Edge of chaos” hypothesis can
be found in the work of Crutchfield on continuous dynamical systems [12] and
the resulting e-machine reconstruction. In [14] the so-called intrinsic computation
abilities of a continuous dynamical system are investigated. This term refers to
structures that emerge in a system’s behavior that can be understood in compu-
tational terms. The output of the system (e.g. an iterative map, x,+1 = f(x,)) in
time is coarse grained into a sequence of zeros and ones. In other words the out-
put domain x,, is divided into two regions, Py = {z,, < z.} and P; = {x,, > x.},
where z. is an arbitrary chosen division point. The complexity of the dynami-
cal system is quantified by construction of the minimal regular language which
accepts the generated sequence. The complexity and entropy (see Eq. 2) for the
logistic map was examined in [14] using the method of regular language complex-
ity (size of the corresponding finite automaton). It was found that the lowest
values of complexity corresponds to the periodic and fully chaotic regimes of
the map. The highest value of the complexity occurs where the period doubling
cascade of the map meets the band-merging cascade, i.e. at the border between
order and chaos. In [17] the work of Langton and Crutchfield is complemented
by examining the dynamical behavior of a well-known computational device:
the Turing Machines (TM). A class of 7-state 4-symbol Turing machines, which
also includes Minsky’s universal Turing machine [16], was used to address the
question whether universal computation is found between order and chaos. A
large number of randomly created TM’s was used to generate three different
sequences: a sequence of symbols read, a sequence of states and a sequence of
moves made by the TM head. For all these sequences, the corresponding regular
language complexity was calculated using the technique of e-machine reconstruc-
tion and plotted against its block-entropy (see Eq. 4). They found that the most
complex TM’s are indeed located at intermediate values of the entropy, including
Minsky’s universal TM. Mitchell et al., reviewed this idea of computation at the
“edge of chaos” and reported on experiments producing very different results
from the original experiment by Packard [54], they suggest that the interpre-
tation of the original results is not correct [18]. Those negative results did not
disprove the hypothesis that computational capability can be correlated with
phase transitions in CA rule space; they showed only that Packards results did
not prove the hypothesis [47]. All in all this is still an open research question
that might have a large impact on the understanding of computation in CA’s.

2.4 Modeling with Cellular Automata

Cellular Automata can be an alternative to Differential Equations (DE) for the
modeling of physical systems. To integrate a DE numerically, it must be dis-
cretized in some way. This discretization is an approximation essentially equiv-
alent to setting up a local discrete (dynamical) system that in the macroscopic
limit reduces to the DE under consideration. The idea now is to start with a
discrete system rather than a continuous description. There is no telling which
model (a-priori discrete, or continuous) models the physics best. It is instructive

Distributed Simulation with Cellular Automata 213

to consider the example of the wave equation in one dimension [1]

Pf L 0°f
92 = o (9)

This equation has two types of solution that are waves traveling to the right
and to the left with wave vectors k and frequencies wy = ck:

f _ Z (Akei(km—wkt) + Bkei(kw+wkt)) (10)
k

A particular solution is obtained by choosing coefficients Ay and By:
f=A(x—ct)+ B(x+ct) (11)
with

A(z) = Ape'te (12)
k

and B(z) analogous, with A(z) and B(z) two arbitrary functions that specify
the initial conditions of the wave in an infinite space. We can construct a simple
one-dimensional CA analog to this wave equation. For each update, adjacent
cells are paired into partitions of two cells each, where the pairing switches from
update to update: the dynamics is completely given by switching the contents
of two adjacent cells in an update.

1-1-1 1 1-1
-1 1 1-1-1 1

1 1-1 1-1 1 1-1 1 1
1
11 1-1-1 1 1
1
1

1-1 1-1-1 1 1 1
1 1-1-1-1 1 1-1
1 1-1-1 1-1-1 1
1-1 1 1-1-1-1 1

1 1-1 1 1-1

1
1
1
1-1 1.1 1 1-1 1

Given an arbitrarily chosen initial condition, it can be seen that the contents
of the odd cells move systematically to the right, where the contents of the even
cells move to the left; both with a constant velocity ¢. The dynamics of this CA
is the same as the dynamics of the wave equation in infinite space, we only need
to code the initial conditions in the cells appropriately. If a binary representation
of the cells is used {1, —1}, then the local average over the odd cells represents
the right traveling wave A(z — ct), and the local average over the even cells
represents B(z + ct).

Another useful CA simulation is found in the study of excitable media. Win-
free et al. [70] discussed already a simple 2D example that requires three symbols
denoting relevant states in a biological cell: @) for quiescent, F for excited, and
T for tired. If one of the neighbors is excited, @ is followed by E. After one
time step, an excited cell becomes tired and the is set back to). This rule gives
rise to propagating spirals that are qualitatively similar to those observed in
Belousov-Zhabotinsky reactions.

214 P. M. A. Sloot et al.

A beautiful extension to this 2D biological cellular model was first reviewed
by Celada et al. [3]. In this system model, B and T lymphocytes are modeled
together with antigen and antibody molecules. They showed simulations of cell
response to antigens, response regulation, the minimum number of MHC-type
of molecules, and natural selection in the MHC-species repertoire.

One of the most successful efforts to use CAs for simulation of DEs is the
lattice gas automaton to simulate hydrodynamics. This will be described in the
Section 4. First different parallel execution models for cellular automata will be
presented in the next section.

3 Execution Models for Cellular Automata

3.1 Synchronous Cellular Automata versus Asynchronous Cellular
Automata

The cellular automata (CA) model is a conceptual simple and effective solver
for dynamic complex systems (DCS). From a modelers perspective, a CA model
allows the formulation of a DCS application in simple rules. From a computer
simulation perspective, a CA model provides an execution mechanism that eval-
uates the temporal dynamic behavior of a DCS given these simple rules. An
important characteristic of the CA execution mechanism is the particular update
scheme that applies the rules iteratively to the individual cells of the CA. The
different update schemes impose a distinct temporal behavior on the model. Thus
we must select the proper update mechanism that aligns with the dynamics of
the model.

In the previous discussion, the update mechanism of CAs is described as
being synchronously in parallel. However, for certain classes of DCS, the tem-
poral dynamic behavior is asynchronously. In particular, systems with hetero-
geneous spatial and temporal behavior are, in general, most exactly mapped to
asynchronous models [3,41]. In case asynchronous models are solved by CA, the
asynchronous temporal behavior must be captured by the update mechanism.
This class of CA is called Asynchronous Cellular Automata (ACA) [23,39,51,53].
The ACA model incorporates asynchronous cell updates, which are independent
of the other cells, and allows for a more general approach to CA. With these
qualifications, the ACA is able to solve more complicated problems, closer to
reality [75].

Dynamic systems with asynchronous updates can be forced to behave in a
highly inhomogeneous fashion. For instance in a random iteration model it is
assumed that each cell has a certain probability of obtaining a new state and
that cells iterate independently. As an example one can think of the continuous-
time probabilistic dynamic model for an Ising spin system [40].

3.2 Types of Simulation

Essential to every model is the time base on which changes to the system
state occur. Accordingly, models can be classified depending on their tempo-
ral dynamic behavior [74]. A model is a continuous-time model when time flows

Distributed Simulation with Cellular Automata 215

smoothly and continuously. A model is a discrete-time model if time flows in
jumps of some specified time unit.

Continuous time models can be further divided into differential equation
and discrete-event classes. A differential equation model is a continuous-time
model where changes in the state occur smoothly and continuously in time. In
a discrete-event model, even though time flows continuously, state changes can
occur only at discrete points in time: time jumps from one event to the next,
while these events can occur arbitrarily separated from each other.

By the very nature of the CA rules that define the state transformations, the
temporal dynamic behavior classes that are applicable to cellular automata are
discrete-time and discrete-event. The figures Fig. 5(a) and Fig. 5(b) show the
differences between the temporal behavior of state changes in both classes.

state
state

10 20 30 40 T 10 20 30 40 T
(a) State changes in a discrete- (b) State changes in a discrete-
time system model event system model

Fig. 5. Temporal behavior of discrete-time and discrete-event system model

3.2.1 Discrete-Time Models and Time-Driven Simulation In discrete-
time models the progress of time is modeled by time advances of a fixed incre-
ment, for example time is advanced in increments of exactly At time units. The
execution mechanism that implements this temporal dynamic behavior is called
time-driven simulation, since the clock initiates the state transitions of each
individual cell in the CA. The execution mechanism in time-driven simulation is
characterized by an iterative loop that, after each update of the simulation time,
updates the state variables for the next time interval (¢, ¢ + At]. The new state
of a cell at time t + At is calculated from the state of the cell and its neighbors
at time .

Time-driven simulation is the most widely known and applied approach for
the simulation of CA models and natural systems in general. However, with
the usage of time-driven simulation one has to ascertain that the time step
At is small enough to capture every state change in the system model. This

216 P. M. A. Sloot et al.

might imply that we need to make At arbitrarily small, which is certainly not
acceptable with respect to the computational requirements involved. Therefore,
time-driven simulation is less appropriate for the simulation of discrete-event
models, as there may be many clock ticks in which no events occur.

3.2.2 Discrete-Event Models and Event-Driven Simulation The prog-
ress of time in discrete-event models is modeled by the occurrence of instanta-
neous state changes, called events, at random times and independent from each
other. The execution mechanism that implements this temporal dynamic behav-
ior is called event-driven simulation. In event-driven simulation, the progress of
simulation time depends on the occurrence of the next event. The event-driven
simulation execution mechanism maintains an ordered event list to hold expected
future events. The simulation time progresses from the current time to the next
scheduled event time. The simulation of one event may generate new events that
are scheduled for future execution.

An elegant and efficient characteristic of the event-driven simulation approach
is that periods of inactivity are skipped over by advancing the simulation
clock from event time to the next event time. This is perfectly save since—
by definition—all state changes only occur at event times. Therefore causality
and the validity of the simulation is guaranteed. The event-driven approach to
discrete systems is usually exploited in queuing and optimization problems. How-
ever, as we will see next, it is also a paradigm for the simulation of continuous-
time systems.

3.3 Parallel Simulation of Cellular Automata Models

The parallelization of the CA, both for synchronous and asynchronous models,
is realized by geometric decomposition. That is, the individual cells of the CA
are aggregated into sublattices, which are mapped to the parallel processors.
However, the parallel synchronization mechanism between the sublattices are
very different for synchronous and asynchronous CA models.

3.3.1 Parallel Synchronous Cellular Automata Simulation Similar to
the sequential execution of synchronous CA, the cells in a parallel synchronous
CA simulation undergo simultaneous state transitions under direction of a global
clock. All cells must finish their state transition computations before any cell can
start simulating the next clock tick.

The parallelization of the discrete-time simulation is achieved by imitating
the synchronous behavior of the simulation. The simulation is arranged into a
sequence of rounds, with one round corresponding to one clock tick. Between
each round a global synchronization of all cells indicates that the cells have
finished their state change at time step ¢ and the new time step t + At can be
started.

Generally, the simulation proceeds in two phases, a computation and state
update phase, and a communication phase. The progression of time in time-
driven simulation is illustrated in Fig. 6.

Distributed Simulation with Cellular Automata 217

synchronization/
communication

Fig. 6. Time-driven simulation of a synchronous CA model, where computation
and communication phases succeed each other

3.3.2 Parallel Asynchronous Cellular Automata Simulation In parallel
ACA simulation, state transitions (further called events) are not synchronized
by a global clock, but rather occur at irregular time intervals. In these sim-
ulations few events occur at any single point in simulated time and therefore
parallelization techniques based on synchronous execution using a global simu-
lation clock perform poorly. Concurrent execution of events at different points in
simulated time is required, but this introduces severe synchronization problems.
The progress of time in event-driven simulation is illustrated in Fig. 7.

soite

Fig. 7. Progress of simulation time in event-driven simulation. As the cells evolve
asynchronously in time, the simulation time of the individual cells are different

The absence of a global clock in asynchronous execution mechanisms neces-
sitates sophisticated synchronization algorithms to ensure that cause-and-effect

218 P. M. A. Sloot et al.

relationships are correctly reproduced by the simulator. Parallel discrete event
simulation is essentially concerned with the correct ordering, or scheduling, of
the asynchronous execution of events over parallel processors. There are basi-
cally two methods to impose the correct temporal order of the asynchronous
event execution: conservative and optimistic methods.

First, the conservative approach proposed by Chandy and Misra [9] strictly
imposes the correct temporal order of events. Second, the optimistic approach,
introduced by Jefferson [24], uses a detection and recovery mechanism: when-
ever the incorrect temporal order of events is detected, a rollback mechanism
is invoked to recover. Although both approaches have their specific application
area, optimistic methods offer the greatest potential as a general-purpose simu-
lation mechanism.

In optimistic simulation, the parallel simulation processes execute events and
proceed in local simulated time as long as they have any input at all. A con-
sequence of the optimistic execution of events is that the local clock or Local
Virtual Time (LVT) of a process may get ahead of its neighbors’ LVTs, and it
may receive an event message from a neighbor with a simulation time smaller
than its LVT, that is, in the past of the simulation process. The event causing
the causality error is called a straggler. If we allow causality errors to happen,
we must provide a mechanism to recover from these errors in order to guarantee
a causally correct parallel simulation. Recovery is accomplished by undoing the
effects of all events that have been processed prematurely by the process receiv-
ing the straggler. The net effect of the recovery procedure is that the simulation
process rolls back in simulated time.

The premature execution of an event results in two things that have to be
rolled back: (i) the state of the simulation process and (ii) the event messages
sent to other processes. The rollback of the state is accomplished by periodically
saving the process state and restoring an old state vector on rollback: the simu-
lation process sets its current state to the last state vector saved with simulated
time earlier than the timestamp of the straggler. Recovering from premature
sent messages is accomplished by sending an anti-message that annihilates the
original when it reaches its destination. The messages that are sent while the
process is propagating forward in simulated time, and hence correspond with
simulation events, are called positive messages.

A direct consequence of the rollback mechanism is that more anti-messages
may be sent to other processes recursively, and that it allows all effects of erro-
neous computation to be eventually canceled. As the smallest unprocessed event
in the simulation is always safe to process, it can be shown that this mechanism
always makes progress under some mild constraints [24].

In optimistic simulation the notion of global progress in simulated time is
administered by the Global Virtual Time (GVT). The GVT is the minimum of
the LVTs for all the processes and the timestamps of all messages (including
anti-messages) sent but unprocessed. No event with timestamp smaller than the
GVT will ever be rolled back, so storage used by such event (i.e., saved state
vector and event message) can be discarded. Also, irrevocable operations such

Distributed Simulation with Cellular Automata 219

as I/O cannot be committed before the GVT sweeps past the simulation time at
which the operation occurred. The process of reclaiming memory and committing
irrevocable operations is referred to as fossil collection.

To summarize, the parallel synchronous execution mechanism for discrete-time
models mimics the sequential synchronous execution mechanism by interleaving
a computation and state update phase with a synchronization and communi-
cation phase. The parallel execution mechanism is fairly simple and induces a
minimum of overhead on the computation. The parallel asynchronous execu-
tion mechanism for discrete-event models, the so-called optimistic simulation
method, is more expensive than its sequential counterpart. The synchronization
mechanism in optimistic simulation requires extra administration, such as state
saving and rollback. Despite this overhead, optimistic simulation is an efficient
parallel execution mechanism for discrete-event models. In Section 5, two appli-
cations are presented that are typical examples of respectively synchronous and
asynchronous CA models.

4 Cellular Automata as Models for Fluid Flow

4.1 Introduction

Section 2 introduced the basic idea behind Cellular Automata (CA) and exem-
plified how one can reason about information and complexity in general CAs.
Here we introduce a very specific CA, which, as will become clear later on, can
be used as a model of fluid flow. This class of CA is called Lattice Gas Automata
(LGA), and they are described in detail in two recent books [11,58].

Suppose that the state of a cell is determined by b,,, surrounding cells. Usually,
only the nearest and next-nearest neighbors are considered. For example, on a
square lattice with only nearest neighbor interactions b,, = 4, if next-nearest
neighbors are also included b,, = 8, and on a hexagonal lattice with nearest
neighbor interactions b, = 6. Furthermore, suppose that the state of the cell is
a vector n of b = b,,, bits. Each element of the state vector is associated with a
direction on the CA lattice. For example, in the case of a square grid with only
nearest neighbor interactions we may associate the first element of the state
vector with the north direction, the second with east, the third with south and
the fourth with west. With these definitions we construct the following CA rule
(called the LGA rule), which consists of two sequential steps:

1. Each bit in the state vector is moved in its associated direction (so in the
example, the bit in element 1 is moved to the neighboring cell in the north)
and placed in the state vector of the associated neighboring cell, in the same
position (so, the bit in element 1 is moved to element 1 of the state vector in
the cell in the north direction). In this step each cell is in fact moving bits
from its state vector in all directions, and at the same time is receiving bits
from all directions, which are stored into the state vector.

220 P. M. A. Sloot et al.

2. Following some deterministic or stochastic procedure, the bits in the state
vector are reshuffled. For instance, the state vector (1,0, 1,0) is changed to
(07 17 07 1)'

As a refinement, one may also introduce b, extra bits in the state vector
which, as it were, reside on the cell itself, i.e. are not moved to another cell in
step 1 of the LGA rule. In that case the length of the state vector b = b,, + b,..
These b, residing bits do however participate in the reshuffling step 2.

It is clear that the class of LGA-CA that we have just defined is very large.
We have freedom to choose the CA lattice, the interaction list, the number of
residing bits, and the reshuffling rule. Once all this is done, we may expect
that the specific LGA-CA that we defined has a very rich dynamical behavior,
depending on the initial conditions and the size of the grid. Except maybe for
1-dimensional lattices, a detailed study of the dynamics of such CA is probably
not feasible. It was shown by Moore and Nordhal [49] that the problem of LGA
prediction is P-complete, thus cannot be solved in parallel in polylogarithmic
time. This implies that the only way out is a step by step explicit simulation.
Our new CA therefore seems like a nice toy that may exhibit a very complex
dynamical behavior, but no more than that. However, maybe very surprisingly,
if we associate physical quantities to our CA, enforce physical conservation laws
on the bit reshuffling rule of step 2, and use methods from theoretical physics
to study the dynamics, we are in fact able to analyze the CA in terms of its
average behavior, i.e. the average state vector of a cell and the average flow of
bits between cells can be calculated. Even better, it turns out, again within the
correct physical picture, that this CA behaves like a real fluid (such as water) and
therefore can be used as a model for hydrodynamics. Furthermore, as the LGA
rule is intrinsically local (only nearest and next-nearest neighbor interactions)
we constructed an inherently parallel model for fluid flow.

4.2 Associating Physics with the LGA-CA

Our current image of the LGA-CA is that of bits that first move from a cell
to a neighboring cell and are then reshuffled into another direction. Now we
associate the bits in the state vector with particles; a one-bit codes for the
presence of a particle, and a zero bit codes for the absence of a particle. Assume
that all particles are equal and have a mass of 1. Step 1 in the LGA-CA is
now interpreted as streaming of particles from one cell to another. If we also
introduce a length scale, i.e. a distance between the cells (usually the distance
between nearest neighbors cells is taken as 1) and a time scale, i.e. a time duration
of the streaming (i.e. step 1 in the LGA-CA rule, usually a time step of 1 is
assumed), then we are able to define a velocity c; for each particle in direction i
(i.e. the direction associated with the i-th element of the state vector n). Step 1
of the LGA-CA is the streaming of particles with velocity c; from one cell to a
neighboring cell. The residing bits can be viewed as particles with a zero velocity,
or rest particles. Now we may imagine, as the particles meet in a cell, that they
collide. In this collision the velocity of the particles (i.e. both absolute speed and

Distributed Simulation with Cellular Automata 221

direction) can be changed. The reshuffling of bits in step 2 of the LGA-CA rule
can be interpreted as a collision of particles. In a real physical collision, mass,
momentum, and energy are conserved. Therefore, if we formulate the reshuffling
such that these three conservation laws are obeyed, we have constructed a true
Lattice Gas Automaton, i.e. a gas of particles that can have a small set of discrete
velocities ¢;, moving in lock-step over the links of a lattice (space is discretized)
and that all collide with other particles arriving at a lattice point at the same
time. In the collisions, particles may be send in other directions, in such a way
that the total mass and momentum in a lattice point is conserved.

We can now associate with each cell of the LGA-CA a density p and momen-
tum pu, with u the velocity of the gas:

b
p= ZNi, (13)
i=1

b
pll = ZCiNi7 (14)
i=1

where N; = (n;), i.e. a statistical average of the Boolean variables; N; should be
interpreted as a particle density.

The good thing now is, if we let the LGA evaluate and calculate the density
and momentum as defined in Eqs. (13, 14), that these quantities behave just like
a real fluid.

In Figs. 8A and 8B we show an example of an LGA simulation of flow around
a cylinder. In Fig. 8A we show the results of a single iteration of the LGA, so
in fact we have assumed that N; = n;. Clearly, the resulting flow field is very
noisy. In order to arrive at smooth flow lines one should calculate N; = (n;).
Because the flow is static, we calculate N; by averaging the boolean variables n;
over a large number of LGA iterations. The resulting flow velocities are shown
in Fig. 8B.

The evolution of the boolean variables n; can be expressed as

n; (x+c;,t+1)—n;(x,t) =24 (n(x,t)) (15)

where x denotes the position of a lattice point and A is the collision operator.
The collision operator must obey mass, momentum, and energy conservation, i.e.

b

b
> A (n) =0, (18)
i=1

where ¢; = |¢;|. One can ask if the evolution equation 15 is also valid for the
averaged particle densities IV;. It turns out that this is possible, but only under

222 P. M. A. Sloot et al.

N M m ey e e Tl e

Fig. 8. A. LGA simulation of flow around a cylinder, the result of a single
iteration of the LGA is shown. The arrows are the flow velocities, the length
is proportional to the absolute velocity. The simulations were done with FHP-
ITI, on a 32 x 64 lattice, the cylinder has a diameter of 8 lattice spacings, only
a 32 x 32 portion of the lattice is shown; periodic boundary conditions in all
directions are assumed.

B. As in Fig. 8A, now the velocities are shown after averaging over 1000 LGA
iterations

the Boltzmann molecular chaos assumption which states that particles that col-
lide are not correlated before the collision, or, in equations, that for any number
of particles k, (nina...ng) = (n1) (n2)...(ng). In that case one can show that
(4; (n)) = A; (N). By averaging Eq. (15) and applying the molecular chaos
assumption we find

Ni(x+ci,t+1) = N;(x,t) = A; (N (x,1)) . (19)

A first order Taylor expansion of N; (x + ¢;,t + 1), substituted into Eq. (19)
results in

OrN; (X, t) + 04Cia N; (X, t) = A; (N (X7 If)) (20)

Note that the shorthand 9; means %, the subscript a denotes the a-
component of a D-dimensional vector, where D is the dimension of the LGA
lattice, and that we assume the Einstein summation convention over repeated
Greek indices (e.g. in two dimensions 0nCia N; = 05Cix N; + Oyciy N;). Next we
sum Eq. (20) over the index i and apply Eqgs. (13, 16, 17), thus arriving at
Orp + 0o (puy) =0, or

dp
ot

which is just the equation of continuity that expresses conservation of mass in
a fluid. One can also first multiply Eq. (20) with ¢; and then summate over the

+V-pu=0, (21)

Distributed Simulation with Cellular Automata 223

index 7. In that case we arrive at

8tpua + 6[311&[3 =0, (22)
with
b
Haﬁ = Z CiaciﬁNi- (23)
=1

The quantity 11,z must be interpreted as the flow of the a-component of the
momentum into the g-direction, I, is the momentum density flux tensor. In
order to proceed one must be able to find expressions for the particle densities
N;. This is a highly technical matter that is described in detail in e.g. [11,58].
The bottom line is that one first calculates the particle densities for a LGA in
equilibrium, N?, and substitute them into Eq. (23). This results in an equation
that is almost similar to the Euler equation, i.e. the expression of conservation
of momentum for an inviscid fluid. Next, one proceeds by taking into account
small deviations from equilibrium, resulting in viscous effects. Again, after a very
technical and lengthy derivation one is able to derive the particle densities, sub-
stitute everything into Eq. (23) and derive the full expression for the momentum
conservation of the LGA, which again very closely resembles the Navier-Stokes
equations for an incompressible fluid. The viscosity and sound speed of the LGA
are determined by its exact nature (i.e. the lattice, the interaction list and the
number of residing particles, and the exact definition of the collision operator).

At first sight the average, macroscopic behavior of the LGA may come as
a big surprise. The LGA-CA is a model that reduces a real fluid to one that
consists of particles with a very limited set of possible velocities, that live on the
links of a lattice and all stream and collide at the same time. Yet, theoretical
analysis and a large body of simulation results show that, although the LGA
is indeed a very simple model, it certainly is a realistic model of a real fluid.
However, it is true that not all LGA behave as a real fluid. The underlying lattice
must have enough symmetry such that the resulting macroscopic equations are
isotropic, as in a real fluid. For instance, the first LGA, the so-called HPP model,
which is defined on a two dimensional square lattice with only nearest-neighbor
interactions and no rest particles, is not isotropic. The FHP models, which have
a two dimensional hexagonal lattice, do possess enough symmetry and their
momentum conservation law have the desired isotropy property.

To end this section we stress once more that the LGA is an intrinsically local
CA and therefore gives us an inherently parallel model for fluid flow simulations.
Some case studies to support this will be provided in later sections.

4.3 The FHP Model

The FHP model, named after its discoverers Frisch, Hasslacher, and Pomeau,
was the first LGA with the correct (isotropic) hydrodynamic behavior. The FHP
model is based on a 2-dimensional hexagonal lattice, as in Fig. 9. This figure

224 P. M. A. Sloot et al.

TAVAVAVAVAN
ﬁﬂﬂ“ﬂ&
V%VAV VAVVV

i iy

A B C

Fig. 9. Lattice and update mechanism of the FHP-I LGA. A dot denotes a
particle and the arrow its moving direction. In A to C the propagation and
collision phases are shown for some initial configuration

st e
R

Fig. 10. Collision rules of FHP-I. A dot denotes a particle and the arrow its
moving direction. The left figure shows the two particle collisions, the right
figure the three particle collisions

also shows examples of streaming and collisions of particles in this model. In
the FHP-I model, which has no rest particles (i.e. b, = 0 and b = b, = 6),
only 2-body and 3-body collisions are possible, see Fig. 10. Note that all these
collision configurations can off course be rotated over multiples of 60°.

For this model we can easily write an explicit expression for the collision
operator, as

Ai(n) = AP (n) + A7 (n) . (24)
The three body collision operator is
A§3) () = Ny 1M 43N 5T 42Tl 4 — NMiTNig2 iy AT 1T 43T 455 (25)

where m; = 1 — n; and the subscript should be understood as “modulo 6”. A
similar expression can be obtained for the two-body collisions (see e.g. [58]). Tt
is clear that the implementation of this LGA, i.e. the evolution equation 15 with
the FHP-I collision operator (Eq. 24), using bit wise operations, is straightfor-
ward and can result in very fast simulations with low memory consumption.
Furthermore, the inherent locality of the LGA rule makes parallelization triv-
ial. Next, by averaging the boolean variables n;, either in space or in time, one
obtains the particles densities N; and from that, using Eqs. (13, 14), the density

Distributed Simulation with Cellular Automata 225

and fluid velocity. Many people, especially those who are used to simulate flow
patterns based on numerical schemes derived from the Navier Stokes equations,
find it hard to believe that such a simple Boolean scheme is able to produce
realistic flow simulations. Yet the LGA, which in a sense originated from the
original ideas of von Neuman who invented CA as a possible model to simulate
life, is a very powerful and viable model for hydrodynamics.

4.4 The Lattice Boltzmann Method

Immediately after the discovery of LGA as a model for hydrodynamics, it was
criticized on three points; noisy dynamics, lack of Galilean invariance, and expo-
nential complexity of the collision operator. The noisy dynamics is clearly illus-
trated in Fig. 8A. The lack of Galilean invariance is a somewhat technical mat-
ter which results in small differences between the equation for conservation of
momentum for LGA and real Navier Stokes equations, for details see [58]. Adding
more velocities in an LGA leads to increasingly more complex collision operators,
exponentially in the number of particles. Therefore, another model, the Lattice
Boltzmann Method (LBM), was introduced. This method is reviewed in detail
in [10].

The basic idea is that one should not model the individual particles n;, but
immediately the particle densities N;, i.e. one iterates the Lattice Boltzmann
Equation 19. This means that particle densities are streamed from cell to cell, and
particle densities collide. This immediately solves the problem of noisy dynamics.
However, in a strict sense we no longer have a CA with a boolean state vector.
However, we can view LBM as a generalized CA. By a clever choice of the
equilibrium distributions N the model becomes isotropic and Galilean invariant,
thus solving the second problem of LGA. Finally, a very simple collision operator
is introduced. This so-called BGK collision operator models the collisions as a
single-time relaxation towards equilibrium, i.e.

APEE(N) = 7(NP = Ny). (26)

Eqgs. (19, 26) together with a definition of the equilibrium distributions result
in the Lattice-BGK (L-BGK) model. The L-BGK model leads to correct hydro-
dynamic behavior. The viscosity, of a two-dimensional L-BGK on a hexagonal

lattice is given by:
1/1 1
=-|(-==). 27
YT (T 2) 27)

The L-BGK is also developed for other lattices, e.g. in two or three dimensions
cubic lattices with nearest and next nearest neighbor interactions. The LBM, and
especially the L-BGK has found widespread use in simulations of fluid flow.

4.5 Parallelism and Applications

The LGA and LBM have been used to simulate many types of flow in, especially,
complex geometries. In Section 5.1 we show in detail such an application. Here

226 P. M. A. Sloot et al.

we will further discuss parallelism in LGA and LBM, and show some examples
of applications of large scale parallel LGA and LBM simulations.

The local nature of the LGA and LBM interactions allows a very straight-
forward realization of parallelism. A simple geometric decomposition of the lat-
tice with only local message passing between the boundaries of the different
domains is sufficient to realize an efficient parallel simulation. For instance, we
have developed a generic 2-dimensional LGA implementation that is suitable for
any multi-species (thermal) LGA [16]. Parallelism was introduced by means of
a 1-dimensional, i.e. strip-wise, decomposition of the lattice. As long as the grid
dimension compared to the number of processors is large enough, this approach
results in a very efficient parallel execution. This LGA system is mainly used for
simulations in simple rectangular domains without internal obstacles. However,
in a more general case, where the boundaries of the grid have other forms and
internal structure (i.e. solid parts where no particles will flow) the simple strip-
wise decomposition results in severe load imbalance. In this case, as was shown
by Kandhai et al. [30], a more advanced decomposition scheme, the Orthogonal
Recursive Bisection (ORB) method, still leads to highly efficient parallel LBM
simulations. ORB restores the load balancing again, however at the price of a
somewhat more complicated communication pattern between processors.

As in many models, the specification of initial and boundary methods turns
out the be much more difficult than anticipated. The same is true for LGA and
LBM. Solid walls are usually implemented using a bounce back rule (i.e. sending
a particle back into the direction where it came from) thus implementing a no-
slip boundary. Kandhai et al. have investigated this bounce back rule in detail for
L-BGK [31] and conclude that this simple rule, although it may have a negative
effect on the accuracy of the L-BGK, is a very suitable boundary condition in
simulations, as long as one is not interested in the details of the flow close to
the boundaries. Khandai et al. also investigated several formulations for initial
conditions and other types of boundary conditions (e.g. specifying a certain
velocity on a boundary).

As an example of a large scale parallel L-BGK simulation we refer to Ref. [34],
where flow in a random fibrous network, as a model for paper, was simulated. The
permeability that was obtained from the simulations was in very good agreement
with experimental results. Another impressive example is flow in a Static Mixer
Reactor [32]. Here, L-BGK simulations and conventional Finite Element simula-
tions where compared, which agreed very well. The simulation results also agree
very well with experimental results. This shows that L-BGK, which is much
easier to parallelize and much easier to extend with more complex modeling
compared to FE, (multi-species flow, thermal effects, reactions), is very suitable
in real life problems involving complex flow.

Distributed Simulation with Cellular Automata 227

5 Selected Applications

5.1 Modeling Growth and Form in a Moving Fluid Using
Synchronous Cellular Automata

The basic idea of modeling growth and form of marine sessile suspension feeders,
as for example sponges and stony corals [28,29], will be briefly discussed in the
next section. The simulated growth forms will be only qualitatively discussed,
more detailed quantitative measurements on for example the space-filling proper-
ties, expressed in fractal dimensions, centers of gravity of the simulated objects,
and absorption measurements are presented elsewhere [28,29]. In the model both
the parallelism present in physical environment (dispersion of nutrients through
diffusion and flow) and the parallelism present in the growth process, will be
exploited. The dispersion of nutrients will be modeled using the lattice Boltz-
mann method discussed in Section 4.4, while the growth of the stony coral will
be modeled using a probabilistic cellular automaton.

5.1.1 Biological Background Many marine sessile suspension feeders from
various taxonomic groups, as for example sponges, hydrocorals, and stony corals,
exhibit a strong morphological plasticity, which is in many cases related to the
impact of hydrodynamics. The exposure to water movement represents one of
the dominant environmental parameters. In a number of cases it is possible to
arrange growth forms of sponges, hydrocorals, and stony corals along a gradi-
ent of the amount of water movement [27]. In the examples of stony corals, the
growth form gradually transforms from a compact shape under exposed condi-
tions, to a thin-branching one under sheltered conditions. In Fig. 11 two extreme
examples of growth forms are shown of Pocillopora damicornis. Form A origi-
nates from a site sheltered to water movement, while B was collected from an
exposed site. Between both extremes, a range of gradually changing intermediate
growth forms exist [67].

Stony corals are typical modular organisms. Modular growth is defined as the
growth of genetic identical individuals by repeated iteration of (multi-cellular)
parts: the modules [22]. Modules might be the polyp of a coral or for instance
a shoot with an apical meristem in seed plants. The modular growth of stony
corals is relatively simple when compared to more complex modular organisms
like seed plants. The modular growth of these organisms can be defined as paral-
lel modular growth, where the various modules grow almost independently, only
limited by steric hindrance. Because of the almost independently growing mod-
ules, which are not limited by the development of other modules, some important
simplifications can be made in the modeling of the growth process. The organ-
isms can increase in size without a decrease in growth velocities, where growth of
these organisms will be limited by external factors like strong water movements.

To obtain insight into the influence of hydrodynamics on the growth process
of sessile suspension feeders, a morphological simulation model was developed.
In the absence of flow, the distribution of nutrients around the growth form
can be modeled as a diffusion process in a steady state: there is a source of

228 P. M. A. Sloot et al.

Fig. 11. Growth forms of the stony coral Pocillopora damicornis. Form A origi-
nates from a site sheltered to water water movement, form B originates from an
exposed site

suspended material and the organism continuously consumes nutrients from its
environment. In general in a marine environment, there will be a significant
contribution of the hydrodynamics to the dispersion pattern of the suspended
material around the growth form. In this case the distribution of nutrients around
the organism will be determined by a combination of flow and diffusion.

5.1.2 A CA model of Flow and Nutrient Distributions The flow pat-
tern around the simulated growth form was computed by applying the lattice
Boltzmann method (see Section 4.4) in combination with a tracer step to study
the dispersion of “nutrient” in the system. In these simulations the nutrient par-
ticles are dispersed by the combined process of flow and diffusion. With this
method simulated growth processes can be studied for various Péclet numbers
Pe defined as:
ul
Pe = D (28)
where @ is the mean flow velocity, [a characteristic length, and D the diffusion
coefficient of the nutrient. The contribution of flow to the nutrient distribution
can be quantified by the Péclet number. A low value indicates that particles
move mainly by diffusion (no influence of hydrodynamics, diffusion dominates)
and a high value indicates that their motion is dominated by flow.
Two types of boundary conditions are used: at the borders of the lattice
periodic boundary conditions are applied, while in the nodes adjacent to the

Distributed Simulation with Cellular Automata 229

nodes representing the simulated growth form, solid boundary conditions are
used. Periodic boundary conditions can be implemented by exchanging the n;’s
of the links at the borders of the lattice. Solid boundary conditions can be
represented by exchanging the n;’s between the adjacent node and a neighboring
fluid node.

After a lattice Boltzmann iteration, a tracer step is applied where populations
of tracer particles are released from source nodes, while the tracer particles are
absorbed by the sink nodes: the nodes adjacent to the growth form. The tracer
particles can travel from a node at site r in the lattice to one of the 18 adjacent
nodes r + ¢;, where the Péclet number Eq. (28) determines if flow or diffusion
dominates. When flow dominates, most particles will move in the direction of
the governing flow, while under diffusion dominated conditions the amount of
particles which travels in all 18 directions will be about equal. In the simulations
the diffusion coefficient D varies, and = is kept constant by adjusting the driving
force F' of the system. Due to the growth of the object the velocity in the free
fluid would gradually decrease if the driving force is not adjusted. For details on
the computational model we refer to [28].

5.1.3 A CA Model of the Growth Process The growth process is rep-
resented by a probabilistic cellular automaton in a similar way as done in the
Diffusion Limited Aggregation model [71]. In [42] and [43] it is demonstrated
that the Diffusion Limited Aggregation growth model is P-complete for which
fast parallel algorithms probably do not exist, the only available option to study
this type of growth processes is through explicit simulation. The basic construc-
tion of the aggregate is shown in Fig. 12. The cluster is initialized with a “seed”
positioned at the bottom. In both the cluster and substrate sites solid boundary
conditions are applied. Two flow regimes were studied in the simulations:

1. growth of the aggregates in a mono directional flow;
2. growth of the aggregates in a bidirectional (alternating) flow.

The flow velocity in the system is kept at a low value, all simulations are done
in the laminar flow regime. Tracer particles are released from the source plane.
The tracer particles are absorbed by the fluid nodes adjacent to obstacle nodes,
which can be nodes in the substrate plane or the aggregate nodes. In the growth
model it is assumed that both the tracer distribution and flow velocities are in
equilibrium and the growth velocity of the aggregate is much slower than the
dispersion of the tracer. In the sink nodes the amount of absorbed tracer particles
is determined and a new node is added to the aggregate. The probability p that
k, an element from the set of open circles o (the adjacent sink nodes) will be
added to the set of black circles (the aggregate nodes) is given by

(ax)
>jeolag)’

where ay, is the absorbed amount of tracer particles at position k.

plk€o—kece)= (29)

230 P. M. A. Sloot et al.

source plane

| -
flow direction
-

Y

'<— substrate plane

initial “seed” of the aggregate

Fig. 12. Basic construction of the aggregate

In the bidirectional flow simulations the flow direction is reversed after each
growth step. The aggregation model is summarized in pseudo-code below:

initialize aggregate
initialize flow direction

do {
compute flow velocities until equilibrium;
compute tracer distribution until equilibrium;
compute probabilities p that nodes neighboring to the aggregate
nodes will be added to the aggregate;
select randomly with probability p one of the growth candidates
and add it to the aggregate;
for the bidirectional case: reverse flow direction;
} until ready

5.1.4 Parallelization of the CA models We performed the simulations on
a lattice consisting of 1442 sites. The algorithm was implemented in parallel and
the simulations were carried out on 16 nodes of a distributed memory Parsytec
CC/40 system (approximately 6 Gflops/s). In this parallel implementation the
nearest neighbor locality, present in both the lattice Boltzmann step, tracer cal-
culation and growth model are exploited. In the parallel implementation the
1443 lattice is decomposed into a number of sublattices which are distributed
over the processors. The main computation steps (lattice Boltzmann and tracer
calculation) are done in the fluid nodes, while only in the growth step some
computation is required in the aggregate nodes. Due to the growth of the aggre-
gate a straight forward decomposition (for example partitioning of the lattice in

Distributed Simulation with Cellular Automata 231

equal sized slices or boxes) would lead to a strong load imbalance. To solve this
problem we have tested two strategies to obtain a more equal distribution of the
load over the processors:

1. Box decomposition in combination with scattered decomposition.
2. Orthogonal Recursive Bisection (ORB) in combination with scattered
decomposition.

In the box decomposition method the lattice is partitioned in 2D in equal
sized boxes. In the ORB method [61] the object (the aggregate) is split into two
subdomains perpendicular with respect to the xy-plane; after this similar splits
are made for respectively the yz-plane and xz-plane. This method is recursively
repeated for each subdomain. In the scattered decomposition method [50,57]
blocks of data are scattered over the processors. The original lattice is divided
by using a partitioning method. These blocks are randomly scattered over the
processors, where each processor has the same number of blocks. An example
of a scattered decomposition over 4 processors of an irregular shaped object
in a 2D lattice is shown in Fig. 13. In this example the lattice is divided into
100 blocks, where each block is randomly assigned to one of the four processors.
Most of the computation is done in the blocks containing exclusively fluid nodes.
The scattering of the blocks over the processors leads to a spatial averaging of the
load, where decreasing block sizes cause a better load balancing and an increasing
communication overhead [57]. Especially in simulations in which the shape of the
object cannot be predicted, is scattered decomposition an attractive option to
improve the load balance in parallel simulations [42,43]. We have compared both
decomposition strategies by computing the Load balancing efficiency:

lmin
Load balancing efficiency = (30)

max

where l,,;, is the load of the slowest process and [,,4, the load of the fastest
process. The two decomposition strategies were tested by using two extreme
morphologies of the aggregates: a very compact shape and a dendritic shaped
aggregate and by measuring the load balancing efficiency during the lattice Boltz-
mann and tracer computation required in one growth step.

5.1.5 Comparison of the Load Balancing Strategies In Fig. 14 the load
balancing efficiencies (see Eq. 30) are shown for the two load balancing strategies:
box decomposition in combination with scattered decomposition, and ORB in
combination with scattered decomposition. In this comparison the two strategies
were tested for both extreme morphologies of the aggregate: a compact shaped
aggregate shown in Fig. 15C and a thin-branching (dendritic shaped) object
depicted in Fig. 15A.

5.1.6 Simulated Growth Forms in a Mono Directional Flow Regime
In the simulations with a mono directional flow regime it was found that the

232 P. M. A. Sloot et al.

Proc 1
Froc I
P 3

Fmoc 4

Fig. 13. Decomposition of an irregular shaped object in a 2D lattice. In this
case 100 blocks are scattered over 4 processors

T T T
Box scattered with compact obstacle
ORB scattered with compact obstacle -
T Box scattered with dendritic obstacle -—— -~
ORB scattered with dendritic obstacle --------

0B |

08 |

*
.

04 f e .

Load balancing efficiency

02 F 1

o] 1 1 1 1 1 1
a 20 40 60 20 100 120 140
MNumber of blocks

Fig. 14. The load balancing efficiencies of 4 different experiments as a function
of the total number of blocks. The dendritic object is shown in Fig. 15A and the
compact object is depicted in Fig. 15C

aggregate gradually changes from a thin-branching morphology (diffusion domi-
nates) into a compact shape (flow dominates), for an increasing Péclet number.
In Fig. 15 the results of the simulations are summarized by showing slices through
the aggregate. The simulation box is sectioned parallel to the direction of the
flow. In the sequence A—C in Fig. 15, the Pe number increases. In this picture it
can be observed that the degree of compactness increases for larger Pe numbers.

Distributed Simulation with Cellular Automata 233

Furthermore, the effect of the mono-directional flow can be clearly observed: the
aggregates tend to grow towards the direction of the flow (the flow is directed
from the left to the right).

A B C

Fig.15. Slices through the middle of the aggregates in the zy-plane, one-
directional flow experiment: A—C, Péclet number increases from approximately
0.0 to 3.0. The flow is directed from the left to the right

5.1.7 Simulated Growth Forms in a Bidirectional (Alternating) Flow
Regime In the previous section it is assumed that the growth form develops
under mono-directional flow conditions. As a consequence an asymmetric form
develops, as shown in Fig. 15, where the aggregates tend to grow in the upstream
direction. This trend becomes stronger for higher Pe numbers. In reality, the flow
direction will basically reverse twice a day due to the tidal movements. A better
approximation is to use a bidirectional flow system by using an aggregation
model in which the flow direction is reversed after each growth step [29].

The morphology of the aggregates, in the bidirectional flow experiment, is
depicted in Fig. 16.

In Figs. 17 and 18 slices through the simulation box in the zz-plane are shown
in which the nutrient distribution is visualized, for respectively the Pe numbers
3.000 (flow dominates) and 0.015 (diffusion dominates). The color shift black—
white in these pictures indicate a depletion of nutrients, black indicates the max-
imum concentration of nutrient, while the regions with nearly zero concentration
are shown in white.

234 P. M. A. Sloot et al.

C

Fig. 16. Slices through the middle of the aggregates in the zy-plane, alternating
flow experiment: A—C, Péclet number increases from approximately 0.0 to 3.0

A

Fig.17. Slice through the simulation box in the zz-plane showing the nutrient
distribution in two successive growth stages in the alternating flow experiment
in which Pe is set to the value 3.000 (flow dominates) in the flow is directed
from top to bottom in A and directed from bottom to top in B

5.1.8 Discussion

Parallelization aspects When comparing the load balancing efficiencies (Eq. 30)
for the compact and dendritic objects in Fig. 14, comparable results are obtained
for the dendritic object with both decomposition strategies. For the compact
object the best load balancing efficiencies are obtained with the boxed decom-
position in combination with scattered decomposition method. The main expla-
nation for the difference, for both strategies, between the compact and the den-
dritic object is that in the last case the object is already dispersed over space.

Distributed Simulation with Cellular Automata 235

Fig. 18. Slice through the simulation box in the zz-plane showing the nutrient
distribution in two successive growth stages in the alternating flow experiment
in which Pe is set to the value 0.015 (diffusion dominates) in flow is directed
from top to bottom in A and directed from bottom to top in B

This property, the degree of space-filling of the object, can be quantified using
the fractal box dimension Dy, of the object [28]. The fractal dimension Dy, of
the surface of the object can be determined using a 3D version of the (cube)box-
counting method described by Feder [18]. In three dimensions its value varies
from a minimum of 2, for a solid object with a perfectly smooth surface, to a
maximum of 3 for a solid with a space-filling surface. The Dy, of the compact
object was approximately 2.0, while in the dendritic case a value of approxi-
mately 2.3 was found. A major disadvantage of both strategies is that, although
the load balancing efficiencies increase with the number of blocks used in the
scattered decomposition, the communication overhead increases also. The results
in Fig. 14 show that the morphology of the object strongly influences the degree
of improvement introduced by increasing the number of scattered blocks.

Biological aspects The nutrient distributions shown in Figs. 17 and 18 demon-
strate the main differences between diffusion and flow dominated regimes. For
low Péclet numbers the distribution of nutrient is roughly symmetric about the
center of the aggregate, where the highest concentration reside at the tips of
the aggregate and where between the branches an area depleted from nutrients
is found with a very low growth probability. At higher Péclet numbers a clear
asymmetry develops in the distribution with a depleted region developing down-
stream of the object (see Fig. 17). As a consequence, there is a low probability
of growth in the depleted region. A gradual increase of compactness is demon-
strated in Fig. 16 for an increasing influence of hydrodynamics. This gradual
increase of compactness corresponds qualitatively to the observations made in
stony corals, hydrocorals, and sponges, where growth forms gradually transform

236 P. M. A. Sloot et al.

from a compact shape, under conditions exposed to water movement, into a thin-
branching one under sheltered conditions [25,27,67]. When comparing the slices
through the aggregates shown in Figs. 15 and 16 it can also be observed that the
increasing degree of asymmetry in the aggregate in the mono-directional flow
experiment, for increasing Pe numbers, has disappeared in the alternating flow
experiment. In the last experiments, aggregates have developed with a roughly
radiate symmetry, which corresponds qualitatively to the shape of branching ses-
sile organisms, as for example Pocillopora damicornis. These experiments seem
to indicate that an alternating flow, a reversal of the flow direction basically
twice a day, leads to radiate symmetrical growth forms.

The alternating flow model is a strong simplification of the actual growth
process. In many stony corals, as for example the species Pocillopora damicornis
photosynthesis represents a major energy input. The actual growth process in
many sponges, stony-corals, and hydrocorals [25] consists of adding layers of
material (varying in thickness) on top of the preceding growth stage, and not by
the addition of particles. An accretive growth model, in which layers of material
are constructed on top of the previous layers and where the local thickness is
determined by the local amount of absorbed nutrients or light intensity [25], also
offers possibilities for a quantitative morphological comparison of simulated and
actual growth forms [2,26].

5.2 Ising Spin Model Using Asynchronous Cellular Automata

The Ising spin model is a model of a system of interacting variables in statisti-
cal physics. The model was proposed by Wilhelm Lenz and investigated by his
graduate student, Ernst Ising, to study the phase transition from a paramag-
net to a ferromagnet [6]. A variant of the Ising spin model that incorporates
the time evolution of the physical system is a prototypical example how Asyn-
chronous Cellular Automata can be used to simulate asynchronous temporal
behavior. The resulting ACA model is executed using the Time Warp optimistic
simulation method (see Section 3).

A key ingredient in the theory of magnetism is the electron’s spin and the
associated magnetic moment. Ferromagnetism arises when a collection of such
spins conspire so that all of their magnetic moments align in the same direc-
tion, yielding a total magnetic moment that is macroscopic in size. As we are
interested how macroscopic ferromagnetism arises, we need to understand how
the microscopic interaction between spins gives rise to this overall alignment.
Furthermore, we would like to study how the magnetic properties depend on
temperature, as systems generally loose their magnetism at high temperatures.

5.2.1 The Ising Spin Model To introduce the Ising model, consider a lattice
containing NV sites and assume that each lattice site ¢ has associated with it a
number s;, where s; = +1 for an “up” spin and s; = —1 for a “down” spin.
A particular configuration or microstate of the lattice is specified by the set of
variables {s1, $2,... , sy} for all lattice sites (see Fig. 19).

Distributed Simulation with Cellular Automata 237

Fig. 19. Schematic spin model for a ferromagnet

The macroscopic properties of a system are determined by the nature of the
accessible microstates. Hence, it is necessary to know the dependence of the
energy on the configuration of spins. The total energy of the Ising spin model is
given by

N N
E=—J Y sisj—poH» si, (31)
=1

i,j=nn(i)

where s; = +1, J is the measure of the strength of the interaction between spins,
and the first sum is over all pairs of spins that are nearest neighbors (see Fig. 20).
The second term in Eq. 31 is the energy of interaction of the magnetic moment,
1o, with an external magnetic field, H.

bt AR

E=-J E=+J

Fig. 20. The interaction energy between nearest neighbor spins in the absence
of an external magnetic field

If J > 0, then the states 71 and || are energetically favored in comparison to
the states T| and | 7. Hence for J > 0, we expect that the state of the lowest total
energy is ferromagnetic, i.e., the spins all point to the same direction. If J < 0,
the states 7] and |1 are favored and the state of the lowest energy is expected
to be paramagnetic, i.e., alternate spins are aligned. If we add a magnetic field
to the system, the spins will tend to orient themselves parallel to H, since this
lowers the energy.

The average of the physical quantities in the system, such as energy E or
magnetization M, can be computed in two ways. The time average of physical
quantities are measured over a time interval sufficiently long to allow the system
to sample a large number of microstates. Although time average is conceptually

238 P. M. A. Sloot et al.

simple, it is convenient to formulate statistical averages at a given instant of time.
In this interpretation, all realizable system configurations describe an ensemble
of identical systems. Then the ensemble average of the mean energy E is given by

<E> = iEsPs 5
s=1

where P; is the probability to find the system in microstate s, and m is the
number of microstates.

Another physical quantity of interest is the magnetization of the system. The
total magnetization M for a system of N spins is given by

N
MZZSZ'.
=1

In our study of the Ising spin system, we are interested in the equilibrium quan-
tity (M), i.e., the ensemble average of the mean magnetization M.

Besides the mean energy, another thermal quantity of interest is specific heat
or heat capacity C. The heat capacity C' can be determined by the statistical
fluctuation of the total energy in the ensemble:

1
C=— ((E*)—(E)?) .
3 ((B°) = (E)°)
And in analogy to the heat capacity, the magnetic susceptibility x is related to

the fluctuations of the magnetization:

1
XTET
For the Ising model the dependence of the energy on the spin configuration
(Eq. 31) is not sufficient to determine the time-dependent properties of the sys-
tem. That is, the relation Eq. 31 does not tell us how the system changes from
one spin configuration to another, therefore we have to introduce the dynamics
separately.

((M2) = (M)?) .

5.2.2 The Dynamics in the Ising Spin Model Physical systems are gen-
erally not isolated, but are part of a larger environment. In this respect, the
systems exchange energy with their environment. As the system is relatively
small compared to the environment, any change in the energy of the smaller
system does not have an effect on the temperature of the environment. The
environment acts as a heat reservoir or heat bath at a fixed temperature 7.
From the perspective of the small system under study, it is placed in a heat bath
and it reaches thermal equilibrium by exchanging energy with the environment
until the system attains the temperature of the bath.

A fundamental result from statistical mechanics is that for a system in equi-
librium with a heat bath, the probability of finding the system in a particular
microstate is proportional to the Boltzmann distribution [55]

P~ e BEs

)

Distributed Simulation with Cellular Automata 239

where 8 = 1/kgT, kp is Boltzmann’s constant, E is the energy of microstate
s, and Ps is the probability of finding the system in microstate s.

The Metropolis Algorithm To introduce the dynamics that describes how the
system changes from one configuration to another, we need an efficient method
to obtain a representative sample of the total number of microstates, while the
temperature 7" of the system is fixed. The determination of the equilibrium quan-
tities is time independent, that is the computation of these quantities does not
depend on simulation time. As a result, we can apply Monte Carlo simulation
methods to solve the dynamics of the system. The well-known Metropolis algo-
rithm uses the Boltzmann distribution to effectively explore the set of possible
configurations at a fixed temperature T' [4]. The Metropolis algorithm samples
a representative set of microstates by using an importance sampling method to
generate microstates according a probability function

o~ BE:
moo—BEs’
2521 €

This choice of ms implies that the ensemble average for the mean energy and
mean magnetization can be written as

Tg =

(E) = %ZE and (M) =—=> M,.
s=1

The resulting Metropolis algorithm samples the microstates according to the
Boltzmann probability. First, the algorithm makes a random trial change (a spin
flip) in the microstate. Then the energy difference AF is computed. The trial is
accepted with probability e "#4F (note that for AE < 0 the probability is equal
to or larger than one and the trial is always accepted). After the trial, accepted
or not accepted, the physical quantities are determined, and the next iteration
of the Metropolis algorithm can be started.

The number of Monte Carlo steps per particle plays an important role in
Monte Carlo simulations. On the average, the simulation attempts to change
the state of each particle once during each Monte Carlo step per particle. We
will refer to the number of Monte Carlo steps per particle as the “time,” even
though this time has no obvious direct relation to physical time. We can view
each Monte Carlo time step as one interaction with the heat bath. The effect of
this interaction varies according to the temperature T, since T' enters through
the Boltzmann probability for flipping a spin.

The temperature dependency of the physical quantities (M) and C are shown
in figures Fig. 21(a) and Fig. 21(b). For temperature T' = 0, we know that the
spins are perfectly aligned in either direction, thus the mean magnetization per
spin is £1. As T increases, we see in Fig. 21(a) that (M) decreases continuously
until 7' = T, at which (M) drops to 0. This T is known as the critical temper-
ature and separates the ferromagnetic phase T' < T, from the the paramagnetic
phase T' > T.. The singularity associated with the critical temperature 7T, is

240 P. M. A. Sloot et al.

also apparent in Fig. 21(b). The heat capacity at the transition is related with
the large fluctuations found near the critical temperature. The peak becomes
sharper for larger systems but does not diverge because the lattice has finite
sizes (singularities are only found in an infinite system).

251 ,

2.0 b
—— 1 =32x32 ——L=32x32
-a-L=64x64 154 -a-L=64x64
—+-L=128x128 o —+-L=128x128

. T oY u \ . T T
15 2.0 25 3.0 35 15 2.0 25 3.0 35

(a) Temperature dependence of the
mean magnetization per spin for
lattice size 32 x 32, 64 x 64, and

(b) Temperature dependence of
the specific heat for lattice size
32 x 32, 64 x 64, and 128 x 128

128 x 128

Fig. 21. Temperature dependency of mean magnetization and specific heat

5.2.3 Continuous-Time Ising Spin System The standard Ising spin model
represents a certain discrete-time model, as Monte Carlo steps are regarded to
be time steps. However, the transient evolution of the Ising spin configurations
is considered an artifact. Glauber [20] introduced continuous-time probabilistic
dynamics for the Ising system to represent the time evolution of the physical
system.

The Ising spin model with continuous-time probabilistic dynamics cannot
be solved by Monte Carlo simulation, since time has no explicit implication on
the evolution of the system in the Monte Carlo execution model. To capture the
asynchronous continuous-time dynamics correctly, the problem is mapped to the
ACA model and is executed by event-driven simulation.

In the continuous-time Ising spin model, a spin is allowed to change the state,
a so-called spin flip, at random times. The attempted state change arrivals for a
particular spin form a Poisson process. The Poisson arrival processes for different
spins are independent, however, the arrival rate is the same for each spin. Similar
to the Monte Carlo simulation, the attempted spin flip, or trial, is realized by
calculating the energy difference AFE between the new configuration and the old
configuration. The spin flip is accepted with the Boltzmann probability e #4F,

The discrete-time and continuous-time models are similar. They have the
same distribution of the physical equilibrium quantities and both produce the
same random sequences of configurations. The difference between the two models
is the time scale at which the configurations are produced: in discrete-time, the
time interval between trials is equal, and in continuous-time, the time intervals
are random exponentially distributed.

Distributed Simulation with Cellular Automata 241

5.2.4 Optimistic Simulation of the Parallel ACA Model The resulting
continuous-time Ising spin model is parallelized by geometric decomposition. The
Ising spin lattice is partitioned into sub-lattices, and the sub-lattices are mapped
onto parallel processors. To minimize the communication between sub-lattices,
local copies of the neighbor boundaries are stored locally (see Fig. 22). By main-
taining local copies of neighbor boundaries, spin values are only communicated
when they are actually changed, rather than when they are only referenced.
A spin flip along the boundary is communicated to the neighbors by an event
message. The causal order of the event messages, and thus the spin updates, are
guaranteed by the optimistic simulation mechanism.

PE3 ‘ ‘

Fig. 22. Spatial decomposition of the Ising spin lattice. The grey areas are local
copies of neighbor boundary strips. For example, processor PE 2 has a local copy
of spin “a” owned by processor PE 1. Processors PE 2 and PE 3 both own a
copy of spin “c”. The arrows in the figure indicate the event messages sent upon
a spin flip

Asynchronous Cellular Automata, and thus also the Ising spin model, put
additional requirements on the original formulation of the Time Warp method.
For example, the Time Warp method, as all optimistic PDES methods, must save
its state vector each time an event is executed. The state vector of an spatial
decomposed ACA can be arbitrarily large, that is, all the cells in the sub-lattice
are part of the state vector. For efficient memory management, we incorporate
incremental state saving in the Time Warp method [51]. Incremental state saving
stores not the full state vector, but saves only the changes to the state vector
due to the execution of an event, which is only a small fraction of the full state.
Besides efficient memory management, incremental state saving also reduces the
time overhead related to the memory copy.

With incremental state saving, no full copy of a state vector at a certain
simulation time exists in the simulation execution environment. Instead, upon
a rollback of a series of events, the state vector is reconstructed by processing
the event—partial state collection in reverse order. Although incremental state

242 P. M. A. Sloot et al.

saving requires less state saving time and memory, there is an increased cost of
state reconstruction. In general, the number of rolled back events is a fraction of
the number of events executed during forward simulation. The fraction of rolled
back events and the time overhead difference between state saving is an order
of 10 bytes versus an order of 10° bytes, therefore incremental state saving is
favorable in spatial decomposed ACA applications.

Parallel Performance Results To validate the efficacy of the optimistic Time
Warp simulation method, we have designed and implemented the continuous-
time Ising spin model to study the parallel scalability behavior of the system.
The experiments with the Ising spin model were performed on the Distributed
ASCI Supercomputer (DAS) [15]. The DAS counsists of four wide-area distributed
clusters of total 200 Pentium Pro nodes. ATM is used to realize the wide-area
interconnection between the clusters, while the Pentium Pro nodes within a
cluster are connected with Myrinet system area network technology.

To determine the speedup and relative efficiency of the parallel Ising spin
implementation, the execution time of the parallel simulation on one processor is
compared with the execution time on different number of processors. Figure 23(a)
shows the relation between speedup and the number of processors for a fixed
problem size. Together with the results from Fig. 23(b), we can see that the
parallel Ising spin for T = 2.0 scales almost linearly up to 6 processors, but
eventually drops to a relative efficiency of 0.83 for 8 processors. For temperature
T = 3.0 the relative efficiency decreases gradually to 0.68 for 8 processors.

The decreasing efficiency is mainly due to the increased costs to synchronize
the parallel processes. The difference in parallel performance for different tem-
peratures T' can be explained by the measure of dynamic behavior that depends
on the temperature of the system. According to the Boltzmann acceptance prob-
ability e=2E/k8T ‘more trails are accepted as the temperature increases. If there
are more changes in the system, relatively more synchronization messages must
be sent between the sub-lattices, which affects the performance negatively. With
the increase of the number of processors, the time overhead to synchronize the
parallel simulation processes increases even more as there are more parallel pro-
cesses that have to find their mutual synchronization point in time.

The parallel ACA model with the Time Warp execution mechanism is an
effective solver for continuous-time Ising spin systems. The microscopic ACA
rules defining the spin flip probabilities describe the macroscopic magnetization
behavior of the Ising spin system (see Fig. 21(a) and Fig. 21(b)). The optimistic
simulation method scales reasonably well with the number of parallel processors,
although precautions have to be taken. The required overhead time to synchro-
nize the simulation increases with the number of processors. The synchronization
overhead can be reduced by limiting the optimism of the Time Warp mecha-
nism. The optimism control effectively bounds the time retardation between the
parallel processors such that synchronization between the processors is faster
accomplished.

Distributed Simulation with Cellular Automata 243

1.04
6
3 0.8+
c
s g
3 44 £ 0.6+
O [
=1 © 0.4 —T=20
24 g -a-T=24
@ 0.2+ ~e-T=30
0 T T T 1 00 T T T 1
0 2 4 6 8 0 2 4 6 8
processors processors
(a) Speedup of parallel Ising spin (b) Relative efficiency of parallel
for lattice size 128 x 128 Ising spin for | attice size 128 x 128

Fig. 23. Parallel performance of the Ising spin simulation

6 Summary and Discussion

A common denominator in the next generation scientific computing applications
is the understanding of multi-scale phenomena, where systems are studied over
large temporal and spatial scales. The simulation of these natural phenomena
requires an ever increasing computer performance. Although computer perfor-
mance as such still doubles approximately every year, it is our strong belief that
the development of algorithms for modern computer architectures stays behind.
One of the biggest challenges is, therefore, to develop completely new algorith-
mic approaches that support efficient modeling of natural phenomena and —at
the same time —support efficient distributed simulation. Hence we need to boost
the computational power instead of the computer power.

One way to approach this is to look closely to the way nature itself per-
forms computation. This is largely an unexplored research field. In this paper
we discussed the concept of interacting virtual particles whose dynamics give
rise to complex behavior, by using Cellular Automata as a compute metaphor
for modeling and distributed simulation.

As specific instances of Cellular Automata we described the concepts and use
of parallel Lattice Gas Automata and the Lattice Boltzmann model. Although
these models have been around for a decade, they were mainly studied from a
theoretical physics point of view. Our interest is to study them from a compu-
tational science point of view, to apply them to real-life natural phenomena and
to compare them with real experiments. We are on the front of the second wave
of interest in discrete particle models, where the computational aspects and the
modeling abilities are the main research questions.

In addition we described a new approach to efficient distributed execution of
asynchronous cellular automata through discrete event execution and apply this
to different biological and physical models.

244 P. M. A. Sloot et al.

In the near future we will setup an international collaboration to use the
developed models and concepts in the exploration of various challenging prob-
lems stemming from biology, ranging from tumor growth models to population
dynamics. Population dynamics models for instance, can be used to understand
fluctuations in natural populations, and are fundamental in fishery, ecological
research and management of nature reserves. A well known example of a popula-
tion dynamics model are the Lotka-Volterra equations, first proposed by Volterra
to explain the oscillatory levels of certain fish catches in the Adriatic sea.

The inability of Lotka-Volterra models to capture the individual stochastic
interaction, has motivated the application of Cellular Automata as an alterna-
tive modeling paradigm [45,69]. In the CA model, the populations of preys and
predators are no longer considered as homogeneous collections of individuals with
identical average properties. CA models form the basis for population dynam-
ics models based on discrete individuals, where the behavior of the individuals
is formulated by microscopic rules. An additional advantage is that individual
processes, such as movement in space, growth, reproduction, behavioral and eco-
logical interaction, can be represented explicitly.

A synchronous update scheme for the CA model is not realistic from a biolog-
ical point of view: it is not likely that groups of individuals move simultaneously
at the exact same time through space. As each individual behaves indepen-
dently from the others, both in time and space, an asynchronous update scheme
is required. The ACA model and the resulting event-driven simulation associates
a simulation time with each update, thus enabling a more meaningful interpre-
tation to the time evolution of individual based models.

Acknowledgments

The authors wish to thank Arjen Schoneveld, David Dubbeldam, and Marco
Visser for their contribution and assistance in preparing this paper.

References

—_

. Y. Bar-Yam. Dynamics of Complex Systems. Addison-Wesley, 1997. 213
. R. G. Belleman, J. A. Kaandorp, and P. M. A. Sloot. A virtual environment for
the exploration of diffusion and flow phenomena in complex geometries. Future
Generation Computer Systems, 14:209-214, 1998. 236
3. H. Bersini and V. Detours. Asynchrony induces stability in cellular automata based
models. In Proceedings of the IVth Conference on Artificial Life, pages 382-387,
Cambridge, MA, July 1994. 214
4. K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics.
Springer-Verlag, New York, 1992. 239
5. D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice-
Hall, 1994. 207
6. S. G. Brush. History of the Lenz-Ising model. Rev. Mod. Phys., 39:883, 1967. 236
7. A. W. Burks. FEssays on Cellular Automata. Univ. Illinois Press, Illinois, 1970.
206

[\

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Distributed Simulation with Cellular Automata 245

. F. Celada and P. E. Seiden. A computer model of cellular interactions in the

immune system. Immunology Today, 13(12):56-62, 1992. 214

K. M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering,
SE-5(5):440-452, September 1979. 218

S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev.
Fluid Mech., 30:329, 1998. 225

B. Chopard and M. Droz. Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press, 1998. 219, 223

J. P. Crutchfield. Critical computation, phase transitions and hierarchical learn-
ing. In M. Yamaguti, editor, Towards the Harnessing of Chaos, Amsterdam, 1994.
Elsevier Science. 212

J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Pro-
ceedings of the National Academy of Sciences, 92(23):10742, 1995. 209

J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Lett,
63:105-108, 1989. 212, 212

The distributed ASCI supercomputer (DAS). http://www.cs.vu.nl/ bal/das.html.
242

D. Dubbeldam, A. G. Hoekstra, and P. M. A. Sloot. Computational aspects of
multi-species lattice-gas automata. In P. M. A. Sloot, M. Bubak, A. G. Hoekstra,
and L. O. Hertzberger, editors, Proceedings of the International Conference HPCN
Europe ’99, volume 1593 of Lecture Notes on Computer Science, pages 339-349,
1999. 226

P. A. Dufort and C. J. Lumsden. The complexity and entropy of Turing machines.
In Workshop on Physics and Computation, Dallas, Texas, 1994. 212

J. Feder. Fractals. Plenum Press, New York, London, 1988. 235

P. Gaspard and X.-J. Wang. Noise, chaos, and (&, 7)-entropy per unit time. Physics
Letters, 235(6):291-343, 1993. 210

R. J. Glauber. Time-dependent statistics of the Ising model. Journal of Mathe-
matical Physics, 4(2):294-307, February 1963. 240

P. Grassberger. Long-range effects in an elementary cellular automaton. J. Stat.
Phys., 45(1/2):27-39, 1986. 209, 210

J. L. Harper, B. R. Rosen, and J. White. The Growth and Form of Modular
Organisms. The Royal Society London, London, 1986. 227

T. E. Ingerson and R. L. Buvel. Structure in asynchronous cellular automata.
Physica D, 10(1/2):59-68, January 1984. 214

D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404-425, July 1985. 218, 218

J. A. Kaandorp. Fractal Modelling: Growth and Form in Biology. Springer-Verlag,
Berlin, New York, 1994. 236, 236, 236

J. A. Kaandorp. Analysis and synthesis of radiate accretive growth in three dimen-
sions. J. Theor. Biol., 175:39-55, 1995. 236

J. A. Kaandorp. Morphological analysis of growth forms of branching marine sessile
organisms along environmental gradients. Mar. Biol., (in press). 227, 236

J. A. Kaandorp, C. Lowe, D. Frenkel, and P. M. A. Sloot. The effect of nutrient
diffusion and flow on coral morphology. Phys. Rev. Lett., 77(11):2328-2331, 1996.
227, 227, 229, 235

J. A. Kaandorp and P. M. A. Sloot. Growth and form of sponges and corals
in a moving fluid. In A. Carbone and M. Gromov, editors, Pattern Formation
in Biology, Dynamics and Computer Graphics, Singapore. World Scientific. (In
press). 227, 227, 233

246

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

P. M. A. Sloot et al.

D. Kandhai, A. G. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot. Lattice
Boltzmann hydrodynamics on parallel systems. Comp. Phys. Comm., 111:14-26,
1998. 226

D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and P. M. A. Sloot.
Implementation aspects of 3D lattice-BGK: Boundaries, accuracy and a new fast
relaxation technique. In press, J. Comp. Phys., 1999. 226

D. Kandhai, D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema, and P. Sloot. Lattice-
Boltzmann and finite-element simulations of fluid flow in a SMRX static mixer. In
press, Int. J. Num. Meth. Fluids, 1999. 226

S. A. Kauffman. The Origins of Order. Oxford University Press, 1993. 209

A. Koponen, D. Kandhai, E. Hellin, M. Alava, A. Hoekstra, M. Kataja, K. Niska-
nen, P. Sloot, and J. Timonen. Permeability of three-dimensional random fiber
webs. Phys. Rev. Lett., 80:716-719, 1998. 226

C. G. Langton. Studying artificial life with cellular automata. Physica D, 22:120-
149, 1986. 209, 209, 210

C. G. Langton. Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D, 42:12-37, 1990. 210

W. Li and N. H. Packard. The structure of the elementary cellular automata rule
space. Complex Systems, 4:281-297, 1990. 208

K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional
cellular automata. Compler Systems, 4:299-318, 1990. 208

B. D. Lubachevsky. Efficient parallel simulation of asynchronous cellular arrays.
Complex Systems, 1(6):1099-1123, December 1987. 214

B. D. Lubachevsky. Efficient parallel simulations of dynamic Ising spin systems.
Journal of Computational Physics, 75(1):103-122, March 1988. 214

E. D. Lumer and G. Nicolis. Synchronous versus asynchronous dynamics in spa-
tially distributed systems. Physica D, 71:440-452, 1994. 214

J. Machta. The computational complexity of pattern formation. Journal of Stat-
istical Physics, 70(3/4):949-967, 1993. 229, 231

J. Machta and R. Greenlaw. The parallel complexity of growth models. Journal
of Statistical Physics, T7:755-781, 1994. 229, 231

P. Manneville, N. Boccara, G. Y. Vichniac, and R. Bidaux, editors. Cellular
Automata and Modeling of Complexr Physical Systems, volume 46 of Springer Pro-
ceedings in Physics. Springer-Verlag, 1989. 206

E. McCauley, W. G. Wilson, and A. M. de Roos. Dynamics of age-structured
and spatially structured predator-prey interactions: Individual based models and
population-level formulations. The American Naturalist, 142(3):412-442, 1993.
244

M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, N.J., 1967. 212

M. Mitchell. Computation in cellular automata: A selected review. In T. Gramss,
S. Bornholdt, M. Gross, M. Mitchell, and T. Pellizzari, editors, Non-Standard Com-
putation. Wiley-VCH, 1998. 212

M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dynamics, computation, and the
‘edge of chaos’: A re-examination. In G. Cowan, D. Pines, and D. Melzner, editors,
Complexity: Metaphors, Models, and Reality, 1994. 212

C. Moore and M. G. Nordhal. Lattice gas prediction is p-complete. Technical
report, Santa Fe Instute for Complex studies, 1997. SFI 97-04-043. 220

D. M. Nicol and J. H. Saltz. An analysis of scatter decomposition. IEEFE transac-
tions on computers, 39(11):1337-1345, 1990. 231

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Distributed Simulation with Cellular Automata 247

B. J. Overeinder and P. M. A. Sloot. Application of Time Warp to parallel simu-
lations with asynchronous cellular automata. In Proceedings of the 1993 European
Simulation Symposium, pages 397402, Delft, The Netherlands, October 1993. 214,
241

B. J. Overeinder and P. M. A. Sloot. Breaking the curse of dynamics by task
migration: Pilot experiments in the polder metacomputer. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 1332 of Lecture
Notes in Computer Science, pages 194-207, Berlin, 1997. Springer-Verlag. 204
B. J. Overeinder, P. M. A. Sloot, and L. O. Hertzberger. Time Warp on a Trans-
puter platform: Pilot study with asynchronous cellular automata. In Parallel Com-
puting and Transputer Applications, pages 1303-1312, Barcelona, Spain, September
1992. 214

N. H. Packard. Adaptation toward the edge of chaos. In J.A.S. Kelso, A.J. Mandell,
and M.F. Shlesinger, editors, Dynamic Patterns in Complex Systems, 1988. 212
F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New
York, 1965. 238

J. F.de Ronde. Mapping in High Performance Computing. PhD thesis, Department
of Computer Science, University of Amsterdam, Amsterdam, The Netherlands,
February 1998. 205

J. F. de Ronde, A. Schoneveld, and P. M. A. Sloot. Load balancing by redundant
decomposition and mapping. In H. Liddell, A. Colbrook, B. Hertzberger, and
P. Sloot, editors, High Performance Computing and Networking (HPCN’96), pages
555-561, 1996. 231, 231

D. H. Rothman and S. Zaleski. Lattice-Gas Cellular Automata, Simple Models of
Complex Hydrodynamics. Cambridge University Press, 1997. 219, 223, 224, 225
A. Schoneveld, J. F. de Ronde, and P. M. A. Sloot. Task allocation by parallel
evolutionary computing. Journal of Parallel and Distributed Computing, 47(1):91—
97, 1997. 205

W. Shannon and W. Weaver. The Mathematical Theory of Communication. Uni-
versity of Illinois, Urbana, 1949. 209

H. D. Simon. Partioning of unstructured problems for parallel processing. Com-
puting Systems in Engeneering, 2(2/3):135-148, 1991. 231

P. M. A. Sloot. High performance simulation. FUROSIM - Simulation News
Europe, (15):15-18, 1995. 203

P. M. A. Sloot. Modelling for parallel simulation: Possibilities and pitfalls, invited
lecture. In Furosim’95, Simulation congress, pages 29-44, Amsterdam, the Nether-
lands, 1995. 203

P. M. A. Sloot, A. Schoneveld, J. F. de Ronde, and J. A. Kaandorp. Large scale
simulations of complex systems Part I: Conceptual framework. Technical report,
Santa Fe Instute for Complex studies, 1997. SFI Working Paper: 97-07-070. 204
P. M. A. Sloot and D. Talia. Parallel cellular automata: Special issue on cellular
automata. Future Generation Computer Systems, 1999. (In press). 207

S. Ulam. Some mathematical problems connected with patterns of growth figures.
In A.W. Burks, editor, Essays on Cellular Automata, llinois, 1970. Univ. Illinois
Press. 206

J. E. N. Veron and M. Pichon. Scleractinia of Eastern Australia Part 1, volume 1 of
Australian Institute of Marine Science Monograph Series. Australian Government
Publishing Service, Canberra, 1976. 227, 236

J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois,
Urbana, 1966. 206

248

69.

70.

71.

72.

73.
4.

75.

P. M. A. Sloot et al.

W. G. Wilson, A. M. de Roos, and E. McCauley. Spatial instabilities within the
diffusive Lotka-Volterra system: Individual-based simulation results. Theoretical
Population Biology, 43:91-127, 1993. 244

A. T. Winfree, E. M. Winfree, and H. Seifert. Organizing centers in cellular
excitable medium. Physica D, 17:109, 1985. 213

T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic critical
phenomenon. Phys. Rev. Lett., 47(19):1400-1403, 1981. 229

S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-35,
1984. 208, 208, 209

S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, 1994. 206, 208
B. P. Zeigler. Theory of Modelling and Simulation. John Wiley and Sons, Inc.,
New York, 1976. 214

Bernard P. Zeigler. Discrete event models for cell space simulation. International
Journal of Theoretical Physics, 21(6/7):573-588, 1982. 214

