Large Scale Simulations of Complex Systems
Part I: Conceptual Framework

P.M.A. Sloot; A. Schoneveld, J.F. de Ronde, J.A. Kaandorp
July 25, 1997

Parallel Scientific Computing and Simulation Group
Faculty of Mathematics, Computer Science, Physics & Astronomy
University of Amsterdam
Kruislaan 403, 1098 S] Amsterdam
The Netherlands
Phone: +31 20 5257463
fax: +31 20 5257490
E-mail: peterslo@uwins.uva.nl
http:/fwww.wins.uva.nl/research/pscs/

Abstract

In this working document, we report on a new approach to high performance
simulation. The main inspiration to this approach is the concept of complex
systems: disparate elements with well defined interactions rules and non non-
linear emergent macroscopic behavior. We provide arguments and mecha-
nisms to abstract temporal and spatial locality from the application and to in-
corporate this locality into the complete design cycle of modeling and simula-
tion on parallel architectures.

Although the main application area discussed here is physics, the presented
Virtual Particle (VIP) paradigm in the context of Dynamic Complex Systems
(DCS), is applicable to other areas of compute intensive applications. Part I
deals with the concepts behind the VIP and DCS models. A formal approach
to the mapping of application task-graphs to machine task-graphs is presented.
The major part of section 3 has recently (July 1997) been accepted for publica-
tion in Complexity. In Part II we will elaborate on the execution behavior of
a series of large scale simulations using the concepts presented in this docu-
ment. Note that this is a working document, where we present ongoing work
on a formal description of DCS and compile new ideas and results of our re-
search group.

*Visiting Professor Santa Fe Institute New Mexico (USA), Summer 1997

Contents

1 Introduction

2.1

2.2

3.1

3.2

Background and Review of Concepts

Physical Requirements for Computability
21.1 Information TheoryinCA
2.1.2 Computation in the intermediate regime of ordered and

disordered behavior
2.1.3 Computational Behavior as an Attractor: Self Organized

Criticality
Examples of Intractability and undecidability in some Physical
Systems
221 OpticalBeam Tracing
22.2 N-bodySimulation
2.2.3 Non Equilibrium Growth Processes

Theoretical Framework

Parallel Task Allocation.
311 Introduction
3.1.2 Application and Machine Models
3.1.3 Correlation Structureof the TAP
3.14 Relaxationof randomwalks.
3.1.5 Random walks through the TAP landscape
3.1.6 The one step correlation function for the Task Allocation

Problem
3.1.7 Physics of Task Allocation
3.1.8 Spin Glasses and Graph bi-partitioning
3.1.9 Task Allocation Hamiltonian
3.1.10 The TAP Phase Transition
3.1.11 ExperimentalMethods
3.1.12 Simulated Annealing For Optima Search
3.1.13 Search Cost Estimation
3.1.14 Measuring Phase Space Structure
3.1.15 ExperimentalResults
3.1.16 Statistical Quantities and Correlation Length
3.1.17 Experimental Verification of Cost Terms
3.1.18 Analyticaland Measured A
3.1.19 Phase Transitions and Computational Search Cost
3.1.20 Summary and Discussion
3.1.21 Statistical Quantities and Correlation Length
3.1.22 Phase Transitions and Computational Search Cost
3.1.23 Concluding Remarks and Future Work
An Abstract Cellular Genetic Algorithm for solving optimiza-
tionproblems o L.

e @

10

12

14
14
15
16

20
20
20
22
24
24
27

28
33
34
35
35
37
37
38
39
39
39
40
40
41
42
43
44
44

3.2.1 The Abstract Cellular Genetic Algorithm: a Theoretical

Framework
3.2.2 Instance of the ACGA I: Cellular Genetic Algorithm . . .
3.2.3 Instance of the ACGA II: Cellular Simulated Annealing .
3.24 Experiments on the Convergence Behavior of C-GA . . .
3.25 ACGA ona parallel architecture

4 Case studies

4.1
4.2

4.3

4.4

Diffusion Limited Aggregation
Lattice Boltzmann solver for flow and diffusion phenomena . .
421 Macroscopicequations L.
422 Latticegasesin3D,
423 Theoretical background of the Lattice Boltzmann method
A comparison: Lattice Gases, Lattice Boltzmann method, and
PDE's
FE - Applications Formalized by the VIP Model
441 The Finite Element Technique
442 FEasVIP
443 parallel architecturesas VIP
4.44 Mapping FE - Parallel architecture

5 Conclusions and future work

6 Appendix:
Computability in Dynamical Complex Systems

6.1

6.2
6.3
6.4

Undecidability and Intractability
6.1.1 Church-Turing Hypothesis
6.1.2 Undecidability
6.1.3 Intractability
Difficulty of Predicting Behavior in Complex Systems
Simulation, Parallelism and P-completeness
Computability: Cellular Automata
6.4.1 Anexample of intractability and undecidability in a uni-

versalCA

46
48
49
50
51

51
51
55
57
57
58

61
62
62
63
63
64

65

67
67
67
68
69
70
72
74

1 Introduction

Until now much experimental simulation work has been done in physics and
chemistry on parallel computing systems. The development however of for-
mal methods, suitable for modeling complex systems from nature and for an
efficient mapping of the complex system onto parallel computing systems, is
still in its infancy. The development of techniques, suitable for modeling com-
plex systems stemming from physics, chemistry, and biology, and mapping
these onto parallel platforms, belongs to one of the real challenges of future
research, as identified in several NSF-reports ! and CEC-reports [88]. Many
fundamental problems from natural sciences deal with complex systems. We
define a complex system as a population of unique elements with well defined
attributes. In the case that these elements have non-linear interactions in the
temporal and spatial evolution of the system, from these microscopic inter-
actions a macroscopic behavior can emerge. This emergent behavior can, in
general, not be predicted from the individual elements and their interaction. A
typical example of emergent behavior is self-organization, e.g. Turing patterns
in reaction- diffusion systems. These problems are often irreducible? and can
not be solved in an analytical way. The only available option to obtain more
insight in these systems is by explicit simulation. Moreover many of these
problems are intractable: in order to obtain the required macroscopic informa-
tion extensive and computationally expensive simulation is necessary. Since
simulation models of complex systems require an enormous computational ef-
fort, the only feasible way is to apply massive parallel computing techniques
to these models. A major future challenge is to apply High Performance Com-
puting in research on complex systems and, in addition, to offer a parallel com-
puting environment easily accessible for applications[99][98].

Traditionally, science has studied the properties of large systems composed of
basic entities that obey simple microscopic equations reflecting the fundamen-
tal laws of nature. These entities could be fluid fields in fluid dynamics, gravi-
tating galaxies in astrophysics, or gluons in lattice gauge theory. These natural
systems may be studied by computer simulation in a variety of ways. Gener-
ally, the first step in any computer simulation is to develop some mathematical
model consisting of a finite number of discrete parts. The correspondence be-
tween the discrete components and the natural system is completely arbitrary.
Often, the discretization is arrived at indirectly, by means of partial differential
equations. An alternative, less widely used approach is to develop solvers that
conserve the characteristic intrinsic parallel properties of the applications and
that allow for optimal mapping to a massive parallel computing system. These
solvers have the properties that they map the parallelism in the application via
a simple transformation to the parallelism in the machine. With these simple

IReport on 'high performance computing and communications' can be obtained via: Com-
mittee on Physical, Mathematical and Engineering Sciences c¢/o NSE. Computer and Information
Science and Engineering 1800G Street NW Washington DC 20550

2Irreducible problems can only be solved by direct simulation

transformations the necessity to express the application into complex mathe-
matical formulations becomes obsolete. One example would be the modeling
of a fluid flow. Traditionally this problem is simulated through mathematical
description of the phenomena via Navier Stokes equations and discretisation
of these equations into numerical constructs for algorithmic presentation on
a computer. This process of simulation involves a number of approximations
and abstractions to the real fluid flow problem. Moreover, in due course of the
simulation model the intrinsic properties and explicit information of the phys-
ical phenomena is obscured. Even worse, the possible implicit parallelism of
the problem becomes completely indistinct in the abstraction process. An al-
ternative approach would be to model the microscopic properties of the fluid
flow with cellular automata, where the macroscopical processes of interest can
be explored through computer simulation. This approach has the advantage
that the physical characteristics of the fluid flow problem remain visible in the
solving method and that the method conserves the parallelism in the problem.
Although these type of simulation methods are not yet completely understood
and certainly not fully exploited they are of crucial importance when massive
parallel computers are concerned. We define these type of solvers as “natural
solvers” these techniques have in common that they are inspired by processes
from nature [100]. Four important examples of natural solvers are Genetic
Algorithms (inspired by the process of natural selection), Simulated Anneal-
ing (inspired by the process of cooling heated material which converges to a
state of minimal energy), the Lattice Boltzmann method (a many particle sys-
tem with a macroscopic behavior that corresponds to the hydrodynamic equa-
tions), and artificial Neural Networks. We argue that in parallel computing the
class of natural solvers results in a very promising approach, since the phys-
ical characteristics of the original physical phenomenon remain visible in the
solving method and the implicit and explicit parallelism of the problem remain
conserved.

In Fig. 1 a 'bird's eye view' of the different steps of the mapping process from
application onto parallel machines is presented. As can be seen, an applica-
tion is first transformed into a solver method. Here detailed knowledge of the
problem domain is obligatory. A solver can have a different nature and one
particular problem can be represented by different solver methods (like the ex-
ample of the fluid flow). Next the intrinsic parallelism in the solver is passed
through the Decomposition layer that captures the parallelism and dependen-
cies into objects and communication relationships. Finally these two classes are
mapped onto a Virtual Parallel Machine model that allows for implementation
on a large suit of parallel systems [78].

To be able to capture the generic aspects of parallel solvers and to express the
basic properties of the natural system we will define our own abstract solver
model indicated as the Virtual Particle model. The Virtual Particle (VIP) can be
defined as the basic element in the simulation model. The VIP can be defined
on several levels of abstraction. For example in a simulation model of a biolog-

Application

Genetic
Algorithms

Simulated
Annealing

Molecular
Dynamics

Cellular Neural

Networks

Automata

[Hierarchical]
Decomposition

Virtual Massive Parallel Machine ‘

T

Workstation Cray IBM
Cluster T3D SP2

Figure 1: Outline of a Parallel Programming Model for Dynamic Complex Systems

on Massive Parallel Computers

ical system, the VIP can correspond to a certain level of organization and ag-
gregation in the system (e.g. molecule-organelle-cell -tissue-organ- organism-
population). The choice of the abstraction level is determined by a combination
of the desired refining of the model and the computational requirements. In
the VIP model the microscopic, temporal or spatial, rules have to be specified
in such a way that they approximate the microscopic rules as observed in the
actual system. In the VIP model, the VIPs may correspond to the individual
particles in the natural solver, as for example in lattice gases. Alternatively,
the particles can be organized hierarchically, where VIPs can be an individual
particle or clusters of VIPs. In such a hierarchical model interactions can occur
between individual VIPs, clusters of VIPs, and individuals and clusters. An
example where clustering of VIPs is applied is in N-body problems, where the
N? number of long-range interactions between the particles can be approxi-
mated by NlogN interactions through the use of hierarchical tree methods[3]
[6] [38]. In the hierarchical algorithm the overall complexity of the problem is
reduced, which allows for the simulation of relatively larger problems, while
the information about the error introduced by this approximation is preserved.
By allowing to cluster VIPs into a new VIP, it becomes possible to develop an
efficient abstraction and consequent mapping of the application model onto
the Virtual Parallel Machine model.

The natural system is represented by a DCS, the application model, where the
individual elements are the VIPs whose interaction is possibly described by
(random) graphs. The application model is mapped onto the Virtual Parallel
Machine Model (see Fig. 2), which can be another instance of a DCS consisting
of a population of processors, in this case both load-balancing and minimali-
sation of communication can be taken into account in a graph representation.
In section 3.1 we will discuss this in detail, in section 4.4 we will demonstrate
this by a case-study of mapping a finite element model onto a parallel machine
model.

In the Background section of this paper we will review the physical require-
ments for computability and give some examples of intractability and undecid-
ability in physical systems. We will use these notions througout the document.
Then we will outline a theoretical framework for mapping parallel appications
on parallel architectures. In the final sections we will discuss four case studies
of modeling Dynamical Complex Systems. In the first example we show two
alternative ways of modeling Diffusion Limited Aggregation: the “traditional”
way by solving the underlying PDE, the Laplace equation and a VIP model,
based on a multi particle system. In the second case study we will demon-
strate how fluid flow and diffusion can be modeled using the VIP model based
on the Lattice Boltzmann method. In the third example we will show how a
natural solver, the genetic algorithm, can be casted into a VIP model, by using
a cellular automata representation. In the fourth case study we will show the
example of a finite element model where the application model consists of a
population of clusters with finite elements, while the machine model is a set of

[Applications j [MPP Platforms j

Virtual MPP Machine
Model

[Virtual Particle Models }

Figure 2: Basic structure of Dynamic Complex System Paradigm: the mapping of the
application model onto the machine model. The internal transformation denotes the
mapping of the application graph onto the machine graph

processors where the workload changes dynamically. The major issue in this
section is to minimize the communication and to attain load balancing, where
the most optimal mapping of the DCS with VIPs onto the DCS with processors
has to be determined. In the conclusions we will summarize current and fu-
ture research on DCS within the Parallel Scientific Computing and Simulation
Group.

2 Background and Review of Concepts

2.1 Physical Requirements for Computability

In the appendix we identify systems which display all kinds of complex behav-
ior, i.e. they can be computationally intractable or even formally undecidable.
A classification in terms of their computational complexity is given and we dis-
cuss NP-complete, PSPACE-complete and P-complete problems. A question to
ask at this point is: “When does a system display complex behavior?”. By some
authors[113][57][15] it is believed that when a system display complex behav-
ior, universal computations can be performed. Mechanically speaking a com-
putational system requires transmission, storage and modification of information.
So, whenever we identify those three components in some dynamical system,
the system could be computationally universal. But then the question remains
when does this happen? Broadly said, using information theoretic results, we

can answer this question by saying that it must take place at an intermediate
level of entropy: stored information, lowers the entropy, but transmission of
information increases the entropy level. Therefore we will briefly review en-
tropy measures of Cellular Automata in section 2.1.1. In a number of papers,
Christopher Langton has tried to answer this question by considering Cellular
Automata as a theoretical model for a physical system. The hypothesis ”"Com-
putation at the Edge of Chaos” resulted from this research. Briefly it states that
universal computations can take place at the border between order and chaos.
This statement partly resulted from the observation that correlations can be-
come infinite during or at a second order phase transition between for example
a solid and a liquid phase. Recall that a discontinuous change in an order pa-
rameter of the system corresponds to a first order transition. A sudden, but
continuous, change corresponds to a second order transition. At such a tran-
sition, the system is in a critical state. By some authors[57][50] it is believed
that the resulting infinite correlations can be interpreted as long-term memory
needed to store information. We will review these notions briefly in section
2.1.2.

Some non-equilibrium systems can display critical behavior without external
parameter tuning. This critical behavior is analogous to the behavior of a equi-
librium system at second order phase transitions, i.e. no characteristic length
scales can be found. Systems with critical behavior as an attractor, are reviewed
in section 2.1.3.

2.1.1 Information Theory in CA

In order to observe phase transitions in CA evolution, quantitative order pa-
rameters are needed. These order parameters need to distinguish between or-
dered and disordered states. A commonly used quantity for this purpose is the
Shannon entropy[96], defined on a discrete probability distribution p;:

H=-Y pilogpi = Zpilogzé D
i i ¢

This measure H can be associated with the degree of uncertainty about a sys-
tem. In a Cellular Automata, entropy can be defined on the k" possible sub-
sequences of N-length blocks in a k-state CA. In a random sequence all sub-
sequences must occur with equal probability. With probabilities p; for the £V
possible subsequences:

kN
Hy == pjlogp)
i=1
The spatial block entropy[37] is now defined as:
hs\gf) =Hyy1— Hy 3)
From Eq.3 follows the spatial measure entropy, or entropy rate [37]:
h®) = lim hy (4)
N—oo

The superscripts (z) indicate that spatial sequences are considered. The mea-
sure entropy gives the average information content per site. Analogous to the
spatial entropy, one can define temporal entropy, where blocks of N x T sites are
considered: ©
® —

0= gm0 g
Eq.3 decreases monotonically with N, while hgf,)j decreases with T'. The differ-
e ((@) _ p@)

5h1\gf) = hz\gf) - h1\¢+1 (6)

is the amount of information by which a state s;; x of a cell ¢ + N becomes less

uncertain if the cell state s; gets known. § hg\f) is called the N-th order mutual
information in space. Intuitively one could regard mutual information as the
stored information in one variable about another variable and the degree of
predictability of a second variable by knowing the first. Another definition
of mutual information, block-to-block mutual information, is defined as the
mutual information between two L-blocks[59]. Let P, be the probability for
an L-block and P,z3(d) be the joint probability for two blocks separated by a
distance d.:

M (d)H!

za: zﬁ: Pag(d)log%](;)

> Pap(d)logPus(d) =Y > " Pap(d)logPalogPs (7)
a g a g3

where £ is the number of states in a configuration of a CA or other symbolic
sequence. Note that }_, > ; Pag(d) reduces to P and mutatis mutandis for
summing over Pz. Hence the Eq.7 can be simplified to:

MM = 33" Pag(d)logPas(d) = Y PalogP. — > PslogPs
a g a &)

Where H, 3 is the joined entropy of sequences « and /.

2.1.2 Computation in the intermediate regime of ordered and disordered
behavior

If we have a k-state CA with a neighborhood size r, the total number of possi-
ble transition rules is k*", which can become a very large, even for a moderate
number of states and/or a small neighborhood. If a structure were present in
this enormous space, it should be possible to identify areas of equal complex-
ity (Wolfram classes, see section 6.4) and how these areas are connected to each
other. Using this ordering one can locate those areas which support the trans-
mission, storage and modification of information. Langton[57], suggested the
A parameter to structure the CA rule-space. An arbitrary state s € X is assigned

10

the quiescent state s,. Let there be n transitions to this quiescent state in an ar-
bitrary transition rule. The remaining k" — n transitions are filled randomly by
picking uniformly over the other k£ — 1 states:

k" —n

A=
kr

©)

If A = 0.0 then all transitions in the rule will be to the quiescent state s,. If
A = 1.0 there will be no transitions to s,. All states are represented equally in
the rule if A\ = 1.0 — 1/K. With the aid of the A-parameter it should be pos-
sible to examine the conjecture that complex behavior is located at intermediate
regime between ordered and disordered behavior. The spectrum of dynamical
behavior can be explored with the so called table-walk-through-method which in-
creases the A-parameter at successive time steps. At each new time step a tran-
sition table is incrementally updated using the transition table at the previous
time step. Because the described method is actually a “random walk” through
a coarse grained version of the CA state-space, each table-walk displays quan-
titatively different behavior. Several measures can be used to characterize the
dynamical behavior of the CA at each new value of the A-parameter. These
measures include the numerical determination of block entropies and both
temporal and spatial mutual information statistics. At intermediate values of
A, i.e at the edge between ordered and disordered dynamics several remarkable
events occur:

e Transient lengths grow rapidly, analogously to the physical event of crit-
ical slowing down.

e Transient lengths depend exponentially on the size of the CA.

e Mutual information measures (see Eq. 8), reach their maximum values
(both spatial and temporal mutual information), see Fig. 3(left) at the en-
tropy transition, see Fig. 3(right)

‘Temporal mutual information —

Figure 3: Temporal mutual information between two sites separated by one time step
and site entropy, both for 4-state 2-neighbor Cellular Automata

11

The exponential dependence of transient lengths on the size of the CA is anal-
ogous to the exponential dependence on problem size in the NP and PSPACE
complexity classes. As for the halting-computations, it will be formally un-
decidable for an arbitrary CA in the vicinity of a phase transition, whether
transients will ever die out. The increase in mutual information indicates that
the correlation length is growing, which implies further evidence for a phase
transition in that region. Of course we cannot observe a real phase transition
other than in the thermodynamic limit. Other evidence for the “Edge of chaos”
hypothesis can be found in the work of Crutchfield on continuous dynamical
systems[14] and the resulting e-machine reconstruction. In [16] the so called in-
trinsic computation abilities of a continuous dynamical system are investigated.
The output of the system (e.g. an iterative map, £,4+1 = f(z,)) in time is coarse
grained into a sequence of zeros and ones. In other words the output domain
zp, is divided into two regions, Py = {z, < z.} and P; = {z, > z.}, where z,
is an arbitrary chosen division point. The complexity of the dynamical system
is quantified by construction of the minimal regular language which accepts
the generated sequence. The complexity and entropy (see Eq. 1) for the logistic
map was examined in [16] using the method of regular language complexity
(size of the corresponding finite automaton). It was found that the lowest val-
ues of complexity corresponds to the periodic and fully chaotic regimes of the
map. The highest value of the complexity occurs where the period doubling
cascade of the map meets the band-merging cascade, i.e. at the border between
order and chaos. In [23] the work of Langton and Crutchfield is complemented
by examining the dynamical behavior of a well known computational device:
The Turing Machines (TM). A class of 7-state 4-symbol Turing machines, which
also includes Minsky's universal Turing machine[72], was used to address the
question whether universal computation is found between order and chaos. A
large number of randomly created TM's was used to generate three different
sequences: a sequence of symbols read, a sequence of states and a sequence
of moves made by the TM head. For all these sequences the corresponding
regular language complexity was calculated using the technique of e-machine
reconstruction and plotted against its block-entropy (see Eq. 3). They found
that the most complex TM's are indeed located at intermediate values of the
entropy, including Minsky's universal TM. Mitchell et al, reviewed this idea
of computation at the 'edge of chaos' and reported on experiments produc-
ing very different results from the original experiment by Packard [80], they
suggest that the interpretation of the original results is not correct [73].

2.1.3 Computational Behavior as an Attractor: Self Organized Criticality

Most of the time, equilibrium systems with short-range interactions, exhibit
exponentially decaying correlations. Infinite correlations, i.e. scale invariance,
can be achieved by fine tuning some parameters (temperature) to a critical
value. An example of such a system is the Ising spin model of magnetization.
On the other hand, a large class of non-equilibrium locally interacting nonlin-
ear systems spontaneously develop scale invariance. These systems are subject

12

to external driving: local states are increased from outside until some thresh-
old condition holds. At the point where the critical value is reached the local
state variables trigger a chain reaction by transporting its “stored energy” to
neighboring sites. At the steady state of the system, assured by open boundary
conditions, chain reactions or avalanches of all sizes can occur. The distribution
of “avalanche sizes” obeys critical scaling:

P(s) ~s77 (10)

where 7 is a critical exponent and the state of the system has no intrinsic time
or length scale. The size of an avalanche can be defined in different ways. It can
be measured by the number of relaxation steps needed for the chain reaction to
stop or the total number of sites involved in the avalanche. This phenomenon
of spontaneously developing critical scaling has been called Self Organized
Criticality (SOC)[5]. A lot of naturally occurring systems exhibit this kind of
scaling- or self-similar behavior. The basic model with which SOC behavior is
demonstrated, is with the use of a special kind of Cellular Automaton, which
simulates the sliding and growing of sand piles[5]. A discrete variable A is
assigned to each site on a d-dimensional lattice, representing the height of a
“slope”. Units of sand are added subsequently to a random site until some
critical threshold h. is reached. If the state of a site has reached the critical
value, a sliding event takes place: the sand of the site is distributed among its
nearest neighbors. The rules for a d-dimensional version of such a model are:

h(r,t +1) — h(r,t) — 2d (11)
h(r+ej,t+1) > h(r £e5,t) +1 (12)

where r is a lattice position, e; is used to denote the j-th neighbor, and ¢ is the
iteration counter. The rules actually describe a non-linear diffusion equation.
If the system has relaxed, another random perturbation can made. We have
repeated the experiments with a continuous version of this model where ran-
domly chosen energy quanta ¢, ([0, 1])are added to a randomly chosen site. If
some site reaches the critical energy value 1.0, the system is relaxed until every
site is below this critical value. At some point the system reaches a station-
ary state where the average energy has reached a steady value < h >. At this
point, the addition of an amount of energy to some site can trigger avalanches
of arbitrary sizes, i.e. from one shift to one comparable with the system size.
From this point we measured the distribution of both the duration and size
of the avalanches. Figs. 4 and 5 show the distribution of avalanche size and
avalanche duration respectively. It is clear that the finite size distribution can
be fitted by a function obeying a power law. The idea of Self-Organized Crit-
icality is assumed to be an explanation of the emergence of critical scaling be-
havior in many naturally observed systems. If this scaling behavior is spatial
the signature of the system is often a fractal. Many growth phenomena ex-
hibit this self-similar behavior, e.g. DLA, Dielectric Breakdown (DB), Invasion
Percolation, etc. Hence a logical step is to use SOC as a possible theory of the

13

01

0.0001 |
0.0001

Mm

1 10 100 1000 1 10 100 1000

Figure 4: Avalanche size distribution Figure 5: Avalanche time distribution
in a 100x100 lattice in a 100x100 lattice

growth of fractal patterns. The idea that a dynamical system with spatial de-
grees of freedom evolves into a self-organized critical state could very well be
applied to these familiar models of growth. Some work in this area has been
done on the DB model[2][81][82]. Exactly at the point where extinction of a
branch balances branching itself, the growth process is stable with respect to
fluctuations. A stationary state is reached when branching has broken down
to a level where the flow only barely survives[2]. The distribution of the sizes
of extinct branches describe the self-organized critical state, corresponding to
the avalanches in the sandpile. Another way of characterizing the SOC state
is by keeping track of the electrostatic field and the number of iterations re-
quired to reach relaxation[81] after a growth step. The relaxation steps of a nu-
merical procedure, e.g Jacobi iteration, can be used to quantify this measure.
Alternatively one could measure the range of the disturbance, defined as the
total number of lattice sites in which the electrostatic potential changes above
a given threshold. If the growth is in the SOC regime, the range distribution
can be described by a power-law function.

2.2 Examples of Intractability and undecidability in some Phys-
ical Systems

In this section we will discuss models of three different complex systems, namely
an optical system[86], a N-body system[85] and Non-equilibrium growth. It can be
shown that these systems exhibit undecidable and intractable behavior con-
cerning their predictability. We will shortly describe these systems and their
related hardness proofs. For a thorough description we refer to [86], [85], [48]
and [95].

2.2.1 Optical Beam Tracing

First the optical system, which also forms a basis for the hardness proofs of the
N-body system. In [86] the “Computability and Complexity of Optical Beam

14

Tracing” is explored. The Ray Tracing Problem (RTB) is stated as:

Given an optical system (a finite set of reflective or refractive surfaces) and
an initial position and direction of a light ray and some fixed point p, does
the light ray eventually reach the point p?

We summarize the computability results for different optical models, for more
detail see [86]:

1. In a three dimensional system which consists of a finite set of mirrors,
half-silvered mirrors and quadratic lenses, RTB is undecidable. The proof
remains valid for rational coordinates.

2. In a three dimensional system which consists of just a finite set of mirrors
with irrational endpoint coordinates, RTB is undecidable. When the end-
points are restricted to rational coordinates the problem is PSPACE-hard.

3. For any system with dimension > 2, which consists of a finite set of mir-
rors with rational endpoints which lie perpendicular to each other, RTB
is in PSPACE. For dimensions > 3 the problem is PSPACE-complete.

By showing that the total path of the light ray can be divided into sub paths
and their corresponding rational equations, all models can be shown to be re-
cursively enumerable. Hence the total path can be traced. In order to prove
undecidability, an optical model must be able to mimic an unrestricted Turing
Machine. This can be achieved by coding the contents of the tape by (z,y) co-
ordinates of the position of the light ray. The states of the TM are “coded” by
basic optical boxes (a specific set of mirrors and lenses), which implement the
transition function ¢ for a particular state. The mapping of J onto the opera-
tion of an optical model is done by simulating the two basic different types of
transitions:

3(q,¢) = (¢ ,w,L) (13)
8(g,¢) = (¢ ,w, R) (14)

Where I and R represent a left and right move respectively, ¢ and ¢ corre-
spond to TM states, ¢ to the read symbol, and w to the written symbol. The
basic boxes implement the various transition functions, by manipulating the
light ray through the use of mirrors and lenses, which in turn implement the
functioning of an entire TM. Undecidability of RTB using some optical model
can be proven by showing that an unrestricted TM can be mimicked. PSPACE-
hardness can be proven by showing that some space bounded TM can be mim-
icked.

2.2.2 N-body Simulation

A second physical model to which a hardness proof is applied, is N-body simulations[85].
The N-body simulation problem is stated as follows:

15

Given initial positions and velocities of n particles that have pair-wise
force interactions, simulate the movement of these particles so as to deter-
mine the positions of the particles at a future time.

The problem of determining whether a specific particle will reach a certain
region at some specified target time is called the N-body reachability problem. The
equations of motion for each body is given by Newton's laws of motion which
constitute n ordinary differential equations. The corresponding solutions can
be approximated by time stepping. The initial positions and velocities of the
bodies are given by n*-bit rational. The destination position is given by a ball,
which is an n-bit rational (the ratio of two n-bit integers). A related result can
be found in [29], where the ”billiard ball computer” is introduced and which
is proved to be PSPACE-hard. However this model depends on non-movable
obstacles as does the optical model stated above and hence is not applicable to
n-body simulation.

The hardness proof is done by constructing an analog of optical beam tracing in
the N-body system. It is assumed that initial positions, velocities and position
of the destination ball are rational. The global sketch of the proof is by reducing
several problems to each other, starting with a known PSPACE-hard problem,
namely that of optical ray tracing with reflective (only mirrors) surfaces and
ending with the n-body simulation problem by subsequently reducing sub-
problems. For a detailed overview we refer to [85].

2.2.3 Non Equilibrium Growth Processes

In equilibrium growth processes, as for example found in a perfect crystal
where the growth process is near or in equilibrium, molecules are exploring
various sites of the crystal and are added to the crystal until the most stable
configuration is found. In this type of growth process a continuous rearrange-
ment of particles takes place, the process is relatively slow and the resulting
objects are very regular [92]. In some cases the growth form which emerges
is a normal object from Euclidean geometry whereas in other cases objects are
formed that resemble regular fractal objects.

Many growth processes in nature are not in equilibrium. An extreme example
is an aggregation process of particles where as soon as a particle is added to
the growth form, it stops trying other sites an no further rearrangement takes
place. The local growth probabilities are not everywhere equal on the aggre-
gate and an instable situation emerges. The growth process in non-equilibrium
is relatively fast and often irregular objects, characterized by a fractal dimen-
sion, are formed [91] [92] [90]. An example of a (non-equilibrium) growth pro-
cess from physics, is viscous fingering. The phenomenon can be demonstrated
in an experiment where air displaces a high-viscosity fluid between two glass
plates. In Fig. 6 a diagram is shown of an experiment where air is injected
between two glass plates at y = 0 and displaces a high viscosity fluid, which
is only removed at the top of the plates (both sides are closed). The pressure
P will be the highest at y = 0 and the lowest at y = L, where L represents

16

the length of the glass plates. In the fluid the pressure is given by the Laplace
equation [25]:

-vP=0 (15)

In the air the pressure is everywhere equal, since its viscosity can be ignored.
The pressure in the air equals to the input pressure P(y = 0) and the conse-
quence is that the largest pressure gradients occur at the tips of the fingers in
Fig. 6, while the lowest gradients occur below the tips. The probability that the
fingers continue to grow will be the highest at the tips and in a next growth
stage the pressure gradients in the tips are still more amplified, resulting in
an instable situation. In Fig. 7 an example of the resulting growth pattern is
shown, it is an irregular shaped object, known in the literature as viscous fin-
gering.

Ply=1)

P=p

= air

e+ fluid with high viscosity

Py =0)

Figure 6: Diagram of a viscous fingering Figure 7: Example of a viscous fingering
experiment growth pattern

Another example of growth in non-equilibrium is growth of a bacteria colony
(for example Bacillus subtilus) on a petri-dish [32]. The colony consumes nutri-
ents from its immediate environment and the distribution of nutrients is deter-
mined by diffusion. When it is assumed that the concentration c is zero at the
colony and that the diffusion process is fast compared to the growth process,
the concentration field will attain a steady state in which the diffusion equation

—=Dvy-c (16)

equals zero. In this equation D is the diffusion coefficient. The nutrient source
may be, for example, a circle around the colony or a linear source where the
concentration is maximal. The local nutrient concentration at sites between the

17

colony and the source can be described with the Laplace equation:
v:C =0 (17)

The growth process of a bacteria colony, viscous fingering, and various other
growth patterns from physics as for example electric discharge patterns and
growth forms of electro deposits, can be simulated with one model: the Dif-
fusion Limited Aggregation model [91]. At the heart of all these growth pat-
terns there is one Partial Differential Equation, the Laplace equation, which
describes the distribution of the concentration (Eq. 17), pressure (Eq. 15), elec-
tric potential etc. in the environment of the growth pattern. The DLA-model is
a probabilistic cellular automaton which resides on a square two-dimensional
or three dimensional lattice. In section 4.1 various methods will be discussed
for constructing DLA-clusters, an example of a DLA-cluster is shown in Fig. 27.
The underlying Laplace equation can be solved numerically and a DLA cluster
can be constructed using the nutrient distribution over the lattice. The cluster
is initialized with a seed and the following boundary conditions are applied:
¢ = 0 on the cluster itself and ¢ = 1 at the nutrient source, which may be circu-
lar, linear etc. The probability p that a perimeter site with index k will be added
to the DLA-cluster is determined by

(cx)"

Zjeperimeter sites(¢i)"

p(k € perimeter sites — k € cluster sites) = (18)

where ¢, = concentration at position k

The exponent n applied in Eq. 18 describes the relation between the local field
and the probability. This exponent usually ranges in experiments from 0.0 to
2.0. The sum in the denominator represents the sum of all local concentrations
of the possible growth candidates. The probability that new sites will be added
to the cluster will be the highest at the tips of the cluster, where the steepest
nutrient gradients occur, and the lowest in the bays between the branches. In
successive growth steps the nutrient gradients at the tips will even become
steeper and a comparable instable situation is encountered as in the viscous
fingering example. The effect of changing the exponent 7 in Eq. 18 is that the
overall shape of the cluster changes. For the value n = 0 the shape changes
in a compact cluster and it can be demonstrated that the DLA-model for this
special case transforms into the Eden model. This model is one of the earliest
probabilistic cellular automata to simulate growth. In the Eden model each
possible growth candidate has the same probability to become occupied. For
the value n = 1 the normal DLA-cluster is obtained, while for higher values
more dendritic shapes are generated [68]. With the parameter 1 the effect of
nutrient gradients on the growth process can be controlled, where the Eden
model is an extreme example in which gradients have no effect on the local
probability that a new site will be added to the growth form.

In order to model and simulate different natural growth processes, a variety of
growth models have been suggested, each with different characteristics. Most

18

of these models display scaling or fractal behavior, analogous to characteris-
tics observed in second order phase transitions. Examples of these models are:
DLA, Eden growth, invasion percolation, and ballistic deposition. From a com-
putational point of view these models can be divided in two classes known
from computational complexity theory: NC and P (see section 6.3).

As usual complexity classes are defined for decision problems, so we in order
to talk about the computational complexity of growth models, they have to be
formulated as such. Consider a cluster growing on a lattice of IV sites. The de-
cision problem can be divided into N separate decision problems, correspond-
ing to whether the N sites of a lattice will eventually be occupied or not by the
spreading cluster. Through the equivalence of a hydrodynamic model[55] it
can be shown that DLA also P-complete[60], hence DLA can be regarded as a
universal computer for problems in P. On the other hand the Eden model and
invasion percolation can be formulated as waiting time models[87] and as such
can be proven to be in the class NC[62].

Let us first consider the equivalence between DLA and the Chamber-Tube (CT)
model[55]. An approach to model two-fluid flow (an in-viscid fluid driving a
viscous one) in a porous medium is to regard the porous medium as a system
of chambers connected by tubes. The pressure of the viscous fluid driven by
the invading fluid, satisfies a Laplace equation:

Vip=0

Basically this is the CT model, which can be shown to be equivalent to DLA. In
[60] it is shown that this CT model is P-complete, from which a restricted planar
version of this CT model is also shown to be P-complete. Intuitively the DLA
model is inherently history-dependent, i.e. the growth at a given time step
depends in the prior history of the system (Markovian). Because of this prop-
erty, the DLA model does not lend itself for exact efficient parallelization. It is
however possible, to parallelize the computational steps between two growth
events and also to some extent the growth steps themselves[95]. Apparently
also Eden models suffer from history dependence, at each time step a particle
is added randomly to the perimeter of the cluster. In [62] it is shown that this
history dependence can be overcome. In [87] a mapping is made between the
Eden model and the growth of directed polymers in random media. The di-
rected polymer problem is defined in a random medium, at zero temperature. To
each site ¢ of a lattice, a random number z; from some probability distribution
is assigned. This random number corresponds to the local interaction energy
between the polymer and the embedding medium at this site. A directed poly-
mer is a directed path P that spans the lattice. The energy of the polymer is the
sum of the z's along the path P. At zero temperature the polymer will be in
the lowest energy configuration, such that £ will be:

E = minp {Z} (19)

ieP

Subsequently an equivalence with Eden growth can be made. Set a clock on

19

each site of the lattice and record the time during which the site has been a po-
tential growth site, without being actually part of the cluster. Note that even-
tually all sites will be part of the Eden cluster. Call this delay 7; for site ¢. From
these delay times, the real time ¢; at which the site became part of the cluster
can be computed: it is equal to the time at which ¢ became a neighbor to the
cluster plus the time 7;. The time t;* at which the neighbor becomes part of the
cluster is the minimum of the sum of delays to this neighbor:

t; = minp, { Z Tj} (20)

JEPR;

The resemblance between Eq.20 and Eq.19 is obvious. The time should be com-
pared with the minimum energy of a polymer. This so called waiting time
model can in turn be mapped onto a Minimum-Weight Path Algorithm, which
is known to be efficiently parallelisable. MWP is defined as:

An undirected grap G = (V, E), where V is a set of sites and E is a
set of bonds connecting pairs of sites. Weights w(i, j) are assigned
to each bond {i,j} € E. The problem is to find a matrix containing
weights of the minimum-weight paths between every pair of sites
nV.

It possible to describe both Eden and DLA with the same equation[82], only
differing in one parameter. The growth is determined by a scalar field ¢, which
obeys the Laplace equation outside the lattice. The velocity of growth depends
on the gradient of this field raised to a power:

v o |V (21)

When n = 1 DLA is recovered, and when n = 0, the Eden model is obtained. It
follows that, though both DLA and Eden can be described by the same equa-
tions, they are not equal in computational complexity. This transition to an-
other complexity class can be established by changing this n parameter. It is
interesting to known whether general properties and conditions for this differ-
ence in time complexity between growth models can be found.

3 Theoretical Framework

3.1 Parallel Task Allocation
3.1.1 Introduction

An essential problem in the field of parallel computing is the so called Task
Allocation Problem(TAP): given a set of parallel communicating tasks (a paral-
lel application) and a parallel distributed memory machine, find the optimal
allocation of tasks onto the parallel system. The quality of an allocation is mea-
sured by the turn-around time of the application, which depends on various

20

components. In a parallel application, generally, one can distinguish phases
dominated by communication components and calculation components.

A method that is used to minimize the turn-around time must optimise both
components simultaneously. This is due to the fact that the two terms can not
be regarded as independent components, rather they are strongly related to
each other. A task allocation where all tasks are placed on a single proces-
sor obviously minimizes the amount of communication, while the calculation
will be maximal. On the other hand equal distribution of the set of parallel
tasks, without taking into account the communication term would lead to an
optimized calculation term, while communication can become degraded. We
toss the term frustration for the fact that optimization of one term conflicts with
the other, in analogy to physical systems that exhibit frustration. Intuitively, it
is clear that increasing dominance of either the communication or calculation
term reduces the amount of frustration in the system.

Many fundamental problems from natural sciences deal with complex systems.
A complex system can be described as a population of unique elements with
well defined attributes and interactions. In most cases, such systems are char-
acterized by quenched disorder and frustrated, non-linear interactions [71], be-
tween the set of elements constituting the system. It is well known that these
system ingredients contribute to the emergent unpredictable behavior that is
often demonstrated by such systems [97]. The quenched disorder is either
present in the initial condition (e.g. in cellular automata) or in the interac-
tion between elements (e.g. in spin glasses). In combination with the frustra-
tion occurring due to mutual conflicts, certain properties of these systems are
often analytically intractable. Examples of such properties are its asymptotic
behavior and the exact location of the (energetically) optimal states. The lat-
ter characteristic often causes the corresponding optimization problems to be
NP-hard [101]. Given the fact that the TAP objective function (minimization
of turn-around time) contains two competitive terms, behavior similar to other
known complex systems is to be expected.

In order to deepen our knowledge about the TAP, we intend to explore its char-
acteristics in terms of phase space and optima structure. Specifically, the degree
of frustration in the TAP constitutes a fundamental difficulty with the problem.
An important distinguishing aspect in the TAP is the presence of a transition
from sequential to parallel optimal allocation. For example, consider a paral-
lel machine topology consisting of identical processors, with a tunable perfor-
mance rate. Increasing the peak performance continuously from 0 flop/s to
oo flop/s, will induce a transition from optimal parallel- to sequential alloca-
tion, given a finite communication speed within the network. In analogy with
other combinatorial optimization problems that exhibit frustration and phase
transitions, we expect that a phenomenon, known as critical slowing down, can
be observed in the transition region. That is, the difficulty of finding optimal
solutions peaks near the transition region (see e.g. [111]).

In general, the selection of a suited heuristic method for finding (sub)-optimal

21

solutions requires knowledge of the shape of the phase space. Great care has to
be taken in selecting an optimization method, since searching the optimal solu-
tion to the TAP is known to be an NP-hard problem [8]. Hence, a study on the
structure of the landscape of the TAP is necessary in order to identify effective
optimization methods. Furthermore, the sensitivity of the TAP to a small set
of machine and application specific parameters is investigated. We restrict our
attention to a specific subset of the TAP. The focus will be on applications that
can be described by static parallel task graphs. In addition we assume to have
a static resource parallel machine that is homogeneous and fully connected.

This section is structured as follows. Section 3.1.2 introduces application and
machine representations that are used to model the performance characteris-
tics of parallel static applications on parallel machines. Section 3.1.3 gives a
detailed study on the structure of the phase space (or landscape) of the TAP.
Section 3.1.7 is dedicated to the geometrical phase transition occurring in the
TAP. In section 3.1.11 the following experimental methods are presented: Sim-
ulated Annealing (SA) [53], for finding optima, and Weinberger correlation for
phase space structure characterization [110]. In section 3.1.15 experimental re-
sults are presented, which are discussed in section 3.1.20. Finally, some con-
cluding remarks and directions for future work are given in section 3.1.23.

3.1.2 Application and Machine Models

In order to facilitate our study on abstract parallel applications we introduce
a random graph representation as a model of static communicating parallel
tasks. Each task is assigned a workload and every pair of tasks (vertices) in
the task graph is connected with a probability v (y € [0,1]). A message size is
assigned to each link between two communicating tasks. We restrict our atten-
tion to constant work loads and message sizes. Furthermore the target proces-
sor topology is assumed to be a static parallel machine that is fully connected
and homogeneous. That is, communication channels between all processor
pairs are bi-directional and have equal bandwidths. Moreover, the processors
are homogeneous, i.e. they have identical constant performance.

The metric for deciding on the quality of a task allocation is the turn-around
or execution time. A variety of cost models that are based on a graph rep-
resentation can be found in literature. For example, the following cost func-
tion (22) [51], is known to model the actual execution time for a given task
allocation with reasonable accuracy. Of course it is a simplification of the real
situation, i.e. message latencies and network congestion are neglected.

H = W, S Spa W u; 22
I;leaé((u%;{q w; q+ui61/{‘lr,1113)€(¢4(ui) pq ulu]>a ()

where

e u; is a task in the parallel task graph

22

Q: the set of processors

A(u;): the set of tasks connected to task u;

U: set of tasks u; residing on processor ¢
o W,,;: Work associated with task u; (e.g. in terms of flop)

e S, ——L_— for processor ¢ (e.g. in s/flop)

q* processorspeed

Wy,;w;: Number of bytes to be sent, due to nodal connectivity, between
host processor of task u; and task w;.

 Spy g of route between processor p and ¢ (in s/bytes)

A property of this specific function is that the execution time is determined by
the “slowest” processor in the parallel machine. This cost function is a reason-
able representation of the actual execution time.

Because the value of H (Eq. 22) can only change in task transfers that involve
the slowest processor, it is not very sensitive to task rearrangements. There-
fore it is unsuitable for local search optimization techniques like SA. Usage of
SA for finding optimal solutions necessitates formulation of an alternative cost
function like (23), see e.g. [67].

H=Y W, +u) Cu (23)
P p#4q

where

o W, =A,S,, with A,: 3~
flop.

w;cur Wu;, total work on processor p in terms of

o Cpg = MpqSpq, With Mgz 37, ey cq Wi -
e /1 is a control parameter, expressing the communication/calculation ra-
tio [26].

An incremental search from a given allocation (moving one task), requires a
complete re-calculation of the cost for Eq. 22. On the other hand, Eq. 23 has
the locality property, which means that incremental changes in a task alloca-
tion can be propagated into the cost without having to recalculate the whole
cost function. Only a difference has to be calculated instead[28]. This is specifi-
cally useful if an optimization algorithm is applied that is based on incremental
changes (e.g. SA), and as such can exploit the direct consequence of these in-
crements. A disadvantage of using (23) is the fact that it is a not a correct model
for the absolute cost. The objective is to minimize the variance in the workload
distribution simultaneous with the communication volume of the whole sys-
tem, opposed to optimization of the execution time of the slowest processor in
Eq. 22.

23

3.1.3 Correlation Structure of the TAP

The configuration space C' of the TAP consists of all possible task allocations
of the n tasks to the P processor topology. A configuration can be encoded
as a sequence of length n, which is composed of letters taken from the alpha-
bet {1,2, ..., P}. The index of a sequence letter corresponds to a task ID. The
distance is given by the number of positions in which two sequences A and B
differ; this metric distance measure is the Hamming distance [39] d(A, B). The
Hamming graph can be constructed by connecting every sequence pair (4, B)
thathas d(A, B) = 1.

The number of configurations with a given distance d from an arbitrary refer-
ence point N (P, n, d), the total number of configurations #C, and the diameter
in the configuration space, diamC' are easily found to be:

N(P,n,d) = (Z) (P —1)¢ (24)
#C =P (25)
diamC =n (26)

A random walk through some landscape, can be used to characterize its struc-
ture [110]. For landscapes that are self-similar it is known that the correspond-
ing random walk auto-correlation function is a decaying exponential, with cor-
relation length A. Such landscapes are classified as AR(1) landscapes and have
been identified in various fields, e.g. (Bio)physics [110] and combinatorial op-
timization [103][104]. It has been shown that incremental search methods like
Simulated Annealing perform optimally on landscapes that show a self-similar
structure [102].

We will derive expressions for the relaxation and auto-correlation functions of
random walks through the task allocation landscape. The relaxation functions
indicate at what rate a random walk through the Hamming graph deviates
from the starting point, analogous to e.g. relaxation of diffusion processes in
physical systems.

The auto-correlation function is used to quantify the rugged-ness [110] of the
landscape of the TAP. The landscape constitutes the Hamming graph with cost
values that are assigned to all vertices according to Eq. 23. Using these expres-
sions it is shown that the landscape is AR(1) with a correlation length that is
linearly proportional to the number of tasks n.

3.1.4 Relaxation of random walks

The statistical properties of random walks on the graph C' are completely con-
tained in the probabilities ¢s4, where ¢4 denotes the probability that a random
walk is within a distance d from the starting point after s steps. In general this
probability distribution fulfills the following recursion relations on any dis-
tance transitive graph (following [103]).

24

bsa = A Ps—1d-1 + AYPs_1a + Q7| Ps—1d41 (27)
oo =1
¢sa = 0, if d>s

The coefficients a}, a and a; denote the probability of making a step “for-
ward”, “side ward” and “backward”, respectively, given the walk is within a
distance d from the starting point. Therefore a,; + a + a is equal to 1. For the
TAP graph C we obtain the following expressions:
+_ (n—d)(P-1)
o = 2D 28)
n+ (P —2)d
nP
ag = d/(nP)

o =

Although we have no closed expression for the ¢,4, we can obtain some insight
into the relaxation behavior of random walks from the expected values of the
distance (first moment) and the squared distance (second moment) from the
starting point after s steps along the walk:

Ai(s) =) ddsa (29)
d=0

As(s) =D d*hua
d=0

Using Egs. 27 and 29, we can derive recursion relations for A; (s) and A, (s):

S
Aq(s) = Z d(a} | ¢s—1,4-1 +aJps_1,a + Qg1 Ps—1,d+1)
d=0
s—1

=Y e-raldlaf +ay +a7) + (aj —ay))
d=0

s—1
=3 beuldtaf—a) (0
d=0

And analogously:

S
As(s) = Z d*(ay_1hs 141+ Aqds 14+ Ay, Ps 1d41)
d=0
s—1

= Z bs—1a(d* +2d(a) —ay) +a) +ay) (31)
d=0

25

Filling in the explicit expressions for the coefficients (see Eq. 28) we obtain:

Ai(s)=(1— %)AI(S 41— %) (32)
2 2 2 1 1
Mo(s) = (1= DAs(s =D+ (2= 5+ -5 - DAi(s =D+ (1-5) (3

The fixed points of these difference (or recursion) equations are unique and
correspond to the limit s — oo, or equivalently, random sampling, They are
found to be

Ay (OO) =< d(Aa B) > random™= n(l - %) (34)
n(P—-1)(1—n+nP)

AQ(OO) =< dQ(AaB) >random™=

P (35)
where A and B are random configurations (with d(A4, B) the distance between
A and B).

We can define the corresponding relaxation functions g;(s) [103] as follows:

_< dk(A,B) >random — < dk(AO,As) > Ag(s)

ar(s) = <d" (A, B) >ronaom =1 R ©9

where k = 1,2 and Ay and A; are the initial and final point of a random walk
of length s.
After rewriting, we arrive at the following recursion relations for the gy (s):

1
0(s) = (1= Dai(s — 1) @7)
()_ql(s—l)(2—2n+2nP—P)+ (_1)(1_2) (38)
2\8) = n—n?(l—P) 213 n
Clearly for ¢ (s) we can obtain immediately:
1
¢i(s)=(1-—) =e/m (39)

Where 1, = m ~n.
To arrive at a closed formula for ¢»(s) first the recursion relation for ¢2(s) is
rewritten by the relation for ¢ (s):

©(s) =q@(s—1Dg+a*'b (40)

whereb:%,a:(l—%)andg:(l_%)‘

since ¢2(0) = 1, we can derive that:
s—1 g
— 45 b s—1 JNi 41
@(s) = 9" + ba ;(Cg (41)

26

In the sum term we recognize the geometrical series:

s—1

S AP
P — (42)
4 11—z
i=0
which leads to the general expression:
b b
= d°(1 _ 8
R e (43)
which can be rewritten using two different relaxation times (7 and 7).
b b
— 1 —S/TQ _ —S/T1
g2(s) = (+g_a)e g—ae (44)
obviously,
= L ~n (45)
Ina
and
1 n
=~ = 46
72 Ing 2 (46)

3.1.5 Random walks through the TAP landscape

In the previous subsection we have restricted our attention to the correlation
structure of distance sequences on the Hamming graph. In this section to every
vertex in the graph a cost value will be assigned according to function H, e.g.
Eq. 23.

Weinberger [110] proposed the autocorrelation function:

o(d) = <(H(A)-<H >)(H(£2?>— < H >) >4(4,B)=d @)

ag

(where d is the number of random walks steps and ¢ is the variance of H), as
the most useful characteristic of a fitness landscape H : C' = IR. Apart from
totally uncorrelated landscapes, p(d) = d(d, 0), the simplest class consists of the
nearly fractal AR(1) landscapes. A time series which is isotropic, Gaussian and
Markovian will lead to an autocorrelation function of the form characterized
by [110]:

pld) =~ p(1)* = e d < n (48)
where A is the correlation length.
The definition of the autocorrelation function, (47), can be rewritten as
< (H(A) - H(B))? >d(A,B)=d
202

p(d) =1- (49)

27

According to Eq. 48, the auto-correlation function for an AR(1) landscape can
be determined from analysis of the 1-step auto-correlation. Let ¢ and #' be two
configurations with d(¢,¢') = 1 and corresponding costs H and H'. According
to (49) we can write:

_ 2
o)y =1 SH=H)Y > 4 (50)

202

We assume that ¢ < 1, which is reasonable, since we look at a small variation
in H.
If ¢ is sufficiently small we have

1 1

1
A=— =— S 51
o)~ In(1-6) "€ G
or equivalently,
202
‘\cTm-mes 2

3.1.6 The one step correlation function for the Task Allocation Problem

As previously stated, we consider the task allocation problem for a proces-
sor topology that is fully connected and homogeneous, so processor- and link
speeds are set to unity. Furthermore the work per task is considered to be
unity. We consider a general class of random task graphs. Each pair of tasks
is connected with probability . In graph theoretical terms we consider simple
graphs, so maximally one edge connects two vertices (tasks) and a task is not
connected to itself.

The TAP phase space properties are studied using the cost function (23). If we
mutate the allocation number of task & (in an arbitrary initial configuration) we
can derive the following formula for the change in cost 6 = H — H':

SH = 2w (Wi, — Wy, — wi) + 2R (53)

if task k gets assigned a new allocation number. Else 0 H is 0.

wy, is the work associated with task &k, m is the previous allocation number, n
the new one, W, is the execution time due to the work on processor m and
equivalently for processor n. Both calculation time values are taken before the
mutation. The term R denotes the change in the communication cost (commu-
nication cost before - communication cost after).

However, we are interested in < (0H)?) >. After some algebra we obtain:
(including the fact that only a fraction (P — 1)/ P of the mutations contributes
indeed the amount (53)).

P-1
< (6H)?) >= T(4(1—2 <R>+<R>42<W2> - < Wy, W, >+ <W,R>— < WpR >)))
(54)

28

So, in order to obtain an analytical expression for (54) we need to calculate six
quantities: < R >, < R? >, < W2 >, < W,,W,, >, < W,,,R > and < W, R >.
Before continuing with our derivation of the one-step auto-correlation, first an
expression for o2 will be derived.
We have

0’ =<H?’>—- < H>*? (55)

The simplest of the two terms is < H >2. We can see that

<SH>=) <W7>+) <Cpy> (56)
p

p.q

The probability that a given task i gets assigned a specific allocation number
J is denoted by ¢, consequently the probability that the task doesn't get the
allocation number is equal to 1 — g. So we can consider this as a binomial
distribution.

The probability that & tasks get assigned to a specific processor number is there-
fore given by:

(. >q’“(1 —q" (57)

Obviously ¢ = +. The expectation value for k is given by < k >= ng = n/P,
whereas the variance < k* > — < k >? of k is equal to %(1 — 5).
This leads us directly to the following expression for < k? >:

9 n,n 1

<k >_P(P+1 P) (58)
which is equal to < W > in the case that all tasks have unit weight.
Next, consider < Cp, >. We are interested in the probability of having [tasks
on some processor p, and k tasks on another processor ¢, sharing = edges. We
denote by P(z N (I N k)) the probability that the above event occurs. We can
express this probability as a product of two other probabilities using Bayes
theorem:

Pxn(Nk))
P(Nk)
So, the probability that we look for is P(zN(INk)) = P(z|iNk)P(INk); the prod-
uct of the probability that we have I nodes on some processor p and k nodes on
some processor ¢, times the probability that given the first restriction the tasks
on these processors share = edges. This leads to the following expression for

the expected communication between an arbitrary processor pair:

P(zllnk) = (59)

<Gy >= zl: < f > ¢ (1-q)"™" Zk: < "o > a5 (1—q)" " Xw: (la]f) 7 (=) e

(60)

29

Where, ¢; = P and ¢» = $— which reduces to

—1 g
<Cpq>=<$>zz<?>q1 (1—q)"" lz<n)qg 1— o) ' Fyki

l

(61)
And therefore
< Cpg >= Z (7 > ¢ (1= q)" "l(n = D)go (62)
1
Simplifying to
<Cpy>=7nge <1>—yga <> > (63)
We already saw that <[> >= (L + 1 - L)and <! >= %, so
n(n—1
< Cpy>=y"0 21 (64)

This gives us the following expression for < H >, where we take into account
that the < TW? > term counts P times, and the < C},, > term counts P(P — 1)
times.

1 (P—-1)n(n—-1)

Next an expression for < H? > will be derived.

) (65)

SH>>=<Y W;W; 42> WCno+ Y, CyuCmo> (66)
p.q p,0,m q,r,m,o0

or,

<SH?>=< Y WZWZ>+42< > WiCme>+< > CpCmo> (67)

p.q p,o,m q,r,m,o

The first term can be rewritten in two separate sums. We must distinguish the
possibilities p = g and p # q.

Z W2W? = Z Wy + > Wowy (68)
p7q
Let's consider the case of p=q. Assummg k tasks on processor p we have

n
<Wy >=<k! >:zk:< A >qk(1—q)(n—k)k4 (69)
For a binomial distribution the kurtosis (4th moment)

1 —6g(1 —q)

< (k= <k >)* >= (ng(1 - q))*(3 + ng(1—q)

) =my (70)

30

And thus,

<kE'>=my+4<kE><k> 6<k2><k>>43<k>? (71)

Furthermore the skewness (3rd moment) is given by

< (k= <k>)P >=nq(1—q)(1-2¢) =< k* > -3 <k >< k> > +2 <k >*=my
(72)
or,

<k >=3<k><k’>>-2<k>+ms (73)
Finally we find, since < k >= ng and < k? >= ng(nq + 1 — ¢) that

n(—6+11n—6n*+n*+12P —18nP+6n>P —7P? + TnP? + P?)

4 _ 4
< Wy >=<k'>= Pt

(74)
Next, consider p # ¢, thatis < W)W} >=< k*I* >.
In an analogous manner one arrives at:
—14+n)n(6-5n+n>2—4P+2nP+ P?
<WIW; >= ()n B) (75)

In case of the interference term < Wﬁ Cqr >, we must consider the cases p #
gF#randp=q#r.

For the first case we get:
yn (2-3n+n?) (-3+n+ P)
Pt

<W)Cqr >= (76)
And for the second case :

Y (=14+n)n (6-5n+n*—6P+3nP+ P?)
pt

<W7Cyr >= (77)

Finally, we are left with the < C,,Cy; > terms.

For this case we can distinguish the following (contributing) cases:
1. g # s # r # t, leading to terms of the form < C,,Cys; >
2. ¢ = s #r #t,leading to terms of the form < C,Cys >
3. ¢ = s # r =t, leading to terms of the form < C,Cy, >

Analogous to the method above the following expressions can be derived.

y(=14+n)n (6y—5yn+yn?>—4yP+2yn P+ P?)

= (78)

< CpCyp >=

31

Y*n (2-3n+n?) (-3+n+ P)
Pt

< CpCy >= (79)
vn (—6—}—1171—6712 +n3)
Pt
Having available all the essential terms for < H? >, we can now write down

the full formula, taking into account the proper pre-factors:

< CpCly >= (80)

<H*>=P<W;>+ (81)
P(P-1)<W W} >+
2P(P—1)(P-2) <W)Cy > +
2P(P —1) < W.Cqr >) +
2P(P —1) < CpypCypr > +
4P(P—1)(P —2) < CpoCy > +
P(P —1)(P -2)(P -3) < CyCy >

Filling out all terms and simplifying the expression we finally end up with the
following expression for the variance o%:

2= (-n(d+y(P-1)F-1)
p2?
Note that, because of the appearance of v? terms, Eq. 82 can only be used to

predict the variance of an ensemble of random graphs with fixed ~. This is due
to the following fact

<H?>—- < H>%=

(82)

(Z deg(i))® # Z(deg(i))2 (83)

which states that the squared sum over the individual vertex degrees is gener-
ally not equal to the sum over the squared vertex degrees.

So in order to experimentally verify this result we must calculate the variance
over multiple graph instances. The 7? term is not present in the expression for
the average cost (Eq. 65), which implies that it is valid for a specific random
graph instance.

Then let's turn to < (§H)?) >. We can express this as follows:

< (6H)?) >= 4@& R*>> -4 <IR>+2(< > > — <kl >)) (84)

In the averaging procedure, we consider 6 H for only those cases that one pro-
cessor has (I + 1) tasks (so at least 1), and the processor that the transfer is to
has k tasks.

The following expressions for the individual terms can be derived:

32

2y (=14n)

< R?>= >
Cpas (10 (];22+n+P)
< Bl >e (—2—|—n3D§—1+n) (85)
which leads to
< (GH)?) >= 8 (=1+4) (1P—2 n) (=14 P) (86)
And thus our one-step auto correlation:
Applying Eq.(52) we find directly
A= Z(1+y(P 1) (88)

We see that for fixed v and P, A is linearly proportional to the number of tasks
n. Note that we have assumed that P > 1 in our derivation, otherwise p(1) is
not defined.

It is very important to observe that there are no dependencies of ~%in Eq. 86,
which implies that the variance in v (due to o) does not get eliminated. Strictly
speaking this means that the derived formula for A does not correctly predict
the correlation structure of the landscape for single task graph instances. How-
ever, the n/2 term is obviously present in Eq. 88, which corresponds to the cor-
relation time 75 derived in section 3.1.4. In section 3.1.15 we shall see that this
is also the correlation length found experimentally.

3.1.7 Physics of Task Allocation

It can be shown that the Hamiltonian (energy function) of a spin glass is sim-
ilar to the cost function of a well known NP-complete problem: graph bi-
partitioning [71]. The cost function of the graph bi-partitioning problem can
be considered as a special instance of that of the TAP. In analogy with spin
glasses and graph bi-partitioning the TAP Hamiltonian will be formulated.
Application and machine specific parameters are used to distinguish two dif-
ferent phases (a sequential- and a parallel allocation phase) in the spectrum of
optimal task allocations. The location of the separation between the two phases
as a function of the aforementioned parameters is determined by a mean field
argument. This location gives a rough estimate of the transition region.

33

Many search methods have been shown to behave anomalytically for certain
critical parameters of the instance of combinatorial search problems [111] (crit-
ical slowing down). We speculate on the existence of such an anomaly (often
observable as a sudden increase in the search cost) in the spectrum of TAP in-
stances.

3.1.8 Spin Glasses and Graph bi-partitioning

In the area of condensed matter physics, a canonical model to describe the
properties of a magnet is the Ising model. In d dimensions this is a regular
square lattice of atomic magnets, which may have spin up or spin down. For-
mally, we have n variables s;, one for each individual magnet, where s; can
take on values +1 or —1. The Hamiltonian describing the magnetic energy
present in a specific configuration, without an external magnetic field, is given
by:

H = _ZJikSiSk- (89)
k>i

For the Ising spin model, the interaction strength J;;, is constant. However,
if the J;;'s are independent negative and non- negative random variables, we
obtain the spin glass Hamiltonian. The spin glass model exhibits frustration,
opposed to the (square-lattice) Ising model. This specific characteristic of the
Ising system causes only two ground states to be present in the Ising model (all
spins up, or all spins down) and many (highly degenerate) ground states for
the spin glass. While in the Ising model, each pair of aligned spins contributes
the same amount of energy, this is not true for a spin glass. Alignment with
one neighboring spin can result in an energetically unfavorable situation with
another neighbor.
A well known NP-complete problem, graph bi-partitioning, has a cost function
which is equivalent to the Hamiltonian of the spin glass model. We consider a
graph, a set of n vertices and E edges. A configuration is an equal partition of
the vertices. This can be expressed with the following constraint:

> s =0, (90)

where s; = 1 if vertex i is in partition 0 and s; = —1 otherwise. The edges
can be encoded with a connectivity matrix J;;. Such that J;; = 1if ¢ and k
are connected and J;; = 0 if not. The Hamiltonian of a configuration can be
expressed as follows:

H = ZJzk(l —sisk)/Z. (91)

i<k
Eq. 91 is equal to the spin glass Hamiltonian (Eq. 89), up to a constant value
of 3,1, Jit /2. The constraint (90) introduces frustration, otherwise the cost

34

would be minimal for all vertices in one partition. In other words, without the
constraint we would have a simple Ising ferro-magnet.

For a detailed review of spin glass theory and graph bi-partitioning we refer to
the book by Mezard et al. [71].

3.1.9 Task Allocation Hamiltonian

In analogy with the models above we can rewrite the task allocation cost func-
tion (23) as follows:

ZJzk 57,7519 +ﬂZVVl ’ (92)
i>k
1 if sy =
(siy85) = { 0 otherwise '’

The processor to which task i is allocated, is denoted by s; € {1... P} and P is
the number of processors. J;; is a contribution to the communication between
the host processors of tasks i and k, resulting from the connection between
these tasks. W, the total calculation weight on processor [, following from the
individual workloads of all allocated tasks.

Note that we have introduced a parameter 3 into the Hamiltonian. This -
parameter can be varied in the range [0, 1], in order to tune the amount of
“frustration” between the calculation and the communication terms. Varia-
tions of J can be interpreted either as variation in an application's calculation-
communication ratio or a machine's processor speed - bandwidth ratio [26].
The connection probability v in a random graph, can be considered as a dual
parameter for 3. v can be increased in the range [0, 1], which is equivalent to
augmenting the average communication load, which can also be realized by
decreasing (.

3.1.10 The TAP Phase Transition

Although the task allocation problem is NP-hard [8], the two extremes, 3 = 0
and 3 = 1 are easy to solve. For 3 = 0, the only relevant term in the Hamilto-
nian is an attracting communication term, which will cause all connected tasks
to be allocated to one processor. For this extreme, the number of optima is
exactly P. The corresponding lowest energy state will have value zero. This
situation corresponds to a parallel machine with infinitely fast processors.

For 8 = 1 there is only a repulsive workload term, which will force that the
variance in the workload distribution is minimized. This results in an equal
partitioning of the total workload over all available processors. It can easily be
shown that the total number of optima in this case equals:

1 (sm) = *

35

It is assumed that the n tasks have unit weight and that n/P is integer. The
corresponding optimal cost value obviously will be n?/P.

In the case of § = 0 the P optima are maximally distant in terms of the defined
distance metric (see section 3.1.3). The P-ary inversion operation (analogous
to spin-flipping in spin glass theory) and arbitrary permutations applied to
a given optimal configuration leave the value of the Hamiltonian invariant.
Note that, in this case, the TAP landscape is highly symmetrical. The entire
landscape consists of P identical sub-landscapes. Each sub-landscape has only
one optimum, which is automatically the global optimum.

In case of § = 1, the optima are relatively close to one another. Again, we can
distinguish two types of operations that leave the value of the Hamiltonian in-
variant. The first type is trivial, that is, permutation of tasks allocated to the
same processot, since this corresponds to the same point in phase space. The
second type may change the point in phase space. Examples of such operations
are rotation of the sequence and permutation of two arbitrary tasks.

From the perspective of parallel computing it is most ideal when all processors
are engaged in a computation. However, the employment of all available pro-
cessors does not always correspond to the optimal solution due to the commu-
nication overhead. Both machine and application specific parameters, which
can be summarized as the ratio between the communication and calculation
time, determine this optimal value.

We can observe a transition from sequential to parallel allocation when 3 is
increased from 0 to 1 (or equivalently, if y is decreased from 1 to 0). In order to
quantify this transition we have to define an order parameter, which is a measure
for the degree of parallelism present in an optimal allocation.

We assume that all tasks and connection weights are unity and define the order
parameter P, quantifying the parallelism in a given optimal allocation:

(< W2 >— < W >2)pP?
n?(P —1)

where W is the time spent in calculation and n?(P — 1)/ P? is the maximal pos-
sible variance in W. Eq. 94 takes the value 1 in the case of optimal parallelism
(8 = 1or~ = 0) and the value 0 (5 = 0 or v = 1) in the case of a sequential
allocation.

Using Eq. 95 which expresses the average cost, which was derived in sec-
tion 3.1.3, we can calculate whether the average cost will either increase or
decrease by using more processors for an allocation. Note that 4 has been in-
cluded into Eq. 65. We expect that the transition from sequential to parallel
allocation will approximately occur for those values of 3 and y for which the
average cost will change from a monotonically decreasing function to a mono-
tonically increasing function of P.

P=1- (94)

<H>:ﬂ”(%+1—%)+(1_5)7u;(”_1)_

We use Eq. 95 to predict for which values of v and 3 the transition will occur ap-
proximately. In Fig. 8 an example of this transition is depicted, for a task graph

(95)

36

750

T
beta=0.1 —
beta=1/6 —--

: 202
700 beta = 0.]

650 |

600 [

550 -/

Cost

500 |

450 |

400 |-

350 L L L L
5 10 15 20 25 30
Number of Processors

Figure 8: < H > vs. P for increasing 3, n = 60 and v = 0.2
with v = 0.2, n = 60. The transition point as predicted will approximately oc-

cur for the following values of # and y keeping one of the two variables fixed
with the additional constraint that 252> = 0.

_ 7
Be = T+ (96)
Ye = % (97)

We interpret 3. and . as the “critical” values of # and +y in analogy with e.g. the
critical temperature 7T in thermal phase transitions or percolation threshold p,
in percolation problems. Note that in Fig. 8 there is a point where the average
value of the Hamiltonian is independent of 3 (approximately at P = 7). This
is due to the fact that Eq. 95 contains 3 independent terms and therefore the
dependent terms can be eliminated for certain values of P, given fixed n and

Y-

3.1.11 Experimental Methods

In this section several experimental methods that will be used in our study
are introduced. Firstly, SA which is used to find sub-optimal solutions to the
TAP. Secondly, a method is presented to quantify the computational search
cost. Thirdly, we will briefly discuss an experimental method to determine the
correlation length of the phase space of a TAP instance.

3.1.12 Simulated Annealing For Optima Search

In simulated physical systems, configurations at thermal equilibrium can be
sampled using the Metropolis algorithm [70]. The determination of the loca-

37

tion of the critical temperature, can be established by sampling at fixed tem-
peratures over some temperature range.

In the case of task allocation we are not interested in finding equilibria, but
optimal configurations. For this purpose, exhaustive search is the only correct
method that can be used for finding global optima. Unfortunately, this can
be very inefficient and in worst case requires exponentially large search times.
Therefore another more effective search method has to be selected.

In previous work [18][94], we have applied a Parallel Cellular Genetic Algo-
rithm (PCGA) to find optimal solutions to the TAP in a parallel finite element
application. Another possibility is using SA. The usefulness of SA on the TAP
depends on the shape of the phase space. In section 3.1.3 we argued that the
landscape has a self-similar structure, which is an indication of good perfor-
mance of local heuristic search techniques. Indeed we have found that SA, was
superior to GA, both in efficiency and quality of the solution. Therefore SA is
applied to find the (sub) optimal solutions.

3.1.13 Search Cost Estimation

In comparable (NP-hard) problems the computational cost of determining the
(optimal) solutions shows a dependence on problem specific parameters [112][42][12].
For example, in the case of graph coloring it has been observed that the “dif-
ficulty” of determining if a graph can be be colored, increases abruptly when
the average connectivity in the graph is gradually increased to some critical
value [111].

Another example of a system where computational cost is affected by such pa-
rameters is that of a physical system where a thermal phase transition occurs
(like the Ising model). The difficulty of finding the equilibrium value increases
when the critical point is approached, and theoretically (in the thermodynamic
limit) will become infinite at the critical point. This is generally referred to as
critical slowing down.

In analogy with this behavior we expect that in the task allocation problem
comparable phenomena can be found in a critical region of the 8 and y-domain.
For both 3 extremes the optima are known in advance. The difficulty to find
these optima is therefore reduced to order unity. If the calculation and the
communication term in the Hamiltonian (92) are of comparable magnitude we
can say that the system is in a critical (or frustrated) area. Moving away from
this critical region one term becomes small noise for the other.

We are interested in a method for obtaining an estimate of the computational
cost (difficulty) of finding optima for given problem parameters. In order to
quantify the search cost, we measure the number of local optima, in which
independent steepest descent runs get stuck. A specific search space is consid-
ered to be “simple” if it contains a relatively small number of local optima. On
the other hand, if the number of local optima is large the corresponding search
space is classified as “difficult”. The distinction between local optima is based

38

on the cost of the corresponding task allocations. That is two allocations 7 and
j (that are local optima) are called distinct if:

H(i) # H(j) (98)
In the experiments below, the number of steepest descent runs is taken to be
10n, with n the number of tasks.

3.1.14 Measuring Phase Space Structure

The structure of the TAP phase space is characterized using the auto-correlation
function (99) of a random walk.

< H(A)H(B) >qa,p)=a — < H >?
p(d) = =
where d(A, B) is the “distance” between two configurations A and B as intro-
duced in section 3.1.3. The value for A for the task allocation phase space can
be directly determined from p(1).

; (99)

3.1.15 Experimental Results

In this section experimental results regarding the statistical quantities, correla-
tion length, phase transition and search cost for the TAP are presented.

First a number of experiments, conducted to verify the analytical results de-
rived in section 3.1.3 are given. It is established that the TAP landscape is
AR(1), which supports the argument for using SA in the subsequent experi-
ments for finding optimal allocations.

The occurrence of the phase transition for several parameter values is observed
in the corresponding experiments. Complementary to the phase transition is
the divergence of the computational cost, which is also shown to manifest itself.

3.1.16 Statistical Quantities and Correlation Length

In for example the Traveling Salesman Problem (TSP) [103] statistical quantities
of the landscape of random TSP instances can be obtained by random walk
averaging. This is not possible for TAP. Only for both connectivity extrema,
v = 0.0 and v = 1.0, the random walk is self averaging, which means that
the ensemble average can be obtained by a random walk. For other values
of v each instance of a random graph differs in connectivity from the other,
which implies that statistical quantities can only be estimated by averaging
over multiple instances of random graphs.

The determination of the auto-correlation functions is obtained using a specific
instance of the TAP with fixed 7, n and P. We can not use the derived formula
for the variance to predict the variance of a single TAP instance, this is due to
the presence of 72 terms in the expression for o2 (see Eq. 82). Such terms are
not present in the formulae for < H > (Eq. 65) and < (6H?) > (Eq. 86).

In all figures error bars are displayed, if applicable.

39

6000 T T T T T 4000

3500
5000

3000

4000 -
2500 -

3000 4 8 2000 |

<Cost>

1500
2000

1000 &

1000 -
500 -

20 40 60 100 120 140 0 02

80 04 06
Number of Tasks Average Connectivity

Figure 9: < H > for different n Figure 10: < H > for different v

3.1.17 Experimental Verification of Cost Terms

2200 T T T T 14e+07

2000
12e+07 [

1800
1e+07
1600 -

1400 | i o Se0sf

<Cost>
t

S
1200 4 Y sesos |
1000
4e+06 -
800

2e+06 -
600 -

10 15 04 06
Number of Processors Average Connectivity

Figure 11: < H > for different P Figure 12: < H? > for different v

In this section we experimentally verify the derived expressions (Egs. 65 and
81) for the expected cost and expected squared cost. Furthermore the equation
for < (6H)?) > (Eq. 86) is experimentally verified. We have carried out exper-
iments with variable number of processors (P), connectivity (y) and number
of tasks (n). For each variable parameter the other two parameters were kept
fixed (n = 60, v = 0.1 and P = 4). The results are shown in Figs. 9-17.

3.1.18 Analytical and Measured A

In this section the correlation length is experimentally determined. For these
experiments random walks through the TAP landscape with approximate lengths
of 10° steps were generated. Subsequently, the autocorrelation functions using
the values encountered were calculated.

In Fig. 18 two measured and predicted correlation functions are displayed.
In the first experiment we have used 100 tasks, 8 processors and a connection
probability of 0. In the second experiment a TAP instance with a non-zero
connection probability (y = 0.5), n = 64 and P = 4 was used.

40

450+06 T T T T T T T T 3.5e+07

2e+06 &
3e+07 [

3.50+06 -
250407 [
3e+06 -

1 250406 - 4 o ®r

<Cost2:
v

26406 - ¥ sesor |

1.5e+06

16407
1e+06 - 1

5e+06 -
500000 - 4

° L L L L L L L L 0 L
2 4 6 8 14 16 18 20 20 40 60

100 120 140

10 12 80
Number of Processors Number of Tasks

Figure 13: < H? > for different P Figure 14: < H? > for different n

180

<DeltaCost"2>
]

<DeltaCost"2>
g

20 40 60 80 100 120 140 0 02 04 06
Number of Tasks Average Connectivity

Figure 15: < (60H)? > for differentn Figure 16: < (0H)? > for different v

3.1.19 Phase Transitions and Computational Search Cost

Several experiments are performed to demonstrate the existence of a phase
transition, and the location of the transition as predicted by Eq. 96 is checked.
The experiments to which the depicted data corresponds were carried out with
n = 64 and P = 8. In Fig. 19, § is varied in the range [0, 1] and is fixed at
two different values (0.2 and 0.4). In Fig. 20 the dual experiment is performed,
now 7 is varied in the range [0, 1] and £ is fixed at the value 0.25. The results
presented are comparable with those found for arbitrary parameter values. The
mean field transition points are plotted as vertical lines.

In Figs. 21 and 22 the divergence of the search cost near the transition point
can be observed. The method described in section 3.1.13 is used to quantify
the cost. In Fig. 21, n = 32 and P = 4 and 7 is fixed to 0.5. An increase in the
number of local optima is found around the location of the phase transition.
Another example is shown in Fig. 22, where n = 64, P = 8 and § is fixed to
0.2. Again the computational cost increases in the neighborhood of the phase
transition.

41

n=64 o
exp(-s/32) -
n=100 +
exp(-s/50)
120 psls0)

<DeltaCost"2>

14 16 18 20

2 4 6 8 10 12
Number of Processors

Figure 18: Analytical and experimental
values for the autocorrelation function
n =100, P =8and v =0.0and n = 64,
P=4and vy =0.5.

Figure 17: < (6H)? > for different P

Transition for gamma = 0.2 and gamma = 0.4 Transition for beta = 0.25

=02 — beta =025 —
=04 - 0.25/0.75 ----

oo

Parallelism
Parallelism

Figure 19: phase transition with fixed v Figure 20: A phase transition with 8 =
(0.2 and 0.4) and increasing 5. The ver- 0.25. The vertical solid line indicates
tical solid lines indicates the location of the location of the transition as pre-
the transition as predicted by Eq. 96 dicted by Eq. 96

3.1.20 Summary and Discussion

In analogy with graph bi-partitioning and spin-glass theory we have constructed
a cost function that expresses task allocation quality into a Hamiltonian form.
It has been argued that the TAP is an example of so called frustrated systems,
and as such is expected to show typical complex behavior. The competition
between the calculation and communication terms in the Hamiltonian is the
source of frustration. In order to facilitate our study on frustration in the TAP
a control parameter § was introduced into the Hamiltonian. The 3 parameter
can be considered as a dual parameter for the degree of connectivity between
tasks in the task graph. In the case of random task graphs v is the connec-
tion probability between vertices (or tasks). The 3 parameter has an important
interpretation in terms of high performance computing terminology. It either

42

P,Cost

Figure 21: Computation cost diverges
at the phase transition, P = 4,n =
32,y = 0.5, 8 varied

Figure 22: Another example with n =
64and P =8, 3 = 0.2, v varied.

expresses an application's calculation-communication ratio or a machine's pro-
cessor speed-bandwidth ratio.

In order to select a suitable method to find optima several aspects of the TAP
phase space were investigated. Firstly, some basic characteristics like the size
of the TAP phase space and its diameter were given. Secondly, the concept
of AR(1) landscapes was discussed and the performance of SA on landscapes
that exhibit such structure. We have derived the correlation length of a random
walk trough the TAP phase space. First we derived analytical expressions for
the relaxation functions on random walks through the TAP landscape. It was
shown that the correlation length of the phase space corresponds to one of the
two relaxation times (72) found in this expression (Eq. 44). Secondly, a formal
expression for both the variance of the cost and the squared difference in the
cost between two subsequent allocations was derived.

The number of global optima for the extreme values of § in the Hamiltonian
was discussed, as well as the invariance properties of the Hamiltonian in these
cases. An order parameter P, was introduced to quantify a degree of paral-
lelism. Using an expression for the average value of the Hamiltonian (or cost)
a rough measure was given for the location of the transition region where the
optimal solution changes from sequential to parallel allocation.

Next, the observation was made that comparable systems show divergent be-
havior in the computational cost that is associated with finding optimal values
in a critical region, e.g. near a phase transition. It was argued that the transi-
tion of sequential to parallel allocation, induced by varying 3 or v, is expected
to give rise to analogous critical behavior for the search cost in the TAP.

3.1.21 Statistical Quantities and Correlation Length

From Figs. 9-17 it is clear that the analytical formulae predict the corresponding
average quantities to a high degree of accuracy. The specific choice of param-

43

eters does not influence the accuracy of the experiments. In other words, the
specific problem instances for which the data are shown are indicative for the
correctness of the derived expressions.

We only have an expression for the variance over an ensemble of random
graphs with a fixed value of . This can not be used to predict the correlation
length ()) of the autocorrelation function for a random graph instance. There-
fore, we can not derive an exact expression for the one step auto-correlation
function. However the correlation time 7, found in Eq. 44 corresponds to the
correlation length that is found experimentally. Empirically, it can be shown
that the variance of H over a random graph instance is approximately de-
scribed by the following equation:

2y-1)(n-1)n (P-1)
P2

Eq. 100 correctly predicts the variance for a single random graph instance (data

not shown). Using this equation (100) and Eq. 86 we do find the correct predic-

tion of A:

<H?>—- < H>?=

(100)

2 n
p(1) =1 n—))\—2 (101)
The corresponding correlation length A = n/2 indicates that the TAP landscape
is smooth in comparison with that of graph bi-partitioning (A = n/4). The
correlation length is strongly related to the chosen perturbation mechanism.
Increasing correlation length indicates a phase space that is smoother and eas-
ier to search. The fact that the search process benefits from larger correlation
lengths, has been established in [104].

3.1.22 Phase Transitions and Computational Search Cost

As shown in Figs. 19 and 20, the approximate location of the phase transition
that is induced by variation of 3 or v can be predicted by a simple mean field
argument (A practical consequence of this observation is, that given real ap-
plication and machine parameters this can provide an estimate of the “useful-
ness” of parallel computation of the problem at hand).

In Figs. 21 and 22 it is shown that the presence of a phase transition is accom-
panied by the anomalous behavior of the search cost. This behavior is analo-
gous to that observed in comparable combinatorial optimization problems as
argued above.

3.1.23 Concluding Remarks and Future Work

It has been shown that the landscape of the TAP can be classified as an AR(1)
landscape. Given the fact that the correlation length is n/2 for the defined
cost function and neighborhood structure, the TAP is an easier problem to
solve using local search methods than e.g. graph bi-partitioning. In other
work [103], it has been shown that both the landscape of spin-glasses and

44

0 I

SEMI PARALLEL
SEQUENTIAL

ALLOCATION ALLOCATION

NOILYDOT1V 137171vdvd
NOILYDO TV 13717vdvd

SRECIFIC

RDER

¥3AdO O14103dS
¥Y3IAHO "O3dS ON

0.0 B 1.0

Figure 23: The different allocation regimes in the task allocation problem for
varying 3

graph bi-partitioning have a correlation length of n/4, which makes those land-
scapes less smooth than that of the TAP.

The results presented in this section show that the task allocation problem ex-
hibits a variety of interesting properties. For specific parameter sets the task
allocation problem exists only in a small parameter range. Outside this range
the problem is trivial. The problem becomes complex in the range where the
calculation and communication terms are of comparable magnitude. The lo-
cation of this complex region is marked by the presence of a transition from
sequential to parallel allocation. The different allocation regimes are summa-
rized in Fig. 23. The sequential allocation region only contains optima where all
tasks are allocated to one processor. The semi-parallel allocation region can cor-
respond to the following situation. Not all available processors are necessarily
used, due to the high competition with the communication cost. Also the lo-
cality in the task graph has its consequences for the allocation sequence. Tasks
that are connected to one another “desire” to be grouped on the same proces-
sor. The last region, parallel allocation, corresponds to the mode where the inter
task connectivity has become insignificant. This may either be due to a high
speed communication network or weakly connected task graph. In this case
optimal allocations can be realized using scattered decomposition.

In the near future we intend to investigate the effects of introducing locality in
both the task graph as well as the processor topology. Also, we will study the
critical behavior in more detail, by means of finite size scaling experiments [64].
Furthermore, our interest goes out to a thorough understanding of task alloca-
tion in dynamic and heterogeneous parallel applications and machines, in e.g.
cluster computing [79].

45

3.2 An Abstract Cellular Genetic Algorithm for solving opti-
mization problems

Many problems from the natural sciences can be considered as optimization
problems. One approach to solve these problems, is to use numerical methods,
another attractive approach is to use stochastic or natural solvers. Two typical
natural solvers are Simulated Annealing [52] and Genetic Algorithms [43]. A
fundamental problem is that both methods are difficult to parallelize to a level
of high scalability. Classical GAs use global knowledge for their selection pro-
cess. There does not exist a spatial relation between the different individuals.
An essential problem in SA is that the method is inherently sequential. Our
approach to parallelize both methods is to introduce locality by using a map-
ping to a Cellular Automata. Examples in which a GA is mapped on a Cellular
Automata are given in [65], [36], and [107]. In the general case it is not possible
to map SA on a Cellular Automata. However locality can be imposed to SA
by applying a population based algorithm [35]. In simultaneous independent
searches [4] basically the same method is used without interactions.

In [1] a generic algorithm, the so-called Abstract Genetic Algorithm, for both
SA and GA was introduced. The AGA however was not designed to facilitate
parallelization. The purpose of this section is to describe an Abstract Cellu-
lar Genetic Algorithm suitable for parallelization. In this ACGA the locality is
introduced by mapping both GA and population based SA on a Cellular Au-
tomata. We will recognize a general framework of a VIP model, consisting of
“active” individuals (VIPs) with interactions constrained by the lattice topol-
ogy. In this section we address the theoretical considerations and give some
preliminary results of a GA instance of the ACGA, implemented on a sequen-
tial machine.

3.2.1 The Abstract Cellular Genetic Algorithm: a Theoretical Framework

To avoid the use of global knowledge which is necessary in the Abstract Ge-
netic Algorithm of [1] we introduce a local spatial neighborhood structure. In
[1] a neighborhood is assigned to the value of an individual, not to the loca-
tion of an individual. The main idea behind the ACGA is to make an analogy
between the individual (or solution vector) and a cell in a Cellular Automata.
Each individual is assigned to a cell, which explicitly defines its neighborhood
structure. All communication is local, cells can only interact with their direct
neighbors, Consequently we can formulate the ACGA:

46

Initialize

DO

FOR EACH cell in the popul ation

DO | N PARALLEL

Choose a parent |ist (selection)

Reconbi ne parent |ist (reproduction)

Mutate the offspring

Eval uate of fspring

| F of fspring neets sonme criterion (evaluation)
THEN

accept offspring

ELSE

| eave the current individual in its place
ENDI F

ENDFOR

UNTIL sone stop criterion

In order to define the ACGA in a formal way we are going to restrict the op-
timization problem to minimization problems. An object function f : S — IR
over the finite search space S has to be minimized in this type of problem.

The ACGA can be studied in the framework of Probabilistic Cellular Automata[89].
The PCA is a special case of a Probabilistic Automata Network. In the next se-
quel we will call cells (or individuals) nodes, using the definitions of [89].

DEFINITION

Let V denote the set of nodes of an undirected graph G = (V, E). Each node
v € V is called an automaton with a state s, € S. The system state space is
called S = |J,cy S. Each s € S denotes a system state. The neighborhood N
of node v is determined by the neighborhood structure N* C ZZ, which is a
finite set of offsets:

N@® =p+N°={v+a:acN°}
All automata possess the same well-defined transition matrix P, that gathers
the probabilities that a state ¢ transitions to a state j, Vi, j € S. The new system
state s(t + 1) at step ¢ + 1 depends on the previous system state s(¢) and the
transition matrix P:

s(t+1) = g(s(t), P)
where g(.) symbolizes the synchronous updaterule. A PCA is completely de-
termined by the tuple (V, Sy, N*, P, s(0)).

We already mentioned the phrase spatial neighborhood to denote the neigh-

borhood N{*) we defined above. Let us call the other neighborhood structure
that is used to find the new state s, in the next time step the temporal neigh-
borhood:

47

N .S58
A neighborhood associated with an s, € S is denoted by N, o,
L denotes the set of all finite lists of elements in S. A parent-Iist p, € P associ-
ated with a node v is a list of individuals capable of producing new elements.
Following [1], we introduce the sets A, B, C' and three parameters o € A, €
B,~ € C that are chosen by random drawings.
A selection function f} : A x N = Pis used to choose a parent list from a
neighborhood N{*) such that:

Va € AVz € NVy € fP(a,z) :y Cx

A reproduction function is used to produce new individuals from the parent
list: f} : B x L — L, such that the updated node is from the neighborhood:

VB € BV € L: f(B,z) C Usea NV

A evaluation function is used to choose the final instantiation of the node v
that is to be updated, from the parent list L extended with the newly produced
individuals L': f? : C x (LU L") = S, such that:

VyeCOVy e (LUL): f/(v,y) Cy

Using the defined functions the Abstract Cellular Genetic Algorithm can be
formally defined as follows:

Create an initial systemstate se€S.
DO

FOR EACH v €V DO I N PARALLEL

draw a,8 and «v

¢" = fi(a,Ny)

y' = f7(Bq)

v = NyUy?

vo= i)

ENDFOR

s = UUEV Sv
UNTI L stop

3.2.2 Instance of the ACGA I: Cellular Genetic Algorithm

From the ACGA algorithm above a parallel C-GA with local selection can be
derived straightforward. Following the formal definition of the ACGA we can
specify the state-space and the spatial neighborhood:

Ns:{_]-ao,]-}ka (kEW)

We need to specify the selection- (f?), recombination-, mutation- (f) and eval-
uation (f?) operator.

48

First the selection operator. A conventional GA uses a global fitness function
in order to select the parents. With a C-GA one parent is explicitly selected, the
current cell &, the other must be selected from the neighborhood with size r ,
using a local fitness function F'. A cell is chosen as the second parent by picking
a uniformly distributed random number ¢ € [0,1) if it satisfies the following
rule:

F(l‘k)

¢ < Em]-ezviw) F(x;)

As a recombination operator we can take the unchanged GA-crossover opera-

tor. Also the GA-mutation operator can be used. Crossover between two cells

is done by taking a uniformly distributed random number ¢ € [0, length(individual)]
as the splitting location. Mutation is done by “bit-flipping” every bit of an in-
dividual with a probability p,,. Evaluation means calculating the fitness of the

new individual.

3.2.3 Instance of the ACGA II: Cellular Simulated Annealing

To introduce locality in the SA algorithm we use an alternative approach whereby
several configurations exist together on a n-dimensional grid. These configu-
rations only know of the existence of other configurations in their direct neigh-
borhood. This neighborhood is defined as a spatial structure on the grid. If
a new configuration has to be evaluated for acceptance not only the previous
configuration is taken into account, but also its neighborhood set. Rejection of a
new configuration can cause any of the configurations in a neighborhood set to
take over the current spatial grid location. A configuration is chosen according
to the Boltzmann tournament rule bt () [35]. Of course evaluation is done, after
the perturbation, by the Boltzmann rule. The conventional Boltzmann rule is
modified in order to incorporate selection in the evaluation of several configu-
rations. We define a neighborhood set XV, i(m) of configuration ¢, which includes
i itself and its spatial neighbors. The selected configuration from the neighbor-

hood Ni(z) is given by btr(Ni(z)). The change of the energy of configuration i is
given by AE;. The energy of configuration i by F(i). A perturbed configura-
tion ¢ is generated by mutant(btr(N;)). The Neighborhood Boltzmann Rule is
now defined as:

—(F(mutant(btr(N®))))— r(N® .
P(AEi,T):exp{ (F(mutani(bir (N, D)) F(oir (O, W} if AB; > 0

P(AE;,T) =1 if AE; <0

Unaccepted configurations are replaced by btr(NN;). The difference with con-
ventional SA is that instead of looking only to one configuration, several con-
figurations are used to evaluate a newly generated configuration. Note that
by using an empty neighborhood structure N*, we obtain a C-SA based on
independent Markov Chain, i.e. without any interaction.

49

tog(fitness)

o
o <
L L s 2
log(fitness)

L
i

1000 200 300 400 500 600 0.1

generation 0 20 40 60 80 100 120

generation

Figure 24: Convergence of C-GA and stan- Figure 25: Convergence of C-GA and stan-
dard GA using function f4 from Eq. 102. dard GA using function fs from Eq. 103.

3.2.4 Experiments on the Convergence Behavior of C-GA

In order to compare the convergence behavior of C-GA to a standard GA [34]
with elitist strategy. It is known that standard GA algorithms are sensitive to
the shape of the search space. To reduce the influence of shape dependency
we used a “smooth” shaped function with one local minimum and a more
irregular shaped function with more local minima. In both algorithms we ap-
proximated optimal parameter settings.

As a test case we used de Jong's test functions [46]:

30
fa(z) = Zim{l + Gauss(0,1) for —1.28 < x;; < 1.28 (102)
1

25 1

folz) = 0,002+ 3 -
S+ Y (- ay)

~ for — 65.536 < z; < 65.536 (103)

The function f is a continuous, convex, unimodal, high-dimensional function
which contains some Gaussian noise. The search space consists of 2560 ~ 107
solutions. The global minimum is at z; = 0.0 with f4(z;) = 0.0. The function
f5 is a continuous, non-convex, multi-modal function with 25 local minima.
The total search space consists of 1310722 ~ 16 = 10” alternative solutions. The
global minimum is f5(x;) = 1.0.

The results of a sequential implementation of a GA instance of ACGA are
shown in Figs. 24 and 25. The experiments were done on an Intel 80486 com-
puter. The plotted lines in both figures are calculated by averaging the fitness
of the best individual in the population in 30 experiments. In both figures the
convergence of the standard GA (dotted line) is compared to the C-GA (solid
line).

50

3.2.5 ACGA on a parallel architecture

In this section we have developed a generic formal description for a parallel SA
and a parallel GA by mapping them onto Cellular Automata. A formal model
allows a mathematical and empirical analysis of the underlying algorithms.
The convergence behavior of GA is still poorly understood. It is known that
convergence of different GA algorithms may deviate and that convergence is
also strongly influenced by the shape of the search space. GA and SA are at-
tractive natural solvers for optimization problems but parallelization of these
algorithms is an important prerequisite. The first test results of a sequential
implementation show that when the parallel GA is compared to the standard
GA, a faster convergence is obtained, despite the use of different shaped search
spaces. These results show the validity of the model: it is possible to introduce
locality without loosing convergence speed, an optimum obtained even faster.
Experiments with C-SA are discussed in [93].

Future work includes the implementation the ACGA on a parallel architec-
ture to fully exploit the parallel nature of the presented model and to test the
scalability of the model. The formal model will be crucial in proving asymp-
totic global convergence. For now empirical tests are necessary to determine
the finite time convergence behavior, which is the quantity that really matters
for practical purposes. We intend to use the Mapping Problem (see section 4.4)
as a major test case for the C-GA. We are especially interested in the perfor-
mance/scalability of the algorithm using different ranges of locality.

4 Case studies

4.1 Diffusion Limited Aggregation

Many growth phenomena, for example the growth process of a bacteria colony,
viscous fingering, electric discharge patterns (see section 2.2.3) and growth
forms of electro deposits, can be simulated with one model: the Diffusion Lim-
ited Aggregation model [91]. At the heart of all these growth patterns there is
one Partial Differential Equation,

vie=0 (104)

the Laplace equation, which describes the distribution of the concentration ¢,
pressure, electric potential etc. in the environment of the growth pattern. First
we will discuss the numerical solver for such a system, then the natural solver
and finally parallelization aspects for the natural solver.

The numerical solver: Finite differencing

The Laplace equation can be solved numerically and a DLA cluster can be con-
structed using the nutrient distribution over the lattice. The cluster is initial-
ized with a seed and the following boundary conditions are applied: ¢ = 0 on
the cluster itself and ¢ = 1 at the nutrient source, which in itself may be circu-
lar, linear etc. The probability p that a perimeter site (the sites indicated with

51

an open circle in Fig. 26 with index k will be added to the DLA-cluster (black
circles in Fig. 26) is determined by

p(kEo—)kGo):% (105)

where ¢;, = concentration at position &

The sum in the denominator represents the sum of all local concentrations of
the possible growth candidates (the open circles in Fig. 26). The DLA cluster is
constructed using the following rules:

1: solve the Laplace equation (Eq. 104), using the boundary conditions.

2: new sites are added to the cluster are added to the cluster with probability p
(Eq. 105).

3:goto 1

Figure 26: First steps in the construction of the DLA-cluster. Sites which are part
of the cluster are visualized as black circles, sites which are possible candidates to be
added to the cluster in next iteration steps are indicated with open circles.

The Laplace equation can be solved, using the boundary conditions mentioned
above, by finite differencing and the successive over-relaxation method:

w
gt = Z(c?jll’j +e e e+ (L —w)dy (106)
In this method the new local nutrient concentration ¢?! in the lattice, at a

i.J
site with lattice coordinates i, j , is determined in an iterative procedure which

converges as soon as the difference between the new and old local nutrient
concentration is below a certain tolerance level. The w in Eq. 106 is the over
relaxation parameter, which in general lies within the range 1 < w < 2. After
many construction steps this procedure results in a DLA-cluster as shown in
Fig. 27

52

Figure 27: DLA-cluster generated using a circular source of nutrient

The natural solver: The random moving particle model

An alternative method to construct the DLA-cluster is a probabilistic cellular
automaton which resides on a square two-dimensional or three dimensional
lattice. The growth pattern can be constructed using the following Monte Carlo
approach: The first step in the construction is to occupy a lattice site with a
seed. After that, particles are released from a source which might be circular
shaped (using the seed as a center) at a large distance from the seed. The par-
ticle starts a random walk, the walk stops when the particle leaves the circle or
reaches a perimeter site of the seed and sticks. Then more random walkers are
released from the source and are allowed to walk until the distance with respect
to the cluster with occupied sites becomes too large or it reaches a perimeter
site, neighboring to one of the previous particles, and it sticks. When this pro-
cedure is repeated many times a similar irregular growth pattern as shown in
Fig. 27 is generated. It can be demonstrated that in this Monte Carlo method
the underlying Laplace equation is correctly solved [91].

The parallel implementation of Diffusion Limited Growth

Modeling and simulation of Diffusion Limited Growth, especially in the 3D
case, is computationally very expensive. The development of parallel growth
models, especially in the case of DLA is not straightforward (see also refer-
ences [61] [63]). The computationally most expensive step, step 1 solving the
Laplace equation, of the numerical solver can be done in parallel. In a paral-
lel implementation of Eq. 106 using SOR, the update order of the lattice has

53

to be taken into account. When the lattice site (i, j) is updated in the parallel
implementation and is located at the border of the processor (see Fig. 28), its
neighbors should be in the correct state (n or n+1). A parallel implementation,
with a correct update order, can be made using the checkerboard strategy [27].
In this method the sub-lattice on one processor is subdivided into four blocks.
In the parallel SOR update first all red regions are updated, followed by the

black regions. Step 2 in the numerical solver, adding sites with probability p is
an implicit sequential step.

\ processor region

boundary

-

«
[}
[
1

’

‘
//

* o
e 00 0.0
cee 0w

) s
j-*u'u see | @

o

scossos 0 o0
sesses e e
So0o0 000 e o0
TEXREEEENY
ss00cev 0

‘e 60..04-’&..0
o000 0
AR EEREY.
neeoe
ane
TEER]
seeveccss e

Figure 28: Mapping of the lattice onto a grid of 4 x 4 processors, the shaded sites are

situated in a region where information from neighboring processors is required for the
update (after [27]).

The attractive property of the random moving particle model is that it illus-
trates that the locality present in the model can be exploited in all steps of the
algorithm. Both solving the Laplace equation and growth of the cluster by the
addition of sites can be done in parallel. A major question is if such a parallel
version of random moving particle model mimics the same physics as its se-

quential version. In a forthcoming paper [95] we will discuss this question in
detail.

54

4.2 Lattice Boltzmann solver for flow and diffusion phenom-
ena

An alternative approach to model physical systems in fluids and gases, for
example complex flows, complex fluids, and reactive systems, are lattice gas
methods. The basic idea is illustrated in Fig. 29. The behavior of the fluid
surrounding the obstacles can be modeled as a continuum (Fig. 29A) using a
set of partial differential equations, as a molecular liquid (Fig. 29B) using a
Molecular Dynamics method, or alternatively using a discrete velocity (lattice)
gas.

Figure 29: Three different approaches to model the fluid surrounding the obstacles: the
fluid is modeled using a) a set of partial differential equations b) molecular dynamics
c) a lattice gas (after [56])

A very simple lattice gas method with which an incompressible fluid in 2D can
be modeled is the FHP Lattice Gas Automata (LGA) [31]. In this method the
fluid is represented by “particles” which can move from a lattice site to neigh-
boring lattice site. The particles reside on a triangular lattice and are located
in the centers, the nodes, of the hexagons in the lattice. Each particle, or lattice
site, is connected with six neighbors and can move in a next time step to one
of these neighbors, or can be stationary. In the FHP model both time and ve-
locities are discretized. Two successive time steps of the FHP model are shown
in Fig. 30. As soon as the particles are at the point to occupy the same node a
collision occurs. In order to obtain a physically correct model, in which mass
and momentum are conserved, collision rules have to be included. Updating

55

b d ,
*X‘ = % TN
o= K L=

Figure 31: Collision rules applied in the FHP model (after [31])

of the lattice now involves a propagation step and collision handling. In Fig. 31
a simple version of the collision rules, used in the FHP model, is shown. Note
that in the FHP model both velocities and time are discretized. Many types of
boundary conditions can be relatively easy specified. For example the rigid no-
slip condition can be specified by setting the lattice sites which represent the
obstacle, to the state “stationary”. The lattice gas method is especially suitable
to determine flow patterns, for low velocities, about obstacles with a complex
geometry. An example of such an experiment is depicted in Fig. 32 where flow
about an irregular object is shown. The discreteness of the lattice gas approx-
imation introduces noise into the results. In the computation of flow patterns
this discreteness artifact can be partially avoided by taking spatial averages for
the velocities. In practice the average velocity u in a 2D lattice gas model is
determined in clusters with a minimal size of 64 x 64 nodes [21]. The limited
range of velocities also restricts the allowed range of Reynolds numbers which
can be simulated with the lattice gas method.

Due to the large scale separations it is not necessary to use a model which in-
cludes the detailed mechanics of the molecules surrounding the obstacles. The

56

fluid can be modeled with a lattice gas, the “particles” in the fluid are repre-
sented on a much higher magnitude scale than the actual molecules. It can
be demonstrated that lattice gas methods still include most features of a fully
molecular simulation, while it is order of magnitude faster in computation.
The lattice gas methods fill the gap between MD and PDE methods, the LGA
method is sometimes described as the “poor man's MD” [21].

4.21 Macroscopic equations

The flow of a time dependent incompressible fluid, a fluid with constant den-
sity as for example water under most conditions, can be described by the two
basic macroscopic equations from hydrodynamics:

V-(nu)=0 (107)

% + un(u-V)u = —Vp+vnViu (108)

where u is the velocity, n the particle density, ¢ time, p the pressure, and v the

kinematic viscosity which will be assumed to be constant. The coefficient is

usually constrained to have value 1 by Galilean invariance. For low velocities

it can be demonstrated that the FHP model approximates the Navier Stokes
Eq. 108 (see [31]):

Oi(u) = —(g9(p) -u-V)u—Vp+vViu (109)

where p is the average number of particles per cell and g(p) a function of this
density p. The FHP model is not Galilean invariant: the parameter y in Eq. 108
does not equal to the value 1. In the FHP model there exists a velocity depen-
dency of the density p: p = $p(1 — 1u?). Regions with constant pressure p
and a high velocity p have a higher density p than regions with a lower veloc-
ity. This does not correspond to physical properties of an incompressible fluid
which should have constant density everywhere. For low velocities this veloc-
ity dependency of p does not have strong effects. When in Eq. 109 the time ¢,
the viscosity v, and the pressure p are scaled with the factor g(p) (t' = g(p)t,
v' =v/g(p)), the equation transforms into the Navier Stokes equation.

4.2.2 Lattice gases in 3D

There also exist 3D extensions of the FHP-model [30]. In the 3D extension,
the Face Centered hypercube (FCHC) geometry, the particles reside on a cubic
lattice (see Fig. 33) where each node is connected with 24 other nodes. Along
the dotted links between the nodes at most one particle can propagate, while
at the solid links up to two particles can propagate. In practice this FCHC
method suffers from several serious problems: to avoid discreteness effects by
spatial averaging an enormous lattice is required and the implementation of

57

Figure 32: Flow pattern around an irregqular shaped obstacle using the lattice gas
method

the collision operator w(n;(z,t)), due to large amount of possible collisions, is
troublesome [105].

Part of the problems of LGA in 3D can be overcome by using an alternative
lattice gas method based on the Lattice Boltzmann Equation (LBE). The differ-
ence with the LGA-method is that no longer individual particles are followed,
but the average values are used. In the LBE method the velocities are no longer
discrete, but represented in continuous space and the noise introduced by the
discreteness of the LGA method is removed. Furthermore the problem of the
velocity dependency of the density (Eq. 109) can be solved in the LBE method.

4.2.3 Theoretical background of the Lattice Boltzmann method

In the simulations a cubic lattice is used, where each node is connected with
18 other nodes. There are 6 links with the length of one lattice unit and 12
links with the length of v/2 units. The mean populations of particles travel
simultaneously from one node to one of the 18 neighbors. The evolution of the

58

Figure 33: Face Centered hypercube (FCHC). Along the dotted links between the nodes
at most one particle can propagate, while at the solid links up to two particles can

propagate.
lattice is described by the following dynamical rule:

TL,'(T‘ +Ci,t+].) = ni(r, t) +Ai(7', t) (110)
i=1,.,18
where n;(r, t) is the continuous velocity distribution function, which describes

the number of particles of particles at a node at position r, at time ¢ and with
direction ¢;. The moments of the distribution function n;(r, t):

p= Z n; (111)
i
] = Znici = pu
II= Z Nn;C;C;
i

correspond to the hydrodynamic fields mass density p, momentum density j
(u is the flow velocity at node r), and momentum flux II.

A linearized collision operator £;; about an appropriate equilibrium n¢? can
be constructed:

Ai(n) = Ai(n°) + > Lij(n; —n5?) (112)
J

59

where A;(n°?) = 0 by definition, since the equilibrium is collision invariant
and where n°? is the Maxwell Boltzmann distribution for a gas. The distribu-
tion function can be split into an equilibrium and a non-equilibrium part:

ni =n;’ +n; (113)

i

Similar to Eq. 111 the moments of the equilibrium distribution function n;? are:
p=> n (114)
i
j =2 nle

II= Zneqcici = pl + puu

(3

where p is the pressure, the driving force of the system, and 1 is the unit vec-
tor. The particle collisions conserve mass and momentum but change the non-
equilibrium part of the momentum flux:

"e? = II + 114 (115)

By using properties as conservation of mass, momentum, and symmetry, it is
possible to construct a number of eigenvalue equations (see for a more detailed
account of the collision process [56]) for the moments of L;;:

S Ly =0 (116)
Z ci[fij =0

> wEli = Nejey
i

The first two equations conserve mass and momentum. The eigenvalue X is
related to the shear viscosity:

V:—ép(Q/)\—l—l) (117)

One computational update of the lattice now involves a propagation step in
which n;'s travel from node r to node r + ¢; and a collision step in which the
post-collision distribution n; +A; (n) is determined in the following three steps.
First at each node p, j, and II are calculated and the equilibrium momentum
flux II°? is determined. In the second step the momentum flux, including the
equilibrium and non-equilibrium part, can be updated using the moments of
the linearized collision operator in Eq. 116. In the third step, after the post col-
lision momentum is computed, the post-collision distribution n; + A;(n) can

60

be calculated.

In simulations several types of boundary conditions can be used: at the borders
of the lattice periodic boundary conditions can be applied, while in the nodes
adjacent to the nodes representing the obstacle, solid boundary conditions can
be used. Periodic boundary conditions can be implemented by exchanging the
n;'s of the links at the borders of the lattice. Solid boundary conditions can be
represented by exchanging the n;'s between the adjacent node and a neighbor-
ing fluid node. In the boundary nodes, near the obstacle, it is also possible to
determine the force exerted by the fluid on the obstacle. Changes in this force
are used in the simulations to detect if the flow pattern around the obstacle
stabilizes and the lattice Boltzmann iteration converges.

After the lattice Boltzmann iteration a diffusion step can be applied where
populations of tracer particles are released from certain source nodes, while
the tracer particles are absorbed by sink nodes. The tracer particles can move
from a node at site r in the lattice to one of the 18 adjacent nodes r + ¢;, where
the ratio of viscous forces to Brownian forces, the Péclet number

Pe =5 (118)

determines if flow or diffusion dominates.

4.3 A comparison: Lattice Gases, Lattice Boltzmann method,
and PDE's

In the numerical solver the physical problem is modeled using partial differ-
ential equations, and then mapped onto a discrete model a finite differencing
scheme in which both time and space are discretised. This finite differencing
scheme falls within the formal definition of a cellular automaton and can be
indicated as a computational CA for an independently formulated model rep-
resented by partial differential equations [41]. This is a fundamental difference
with the lattice gas methods (LGA and LBE) where the problem is directly
modeled using a cellular automaton. By applying mass and momentum con-
serving rules in the CA, a lattice gas can be used as a model of hydrodynamical
phenomena. This difference has important consequences for the preservement
of the physical characteristics of the original problem.

The most ideal form to represent a hydrodynamical phenomenon would be a
MD model, within a MD model all physical properties remain preserved. In
the numerical solvers these physical properties are lost in the mapping of the
PDE's onto the computational CA. In the LGA method physical properties re-
lated to a many particle system, as for example particle correlations, remain
preserved. For this respect we can arrange the different methods from mi-
croscopic to macroscopic: MD, LGA, LBE, PDE. This arrangement starts with

61

MD, where from a model on a microscopic level, the desired macroscopic in-
formation is derived. The PDE's represent the other extreme and are based
on a macroscopic model. The LGA and LBE method can be classified as in-
termediate models, where from a mesoscopic model the desired macroscopic
information is derived. In this sequence LBE should be arranged behind LGA,
since by the transformation of the particle system into a population - of - par-
ticles system, physical properties as particles correlations are lost. This makes
LBE less microscopic than LGA.

An important advantage of the lattice gas methods is that the computational
code is much simpler than the code required for most of the numerical solvers.
In lattice gas methods there are no problems with round off errors, which may
cause instabilities in the numerical solvers. Unfortunately the problem of insta-
bilities re-occurs in the LBE method, since in the dynamical rule Eq. 110 contin-
uous values are used. It is possible to conserve momentum and mass exactly
and the lattice gas methods do not suffer from slow converging iteration pro-
cesses. For some problems, in which highly irregular geometries are involved
as for example flows through porous media, the LBE method is the only avail-
able solver. In [13] the LBE method is compared to a numerical method, the
spectral method, which is still considered a superior and efficient method for
hydrodynamical problems.

In many biological systems the distribution of chemical agents and nutrients,
caused by a combination of flow and diffusion, plays a fundamental role. An
example is morphogenesis where the external distribution of nutrients [32]
[47], as well as the internal distribution of morphogens [75] [69] by reaction-
diffusion in the organism, can induce certain growth patterns. The Lattice
Boltzmann method is especially suitable for modeling diffusion and flow phe-
nomena in biological systems with highly complex boundary conditions. The
Péclet number (the ratio of viscous forces to Brownian forces) and the Reynolds
number (the ratio of inertial forces to viscous forces) can be varied indepen-
dently [56],[48]. Because of the inherently parallel properties of the LBE method
it can be expected that with the development of massive parallel computers,
LBE will become a competitive solving technique [54], [49]. The fact that spec-
ification of boundary conditions with an irregular geometry is problematic in
the spectral methods will be another argument in favor of LBE.

4.4 FE - Applications Formalized by the VIP Model
441 The Finite Element Technique

The finite element method is a widely applied technique in all kinds of research
areas. An example of such a research area is structural mechanics. In that
case the elastic and deformation characteristics of a complex shaped object are
computed in their time evolution. One may think of calculating vibrational
properties of buildings or e.g. car crash simulations.

62

The finite element method approximates the shape of a real-life object by a set
of discrete elements that are interconnected. The physical properties of these
individual elements are well understood. Simply said, the better the FE mesh
covers the object, the better numerical results can be expected.

The basic equation that describes time evolution of a linear elastic finite ele-
ment system is the equation of motion (119).

Ma+COv+Kd=F (119)
Where:
M = /V NTpNdVv (120)
C = /V NTuNav (121)
K = /V BTDBdAV (122)

a is the acceleration vector, v is the velocity vector d is the coordinate vector.
M is the so called mass matrix of the system, C' describes the viscous properties
and K corresponds to the stiffness within the FE system. Furthermore F' is the
external force vector acting on the system.

In the integrals we consider integration over the systems volume V, N de-
scribes the numerical approximation (linear, polynomial) of individual ele-
ments, p is density in the system, y is a friction coefficient, and finally B de-
scribes elastic-strain in the system.

44.2 FEas VIP

The FE mesh consist of a set of elements that have local interactions. The con-
cept of the VIP model is well suited as a formalization of such an element mesh.
The granularity of general finite element meshes is very small. When paral-
lelization is considered it is therefore not realistic to parallelize on the finest
grain level. A grain size has to be selected that better matches that offered by
a parallel architecture. Therefore partitioning techniques that decompose the
original FE mesh into clusters of elements are necessary. The VIP formalization
can transparently be applied to the “element-clusters”, which are just finite el-
ements, but on a hierarchically higher level. Special attributes to the element-
clusters are the interaction size (or connectivity) and the volume. These param-
eters are essential when optimal usage by the parallel FE application of parallel
architectures is to be studied.

4.4.3 parallel architectures as VIP

A parallel architecture can also be described using a VIP formalization, in the
same manner as for the FE system. Now we have an interconnected set of

63

s used in optimal allocation

Figure 34: A phase transition in the mapping process

processors. The processor-processor connections are analogous to the FE in-
terconnectivity, while the processor power is analogous to the element-cluster
grain size or volume.

4.4.4 Mapping FE - Parallel architecture

In order enable a FE application to make optimal use of a given parallel ma-
chine one has to investigate how the general attributes of the FE-mesh (volume,
connectivity) and the general attributes of the processor topology (processing
power, connectivity) can be mapped on each other see also section 3.1. This
mapping problem is in general NP-hard, which means that we have to consider
solving an effectively intractable problem. No tractable solutions are known,
hence an approximation approach has to be used. Some of the best suited op-
timization techniques that can be used fall into the class of Natural Solvers,
e.g. genetic algorithms, neural networks. We have used a GA approach to map
the element-clusters of a given FE mesh onto arbitrary topologies[19][18]. Cer-
tain phenomena that are often observed in DCS, such as frustration, can also
be found in the process of mapping a FE element-cluster onto a parallel archi-
tecture. The optimization process is guided by a selection procedure which is
biased to an evaluation function. An example of such an evaluation function
is:

N,—1 1 Np—1Np—1
C=8/(> Wn) +5 > > Cn,m) (123)

n=0 m=0

where
W (n): Total time spent on calculation work on processor n
C(n,m): B(n,m) = M(n,m) where
B(n,m): j——0m0: of route between processor n and m.

M (n,m): Number of bytes to be sent from processor n to m.

64

The parameter 3 is used to indicate the importance of the workload relative
to the communication. Varying 3 results in different optimal mappings. Fur-
thermore it can be observed that in general only 1 or all processors are used
in the mapping, there is only a small region in which a different number of
processors is used. Hence, we can interpret the number of processors as a kind
of order parameter in the mapping process, while 3 acts as the “temperature”
of the system. The convergence of the GA increases in the neighborhood of
this region, which indicates the presence of critical slowing down as observed
in second order phase transitions. The observed phase transition is between
a 1-processor mapping and an all-processor mapping. An example of such a
phase transition is given in figure 34, where a torus mesh is mapped onto a
fully connected processor topology. The phase transition indicates the onset
of a complex region in which correlation of length and time scales can occur,
because the competition between the work load optimization and communica-
tion minimization is very strong. There are a lot of suboptimal solutions which
are very close to each other in terms of the cost value of Eq. 123. Note the re-
semblance of the complexity region at the phase transitions in the discussed
systems like Diffusion Limited Aggregation (1 as the growth “temperature”)
and complex dynamics in Cellular Automata (X as activity parameter).

5 Conclusions and future work

In the previous sections we have demonstrated that several instances of natural
DCS can be captured with a natural solver. Diffusion Limited Aggregation can
be modeled with a multi-particle model, while flow and diffusion can be mod-
eled with the Lattice Boltzmann solver. With the Lattice Boltzmann solver it is
even possible to model some phenomena (for example complex fluids and dif-
fusion and flow phenomena in highly complex geometries, modeling flow and
diffusion by varying the Péclet and Reynolds number independently) which
cannot be modeled using a numerical solver. In both cases the particles in
the natural solver correspond to the particles in the VIP model, allowing for
a straightforward mapping onto the Parallel Virtual Machine model. In some
classes of natural solvers, as for example the genetic algorithms, it is necessary
to introduce locality in order to obtain an efficient mapping onto the Parallel
Virtual Machine model. In the case study on genetic Algorithms this locality
was introduced by applying a Cellular Automaton representation of the GA
as a VIP model. In some models of natural systems it is necessary to cluster
the VIPs hierarchically to obtain an efficient mapping of the application model
onto the machine model. By allowing to cluster the VIPs hierarchically it be-
comes possible to reduce the complexity of the problem , while the information
about the error that is introduced in this approximation is conserved. In the
section on the Finite Element models the VIPs (clusters of Finite Elements) are
allowed to cluster hierarchically. In this case-study it is also demonstrated the
necessity of a“Holistic” approach: to obtain an optimal mapping of the DCS of
the application model onto the machine model without loosing information in

65

the mapping process, both knowledge of the solver and the machine architec-
ture are required.

Within the Parallel Scientific Computing and Simulation Group research on
modeling and simulation of DCS on the application and machine level, is a
central theme. On the application level research is being carried out on mod-
eling and simulation of DCS from physics and biology in case-studies, where
more insight in these systems can only be obtained through explicit simula-
tion, as well on the theoretical framework of intractability and undecidability
of DCS. On the application level 5 projects within the Parallel Scientific Com-
puting and Simulation Group are being done:

a) The FOM (Foundation of fundamental Research of matter) project “Crystal-
lization on a sphere”, in which crystallization processes with spherical bound-
ary conditions are studied [108] [109]. The VIP model in this study are particles
on a sphere, the particles are abstractions of phospholipids or other macro-
molecules in spherical vesicles.

b) Contribution to the Esprit project “CAMAS Computer Aided Migration of
Application Systems”. In this project research is done on the most efficient
mapping of Finite Element models on a Virtual parallel machine [19]. The VIP
model in this study consists of clusters of Finite Elements [19]

¢) The biophysics project “Elastic Light Scattering” in which light-scattering
properties of white blood cells are studied. The VIP model model in this study
consists of dipoles which are large, abstract, clusters of molecular and atomic
dipols. [40]

d) The NWO (Dutch Science Foundation) project “Portable parallel simulation
of nucleation and growth” in which diffusion and flow limited growth pro-
cesses are studied. The VIP model is the Lattice Boltzmann solver. [48]

e) The locally supported project “Dynamic Complex Systems” in which meth-
ods are developed for the formal description of a DCS and research is done on
intractability and undecidability of DCS [95]

On the virtual machine level research is done on the abstraction of the hard-
ware model and the runtime support system. Four project are being carried on
this level:

a) The EC project “ParaSol” (contribution to the Esprit project “CAMAS Com-
puter Aided Migration of Application Systems”) in which time complexity de-
scription and analysis methods for, existing, FORTRAN-code are developed.
Time complexity analysis is only possible through explicit simulation of the
behavior of clusters of instructions of FORTRAN-code, similar to simulations
of clusters of VIPs in the application model.

b) Externally supported project “Dynamic PVM” a project in which research is
being done on automatic load balancing using dynamic resource management
of parallel tasks in a job[20][79][78].

¢) Locally supported project “Simulation of a DCS through discrete event sim-
ulation”. In this project parallel discrete event simulations are studied, using
the Time Warp paradigm to circumvent causality errors which can occur as a

66

result of distributed generation of events [77].

d) Tools for developing parallel implementations of simulation models of DCS:
d1) Enhancement of communication kernels to support message passing com-
putation (MPI, PVM).

d2) Automatic domain decomposition methods.

d3) MAP: tool for mapping a decomposed problem onto the machine.

In three forthcoming MPR-projects (Massive Parallel Computing projects funded
by the Dutch science foundation) “Parallel I/O and imaging”, “Portable paral-
lel simulation of crystal nucleation and growth”, and “The discreteness-continuity
dichotomy in individual-based population dynamics using massively parallel
machines” we are planning to bring both lines of research together. In a num-
ber of case studies we intend to test our ideas, as presented in this report, on

modeling and simulation of DCS from nature.

Acknowledgments

This working document was prepared at the Santa Fe Institute in New Mex-
ico in the summer of 1997. PM.A. Sloot wishes to thank Melanie Mitchell and
Jim Crutchfield for hosting him and thanks the Santa Fe Institute and its re-
searchers for the scientifically stimulating visit. This research was supported
in part by grants from the Dutch Society for Scientific Research (NWO) in the
Massive Parallel Computing priority theme and by a European Committee
grant for High Performance Simulation.

6 Appendix:
Computability in Dynamical Complex Systems

In this section we will review the concepts of Undecidability and Intractability
as used in formal machine models, in order to apply these concepts in real
systems, e.g. physical, biological. The underlying motivation is to integrate
our current knowledge of formal computation with the notion that physical
processes can be viewed as “computations”.

6.1 Undecidability and Intractability
6.1.1 Church-Turing Hypothesis

The intuitive notion of an algorithm can be formalized by a Turing Machine
(TM) (Alan Turing, 1912-1954). It is assumed that any way of formalizing an
algorithm is equivalent to formulating a Turing Machine. Formally the basic
model consists of a finite control, an input tape and a head that can be used for
reading or writing on that tape. A Turing Machine can execute an algorithm
defined by a string on the tape. The string is constructed from a finite alphabet.

67

A TM can decide whether a given string is an element of a language. A lan-
guage is here defined as a restricted set of strings. A Turing Machine can both
be used for deciding membership and for computing functions (basically the
two operations are identical). A language L(M) thatis accepted by a TM M, is
said to be recursively enumerable (r.e.). The class of r.e. languages includes some
languages L(M) for which there does not exist an algorithm to determine the
membership of a string, i.e. we can not tell whether the machine M will even-
tually accept the string if we let it run long enough, or whether M will run
forever [44]. A subclass of the r.e. languages are the recursive sets, which are
those languages accepted by at least one TM that halts on all inputs.

We can also view a Turing Machine as a computer of functions from integers
to integers. Again we can identify two different classes. First, the so called
total recursive functions, which are those functions that are computed by Turing
Machines that halt on all inputs. For example all common arithmetic functions,
like multiplication, addition, etc, are total recursive functions. The analogon
of re. languages in the computation of functions are called partial recursive
functions, i.e. those functions that are computed by Turing Machines that may
or may not halt on a given input.

With this background information we can now define the Church-Turing Hy-
pothesis, which states that the intuitive notion of an algorithm can be identified
with the class of partial recursive functions and consequently computed by a
Turing Machine.

Currently we cannot prove this hypothesis because of the informal notion of
“computable”. If we place no bound on the resources (time and storage),
the partial recursive functions are intuitively computable. It is difficult to tell
whether the class of partial recursive functions includes all “computable” func-
tions. Many other formalisms that have been presented, A-calculus, Post sys-
tems, etc, but all are equal to the class of partial recursive functions[44].

6.1.2 Undecidability

In 1931 the logician Kurt Godel discovered an incompleteness in a axiomatic
system of number theory. His theorem informally states that there are certain
statements about numbers that cannot be proved within the axiomatic formal-
ism. Godel's original proof of the incompleteness theorem is based on the para-
dox of the liar: “This statement is false”. By changing this statement to: “This
statement is unprovable”, he obtains a theorem instead of a paradox. If this
assertion is unprovable, than it is true and the formal system is incomplete. If
this assertion is provable, then it is false and the formal system is inconsistent.
The original proof of Godel was based on a specific formalization of number
theory and was followed by a paper showing that the same methods applied
to a much broader class of formal axiomatic systems. At that time he could not
yet proof it for all axiomatic systems, due to the lack of a mathematical def-
inition of an algorithm. After the definition of the Turing Machine it became
possible to proceed in a more general fashion. In turn Turing showed that there
is no algorithm for deciding whether or not a program ever halts, i.e. the halt-

68

ing problem is unsolvable. One can derive Godel's theorem from the halting
problem[11]

Using a technique called diagonalisation it is possible to construct a language
that is not accepted by any Turing Machine [44]. In this technique an undecid-
able language is constructed that is not in the list of all systematically enumer-
ated languages. Hence non-computable languages do exist.

It is a fact that any nontrivial property of r.e. languages are undecidable. The
latter fact is known as Rice's theorem [44] and it actually states that virtually
any question about the set H of sequences on which a Turing Machine will
eventually halt is undecidable. These questions include questions whether H
is empty, finite, regular, context free, etc.

Using Rice's theorem, we already make the observation that if we observe a
physical phenomenon that is able to mimic a universal TM then most physical
questions concerning idealized limits of infinity require arbitrary long com-
putations and so be formally undecidable. Shortly, we will return to this obser-
vation. First, we will address another unpleasant property namely that some
problems are so “complex”, that it takes exponential time to solve them.

6.1.3 Intractability

Computational complexity describes the amount of time, space or other re-
sources needed to accept a language or to solve a problem.

The space complexity S(n) denotes the maximum number of cells that a TM
M will scan for an input of length n. The language recognized by M is said to
be of space complexity S(n).

The time complexity T'(n) denotes the maximum number of moves that M will
make for every input word of length n. M is said to be of time complexity T'(n).

In the time complexity regime we define two classes: P and NP. The class P is
informally defined as the class of those languages for which there is a polyno-
mial time deterministic TM. The Class NP is informally defined as the class of
those languages for which there is a polynomial time non-deterministic TM.
Furthermore, a language or a problem belongs to NP if and only if a given
string or solution can be checked or verified in polynomial deterministic time,
see also[10]. We can now define an NP-complete problem L’ € NP as a problem
to which every other problem L € NP can be polynomially reduced. A problem
L can be polynomially reduced to another problem L' if there exists a poly-
nomial time transformation from an instance in L to an instance in L. Next
we have to find the first NP-complete problem. Therefore we can not use the
above mentioned approach, simply because we do not have a known problem
to transform to. A common trick to prove C' — completeness is just to mimic a
specific machine that accepts an arbitrary language L € C, where C stands for
a specific complexity class, i.e. P or NP. This is also the approach that can be
used in deciding completeness results for certain physical phenomena. Thus in
order to prove NP-completeness for our first language, we must show that this
language is able to mimic the computation of an arbitrary language in NP on a

69

non-deterministic TM in polynomial time. The first problem for which this was
done is the so-called Satisfiability citeBovet94[33]. In short, to show that every
language in NP is reducible to Satisfiability, for each non-deterministic TM M
that is time bounded by a polynomial p(n), construct a polynomial-time algo-
rithm that takes as input a string z and produces a Boolean formula E,, which
is t rue if and only if M accepts x.

Another important class of languages are called NP-hard. A language L is
called NP-hard if all problems in NP can be reduced to it, but L is not neces-
sarily in NP.

In the space complexity regime we can define the classes PSPACE and NPSPACE.
The class PSPACE is informally defined as the class of those languages that are
accepted by a polynomial space bounded deterministic TM that halts on all
inputs. NPSPACE is defined as PSPACE, but now for non-deterministic TM's.
As opposed to the time complexity classes P and NP, it is possible to proof
[44][33] that PSPACE = NPSPACE. Hence deterministic polynomial space is
as powerful as non-deterministic polynomial space. We can now define the
class of PSPACE-complete problems: a language L' is PSPACE-complete, if
L' € PSPACE and for all L € PSPACE, L can be polynomially reduced to L.
It follows that if L is PSPACE-complete, then L € P if and only if P = PSPACE
and L € NP if and only if NP = PSPACE. Note that we could have P = NP
even if P # PSPACE, indicating that if a problem is PSPACE-complete, it is an
even stronger indication that it is intractable, than if it where NP-complete [33].
Note that every known NP-complete problem is also in PSPACE. In order to
proof that a problem L' is PSPACE-complete we can either use the reducibility
technique to a known PSPACE-complete problem, or we must proof that every
language L € PSPACE is polynomial-time reducible to L". In short we must
proof that an arbitrary polynomial-space bounded TM M can be simulated by
L' in polynomial time. Note that all problems solvable in polynomial time can
be solved in polynomial space. Or in other words, L' must be able to simu-
late a universal polynomial-space bounded TM, i.e. a TM which can compute
every polynomial-space bounded function. The first problem that was proven
PSPACE-complete is called Quantified Boolean Formulas (QBF)[33].
Analogous to the NP-hard problems, we can define a PSPACE-hard problem L
as a problem to which every other problem in PSPACE can be reduced, but L
is not necessarily in PSPACE.

6.2 Difficulty of Predicting Behavior in Complex Systems

Physical processes can be viewed as computations[114], where the difficulty
of answering questions about these processes is equivalent to performing the
corresponding computations. In principle the behavior of many complex sys-
tem can be calculated by explicit simulation. However, the theoretical sciences
are concerned with devising shorter calculations to reproduce the outcome of
such systems. Assume a class of systems that can indeed be predicted by us-
ing a formula describing its future state. Then essentially, this means that the
calculations performed by using the formula must be more sophisticated than

70

the calculations performed by the physical system itself. This implies that the
formal system must be more powerful than the corresponding physical sys-
tem. However, for some physical systems able to perform calculations that are
as powerful as those performed by a Universal Turing Machine, no shortcuts
are possible. Some physical processes behave chaotic[17] and therefore can not
be viewed as computations. Here we are confronted with a kind of unpre-
dictability: it is not possible to predict the future accurately, just because slight
discrepancies in the initial configuration will grow exponentially in time[22].
This implies that, to accurately predict the system ¢ steps in the future, we
need approximately ¢ digits in the specification of the initial configuration. So,
the amount of information needed to predict the future grows exponentially
with time. In a phase diagram of a complex system it is possible to distinguish
basins of attraction. Initial trajectories in a phase space can eventually become
periodic, fixed, chaotic or disappear to infinity.

A trivial example of a physical process that can be viewed as a computation, is
the logic performed by a general purpose computer. There is no way of finding
a general procedure for predicting future states. If no general predictive pro-
cedure is possible this computation is called computationally irreducible [114].
Using computation- and complexity theory it can be shown that such systems
have a stronger kind of unpredictability than chaotical systems[114][74]. We
can reformulate this notion in a particular physical version of the Church-
Turing Hypothesis:

“Universal computers are as powerful in their computational capabilities as
any physically realizable system can be, so that they can simulate any phys-
ical system”

[114]. If this hypothesis is true, no physical system can shortcut a computation-
ally irreducible process. In this case simulation is the only way out. A system
with bounded storage capacity that solves PSPACE-complete problems can be
called universal. Formally, only systems having infinite memory capacity that
can accept any r.e. language can be called universal, but this is not physically
realizable. The question is whether we can find any physical system, other
than an artificial computer, that is capable of universal computation. It is as-
sumed that there are many of such systems[83][114][74]. A complex dynamical
system, which can simulate any universal computation, is PSPACE-complete.
The question whether a given initial state z will ever reach a particular set A
is equal to the question whether a Universal Turing Machine ever halts for a
given initial input. Even if & is known exactly, its basin of attraction is not a
recursive set, i.e. there is no algorithm to test whether or not a point is in it[74].
Even in structurally very simple computational systems, very complex behav-
ior can emerge, such that questions about their long time behavior are formally
undecidable. In previous sections we came across a DCS with very simple mi-
croscopic interaction rules, which is able to display complex behavior, namely
Cellular Automata.

Summarizing so far, we can can say that a dynamic complex system is for-
mally intractable if it can simulate any polynomial space bounded TM and
thus questions regarding its behavior can be PSPACE-complete. In addition it

71

is possible that some systems can simulate any polynomial time bounded non-
deterministic Turing Machine. Imagine for example a system in which certain
questions about it can be non-deterministically guessed and checked in poly-
nomial time. Questions regarding such systems can be called NP-complete.
The last, and most difficult type of behavior, is displayed by those systems
which are capable of imitating any Turing Machine, with no resource bounds.
Answering questions about these kind of systems can be formally undecidable,
we can simulate for ever, without being certain of its behavior. Note that only
systems having a continuum of states are potentially Turing universal, while in
deterministic systems having a finite number of states, the limited precision will
cause that after some period, the system will return exactly to some previous
state.

6.3 Simulation, Parallelism and P-completeness

COMPUTABLE
PSPACE

NP

=)

Figure 35: The space of problem complexities

We have indicated the hardness of certain kind of problems and are confronted
with situations where it is fundamentally impossible to find shortcuts for solv-
ing problems, or even worse, solving those problems can be computationally
intractable. In the previous section we already considered the subject of simu-
lation. In this section we want to discuss this subject in more detail. How can
we position simulation in the world of computation theory? For now let us
define a system as some dynamical entity which evolves through “time”. We
already observed that a complex system can be called irreducible whenever

72

the system is capable of mimicking a Universal TM. Problems regarding the
system's ultimate fate are often computationally intractable. Irreducibility im-
plies a simulation approach since every computational step must be explicitly
simulated; we can also state that the system suffers from history dependence.
In other words we want to solve the problem in what state a system will be
after “running” for ¢ time steps. It is essential to know whether the simulation
of those systems can be accelerated using multiple processors. Computational
complexity theory offers different formal models for parallel computers, e.g.
P-RAM and uniform circuit families[10]. A separate complexity class has been
defined for problems that admit efficient parallelization[10]. The definition is as
follows: Let IT be a problem of sequential time complexity O(N*), II is in NC
if and only if there exists a parallel algorithm which can solve the problem is
poly-logarithmic time, O(log* N), using only a O(N*) processors. The class
of P-complete problems now contains those problems which are “hardest” to
solve in parallel, i.e. for which no efficient parallel algorithm exists (unless NC
= P). A well known P-complete problem is the Circuit Value Problem (CVP).
The problem is to compute the truth value of a so called Boolean circuit, which
consists of a hierarchical connected topology of boolean gates, given an input
string. Another interesting P-complete problem is Generic Machine Simula-
tion (GSM): Given an input z, an encoding of a TM T, and an integer ¢ coded
in unary, decide whether T accepts = within ¢ steps. The P-completeness re-
sult of GSM implies that the simulation of any system that is able to perform
arbitrary computations is a P-complete problem.

As an example consider an N-body system consisting of a set of interacting
particles. A question could be: “Will a particular particle ever reach a certain
part of the embedding space?”. It can be shown that this problem is actu-
ally PSPACE-hard, hence the solution will not be found by a “fast” procedure
(see section 2.2.2). As a consequence we call the system of interacting particles
irreducible and the corresponding problem intractable. The natural system can
perform “computations” that are as powerful as those performed by universal
computers requiring polynomial space. This irreducibility result implies that
the simulation problem itself, i.e. the state of the system ¢ time steps away;, is a
P-complete problem.

Hence, according to our definition of computational irreducibility, for all sys-
tems which can only be explicitly simulated, a P-complete problem must be
solved. This implies that efficient parallel simulation is not possible according
to the given definition. This sounds like a devastating result, implying yet an-
other hardness imposed on the class of irreducible systems. Besides the fact
that those systems can not be solved by analytical means, they can also not
be simulated efficiently in parallel. However, in practice we can already be
satisfied by breaking up a problem in time or space. Consider for example a
parallel method for finding the largest integer among a set of n integers. The
problem can be solved by decomposing the problem in /n sub problems of
v/n elements each. In the first step a sequential algorithm is applied in parallel
to determine the largest value of each sub problem. Subsequently the same
algorithm is applied to determine the largest value among the \/n resulting

73

elements. The parallel time complexity of this method is O(y/n), which is not
efficiently parallel, but in practice we can still be satisfied (Note that for this
example an efficient algorithm of O(log(n)) does exist[10]). P-completeness
does not say anything about the possibility of using approximation methods,
which may be amenable to efficient parallelization. Moreover, by simulating a
system to solve problems, certain phenomena or properties can emerge during
the simulation, phenomena that were not explicitly coded in the simulation
model. By analyzing this emergent behavior, we can answer questions about
those systems. In figure 35 we give a short schematic outline of the space of
problem complexities. For every DCS we can define a set of properties we are
interested in. It is the “hardness” of the properties that can be classified into
computational complexity classes. As an alternative to computing the property
we can simulate the system and “watch” whether a specific property emerges.
Even non-computable problems can be “solved” by simulation, just by watch-
ing the system evolve. An example [84] is the problem of determining whether
a certain point is a member of the Julia Set, which is the closure of the unstable
equilibrium set of the following complex mapping:

z(n+1)=2%(n) +c (124)

It is undecidable whether a given point in the complex plane is an element of
the Julia set [9], it is however possible to just simulate the mapping and observe
the membership of a certain point.

6.4 Computability: Cellular Automata

Even in systems with a very simple structure, it is possible to observe com-
plex behavior. Computational irreducible behavior is found everywhere, even
in systems with simple constructions. Examples are systems with only a few
degrees of freedom, e.g. the logistic map, and systems with many, but a finite
degree of freedom, e.g. Cellular Automata (CA)[115]. The nice thing about CA
is that they are easy to construct and are explicitly parallel, which make them
good model candidates for implementation on massively parallel computers.
CA can be seen as discrete approximations to partial differential equations[106]
and can be used for modeling a wide variety of Dynamic Complex Systems[66].
It is possible to classify CA evolution by their behavior. A possible classifica-
tion was given in [113]. Globally all classifications discriminate between four
classes:

I. Fixed point behavior, eventually the evolution of a CA ends in a fixed point
of the state space.

II. Periodic behavior, the evolution f is periodic with a period T, so f(t) =
ft+1T).

III. Chaotic behavior, evolution leads to chaotic patterns.

74

Figure 36: Fixed point and periodic behavior in 1D CA

DR R R

Figure 37: Chaotic and complex behavior in 1D CA

IV. Complex behavior, complicated localized patterns occur, sometimes they
die out sometimes they don't.

The first three types of behavior are commonly found in dynamical systems,
only until recently, behavior of the complex-type has been identified in dy-
namical systems[74][86][45][85]. It is assumed that dynamical systems which
display complex behavior are capable of universal computation[113][58]. In
the previous section of this paper, some motivation supporting this system
characteristic was given. This section further concentrates on CA, as a type
of physical model with the ability to perform irreducible computations.

In Figures 36 and 37, the four possible types of dynamical behavior are shown
for a 1 dimensional CA. Dynamical behavior of the CAs in Fig. 37 are examples
of computational irreducibility. The problem of determining the configuration
of a CA after ¢ time steps, given an initial seed and the CA-rule, can be solved
in O(log t) time for the CAs in Fig. 36. The evolution for the two other rules
can only be found by explicit simulation with length O(¢)[114]. The difference
is that the former two are reducible and the latter two are irreducible, i.e. their
ultimate behavior can only be predicted by explicit simulation. For infinite
class IV CA it is effectively undecidable whether a particular rule operating on
a particular initial seed will ultimately lead to a frozen state or not[58][114].

75

This is the CA analog of Turing's Halting problem. Obviously this decision
problem is not undecidable for finite CA, because it is always possible to de-
termine its fate in at most k" steps, for k states and N sites. This is analo-
gous to resource-bounded Turing Machines, which implies that the problem is
PSPACE-complete for universal bounded CA.

Summarizing CA behavior:

e Computational reducible behavior: fixed points and periodic. Final state of
the system may be predicted analytically.

e Computational irreducible behavior: chaotic dynamics are unpredictable and
complex dynamics can even be undecidable. The evolution of these sys-
tems is its own simplest description and its own fastest computation[24].

As an example we will construct a universal Turing Machine on a cellular au-
tomata, showing the universal computing capabilities of CA.

6.4.1 An example of intractability and undecidability in a universal CA

HEAD

STATE

OOOOO®

Current State Transition: Next State

T = _— = (unchanged)
T _—= = (unchanged)
- —_———= =|r

T = _—= =

T = e -

0

M

M
MOMTETH R M

3wy B 3 (unchanged)
a2 al a atl at2

Figure 38: Top: a TM tape coded as a cellular automaton configuration. Bottom: the
CA transition table that implement six different TM transition functions F

In this section we will construct a TM on a cellular automata using a straight-
forward method, without exploiting the parallel capabilities of a CA. The con-
struction is merely meant as a proof of existence for computing universal cellu-
lar automata and differs from traditional universal CA proofs, in which usually
logic gates acting on input signals are identified[7].

A Turing Machine works on a infinite tape on which symbols from an alphabet
¥ can be written. The TM can be in one of the states of a set I'. Furthermore a
TM executes instructions using a transition table, which instructs the TM where
to move its head (left or right), what to write on the leaving position and what

76

new state to enter given a read symbol and a current state. We identify the
following operations:

e Record current state 7,

Read symbol on head o,

Write symbol 7,41 on head

Do left (L) or right (R) move
o Change state to v,4+1

We are now ready to simulate a TM on a cellular automaton. We simply as-
sociate the tape symbols ¥ with states of the cellular automaton. The state of
a TM will also be part of the state alphabet of cellular automaton. The sug-
gested coding of a TM on a cellular automaton is depicted in Fig. 38. We will
use a CA neighborhood with radius 2 and the number of CA states equals
I' + ¥. In Fig. 38, we have numbered the cells to be updated. The numbered
cells represent all possible different neighborhoods in the cellular automaton.
The associated neighborhoods are listed below the picture of the cellular au-
tomaton configuration. The transition from the current cell to the next state is
schematically depicted. Some neighborhoods (1,2 and 6) are left unchanged
by the transition function, i.e. the state of the cell does not change. At each
computation step the TM moves its head either to the left or to the right. The
“head” of a TM is positioned at the right of the cell that indicates the current
“TM state”, i.e. this is the symbol that is “read”. The left or right moves have
to be coded as cellular automaton transitions. A move of a TM is concurrently
executed by three cells, e.g. cells with neighborhoods 3, 4 and 5. This is done
for each of the three different neighborhoods:

Neighborhood 3:
Left move: the cell will become new “TM state” 7y, +1.
Right Move: No change.

Neighborhood 4:
Left move: The cell will become the new “TM head”, reading symbol
a—1.
Right move: The cell will become the new written “TM head” symbol

On+1-

Neighborhood 5:
Left move: The cell will become the new written “TM head” symbol ¢y, 1.
Right move: The cell will become the new “TM state” vy, 41.

Using this recipe, the cellular automaton can simulate any Turing Machine
with a state alphabet I and a symbol alphabet ¥, hence the cellular automa-
ton can simulate a universal Turing Machine. This is important since it im-
plies that questions regarding its ultimate state are formally undecidable. A

77

space bounded version of the same cellular automaton can only simulate space
bounded universal TM's, which implies that questions about its final behavior
are formally intractable or PSPACE-complete.

References

[1] EH.L. Aarts, A.E. Eiben, and K.H. van Hee. Global convergence of ge-
netic algorithms: a Markov chain analysis. In H.P. Schwefel, editor, Paral-
lel problem solving from Nature I, pages 4-12, Berlin, 1990. Springer-Verlag.

[2] P. Alstrom. Self-organized criticality and fractal growth. Phys. Rev. A,
41(12):7049-7052, 1990.

[3] AW. Appel. An efficient program for many-body simulation. SIAM
Journal on Scientific and Statistical Computing, 6:?, 1985.

[4] R. Azencott. Simulated annealing: parallelization techniques. Wiley & sons,
New York, 1992.

[5] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev.
A, 38(1):364-374,1988.

[6] J. Barnes and P. Hut. A hierarchical order(nlogn) force calculation algo-
rithm. Nature, 324, 1986.

[7] E.R. Berlekamp,].H. Conway, and R.K. Guy. Winning Ways for your Math-
ematical Plays. Academic Press, New York, 1982.

[8] D. Bernstein, M. Rodeh, and I. Gertner. On the complexity of scheduling
problems for parallel/pipelined machines. IEEE Transactions on Comput-
ers, C-38(9):1308-1313, 1989.

[9] L. Blum, M. Shub, and S. Smale. On a theory of computation and com-
plexity over the real numbers: Np-completeness, recursive functions and
universal machines. Bulletin of the American Mathematical Society, 21(1),
1989.

[10] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity.
Prentice-Hall, 1994.

[11] G.J. Chaitin. Godel's theorem and information. International Journal of
Theoretical Physics, 21(12):941-954, 1982.

[12] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Computational complex-
ity and phase transitions. In Workshop on Physics and Computation. IEEE
Computer Society, 1992.

[13] S. Chen, Z. Wang, X. Shan, and G. Doolen. Lattice Boltzmann compu-
tational fluid dynamics in three dimensions. Journal of Statistical Physics,
68(3/4):379-400, 1992.

78

[14] J.P. Crutchfield. Critical computation, phase transitions and hierarchical
learning. In M. Yamaguti, editor, Towards the Harnessing of Chaos, Ams-
terdam, 1994. Elsevier Science.

[15] J.P. Crutchfield and M. Mitchell. The evolution of emergent computation.
Proceedings of the National Academy of Sciences, 92(23):10742,1995.

[16]]J.P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev.
Lett, 63:105-108, 1989.

[17] P. Cvitanovic. Universality in Chaos. Adam Hilger Ltd, Redcliffe Way,
Bristol, 1984.

[18] J.F. de Ronde, A. Schoneveld, and PM.A. Sloot et al. Load balancing
by redundant decomposition and mapping. In H. Liddell, A. Colbrook,
B. Hertzberger, and P. Sloot, editors, High Performance Computing and Net-
working (HPCN'96), pages 555-561, 1996.

[19] J.E. de Ronde, A. Schoneveld, B.J. Overeinder, and PM.A. Sloot. Map
final report. ESPRIT III-CEC CAMAS-TR-2.1.3.4, University of Amster-
dam, Amsterdam, 1995.

[20] L. Dikken, F. van der Linden, J. J. J. Vesseur, and P. M. A. Sloot. In
W. Gentzsch and U. Harms, editors, Lecture notes in computer science 797,
High Performance Computing and Networking, pages 273-277, Berlin, 1994.
Springer Verlag. vol. Proceedings Volume II, Networking and Tools.

[21] G.D. Doolen. Lattice gas methods for partial differential equations. Addison-
Wesley, New York, 1990. Proceedings Volume IV, Santa Fe Institute, Stud-
ies in the Science of Complexity.

[22] P.G. Drazin. Nonlinear Systems. Cambridge University Press, 1992.

[23] P.A. Dufort and C.J. Lumsden. The complexity and entropy of turing
machines. In Workshop on Physics and Computation, Dallas, Texas, 1994.

[24] B. Eckhardt, J. Ford, and F. Vivaldi. Analytically solvable dynamical sys-
tems which are not integrable. Physica D, 13:339-356, 1984.

[25] J. Feder. Fractals. Plenum Press, New York, London, 1988.

[26] G.Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Problems on Concurrent Processors, volume 1. Prentice-Hall, 1988.

[27] G.Fox, M. Johnson, G. Lyzinga, S. Otto, J. Salmon, and D. Walker. Solving
problems on concurrent processesors, Volume I, General techniques and regular
problems. Prentice-Hall International Inc., London, 1988.

[28] G. C. Fox. Achievements and prospects for parallel computing. Concur-
rency: Practice and Experience, 3(6):725-739, December 1991.

79

[29] E. Fredkin and T. Toffoli. Conservative logic. International Journal of The-
oretical Physics, 21(3/4):219-253,1982.

[30] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and
J.P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Com-
plex Systems, 1:649-707,1987.

[31] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the
Navier-Stokes equation. Phys. Rev. Lett., 56(14):1505-1508, 1986. see also
reprint in kn:Doolen.

[32] H. Fujikawa and M. Matsushita. Bacterial fractal growth in the concen-
tration field of nutrient. J. Phys. Soc. Japan, 60(1):88-94, 1991.

[33] M. Garey and D.S. Johnson. Computers and Intractibility; A guide to the
Theory of NP-completeness. W.H. Freeman and Co., San Fransisco, 1979.

[34] D. Goldberg. Genetic algorithms in search, optimization and machine learning.
Addison Wesley, M.A., 1989.

[35] D. Goldberg. A note on Boltzmann tournament selection for genetic al-
gorithms and population oriented simulated annealing. Technical report,
University of Alabama, 1990. TCGA Report 90003.

[36] M. Gorges-Schleuter. A asynchronous parallel genetic optimization strat-
egy. In J.D. Schaffer, editor, 3rd International Conference on Genetic Algo-
rithms, pages 422-427, San Mateo, 1989. Kaufmann.

[37] P. Grassberger. Long-range effects in an elementary cellular automaton.
J. Stat. Phys., 45(1/2):27-39, 1986.

[38] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
Journal of computational physics, 73:?, 1987.

[39] RW. Hamming. Error detecting and error correcting codes. Bell Syst.
Tech. J., 29:147-160, 1950.

[40] A.G. Hoekstra and PM.A. Sloot. New computational techniques to sim-
ulate light scattering from arbitrary particles. Part. Part. Syst. Charact.,
11:189-193, 1994.

[41] P. Hogeweg. Cellular automata as a paradigm for ecological modeling.
Applied mathematics and computation, 27:81-100, 1988.

[42] T. Hogg. Statistical mechanics of combinatorial search. In Workshop on
Physics and Computation, Dallas, Texas, 1994.

[43] J.H. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, 1975.

80

[44] J. E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[45] J.E. Hutson. Undecidability in an adaptive system. In Nadel and Stein
[76].

[46] Jong K.A. de. An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, 1975.

[47] J.A. Kaandorp. Fractal modelling: growth and form in biology. Springer-
Verlag, Berlin, New York, 1994.

[48] J.A.Kaandorp, C. Lowe, D. Frenkel, and PM.A. Sloot. The effect of nutri-
ent diffusion and flow on coral morphology. Phys. Rev. Lett., 77(11):2328—
2331, 1996.

[49] D. Kandhai, A. Koponen, A. G. Hoekstra, M. Kataja, J. Timonen, and
PM.A. Sloot. Lattice boltzmann hydrodynamics on parallel systems.
Submitted, 1997.

[50] S.A.Kauffman. The Origins of Order. Oxford University Press, 1993.

[51] J. De Keyser and D. Roose. Load balancing data parallel programs on
distributed memory computers. Parallel Computing, 19:1199-1219, 1993.

[52] S. Kirckpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated
annealing. Technical report, IBM, 1982. Research Report RC 9355.

[53] S. Kirkpatrick, C.D. Gelatt jr., and M.P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671-680, May 1983.

[54] A. Koponen, D. Kandhai, E. Hellen, M. Alvava, A. G. Hoekstra,
M. Kataja, K. Niskanen, and PM.A. Sloot. Permeability of three diemen-
sional random fibre webs. Submitted, 1997.

[55] Z. Koza. The equivalence of the dla and a hydrodynamic model. J. Phys.
A: Math. Gen., 24:4895-4905, 1991.

[56] A.J.C.Ladd. Numerical simulations of particulate suspensions via a dis-
cretized Boltzmann equation Part I. theoretical foundation. J. Fluid Mech.,
271:285-309, 1994.

[57] C.G. Langton. Studying artificial life with cellular automata. Physica D,
22:120-149, 1986.

[58] C.G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D, 42:12-37, 1990.

[59] W. Li. Mutual information functions versus correlation functions. J. of
Stat. Phys., 60(5/6):823-837,1990.

81

[60] J. Machta. The computational complexity of pattern formation. J. of Stat.
Phys., 70(3/4):949-965,1993.

[61] J. Machta. The computational complexity of pattern formation. Journal
of Statistical Physics, 70(3/4):949-967,1993.

[62] J. Machta and R. Greenlaw. The parallel complexity of growth models. J.
of Stat. Phys., 77:755-781, 1994.

[63] J. Machta and R. Greenlaw. The parallel complexity of growth models.
Journal of Statistical Physics, 77:755-781,1994.

[64] W.G. Macready, A.G. Siapas, and S.A. Kauffman. Criticality and paral-
lelism in combinatorial optimization. Science, 271:56-59, 1996.

[65] B. Manderick and P. Spiessens. Fine grained parallel genetic algorithms.
In J.D. Schaffer, editor, 3rd International Conference on Genetic Algorithms,
pages 428-433, San Mateo, 1989. Kaufmann.

[66] P. Manneville, N. Boccara, G.Y. Vichniac, and R. Bidaux, editors. Cellular
Automata and Modeling of Complex Physical Systems, volume 46 of Springer
Proceedings in Physics. Springer-Verlag, 1989.

[67] N. Mansour and G. Fox. Allocating data to multicomputer nodes by
physical optimization algorithms for loosely synchronous computations.
Concurrency: practice and experience, 4(7):557-574,1992.

[68] P. Meakin. A new model for biological pattern formation. J. Theor. Biol.,
118:101-113, 1986.

[69] H. Meinhardt. The algorithmic beauty of sea shells. Springer-Verlag, Berlin,
New York, 1995.

[70] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equation of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087-1092, 1953.

[71] M. Mezard, G. Parisi, and M.A. Virasoro. Spin Glass Theory and Beyond.
World Scientific, 1987.

[72] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, En-
glewood Cliffs, N.J., 1967.

[73] M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dynamics, computation,
and the 'edge of chaos': A re-examination. In G. Cowan, D. Pines, and
D. Melzner, editors, Complexity: Metaphors, Models, and Reality, 1994.

[74] C. Moore. Unpredictability and undecidability in dynamical systems.
Phys. Rev. Let., 64(20):2354-2357,1990.

82

[75]].D. Murray. Mathematical Biology. Springer-Verlag, Berlin, Heidelberg,
1990.

[76] L. Nadel and D.L. Stein, editors. 1990 Lectures in Complex Systems, vol-
ume III of Santa Fe Institute Studies in the Sciences of Complexity. Addison-
Wesley, 1991.

[77] B. J. Overeinder and P. M. A. Sloot. Application of time warp to par-
allel simulations with asynchronous cellular automata. In E. J. H. Ker-
ckhoffs A. Verbraeck, editor, Proceedings European Simulation Symposium
1993, pages 397-402, Delft, 1993. Society for Computer Simulation Inter-
national.

[78] B.J. Overeinder and PM.A. Sloot. Breaking the curse of dynamics by
task migration: Pilot experiments in the polder metacomputer. In press,
PVMPI'97,1997.

[79] B.J. Overeinder, PM.A. Sloot, RN. Heederik, and L.O. Hertzberger. A
dynamic load balancing system for parallel cluster computing. Future
Generation Computer Systems, 12(1):101-115,1996.

[80] N.H. Packard. Adaptation toward the edge of chaos. In J.A.S. Kelso,
A.J. Mandell, and M.F. Shlesinger, editors, Dynamic Patterns in Complex
Systems, 1988.

[81] O. Pla, F. Guinea, and E. Louis. Self-organized criticality in laplacian
growth. Phys. Rev. A, 42(10):6270-6273, 1990.

[82] O.Pla, E Guinea, and E. Louis. Self organized criticality in simple growth
models. In J.M. Garcia-Ruiz, E. Louis, P. Meakin, and L.M. Sander, edi-
tors, Growth Patterns in Physical Sciences and Biology, pages 213-219, New
York, 1993. Plenum Press.

[83] M. Boykan Pour-El and I. Richards. Noncomputability in models
of physical phenomena. International Journal of Theoretical Physics,
21(6/7):553-555, 1982.

[84] S. Rasmussen and C.L. Barrett. Elements of a theory of simulation. In
European Conference on Artificial Life, 1995.

[85] J.H. Reif and S.R. Tate. The complexity of n-body simulation. In A. Lin-
gas, R. Karlsoon, and S. Carlsson, editors, Automata, Languages and Pro-
gramming Proceedings, pages 163-175, 1993.

[86] J.H. Reif,].D. Tygar, and A. Yoshida. The computability and complexity
of optical beam tracing. In Symposium on Foundations of Computer Science,
1990.

[87] S. Roux, A. Hansen, and E.L. Hinrichsen. A direct mapping between
eden growth and directed polymers in random media. J. Phys. A: Math.
Gen., 24:1.295-1.300, 1991.

83

[88] C.Rubbia. Report of the EEC working group on high-performance com-
puting.

[89] G. Rudolph and J. Sprave. A globally convergent cellular genetic algo-
rithm. Not yet published, 1993.

[90] E. Sander, L.M. Sander, and R.M. Ziff. Fractals and fractal correlations.
Computers in Physics, 8(4):420-425,1994.

[91] L.M. Sander. Fractal growth processes. Nature, 322:789-793, 1986.
[92] L.M. Sander. Fractal growth. Scientific American, 256(1):82-88, 1987.

[93] A. Schoneveld. An abstract cellular genetic algorithm. Master's thesis,
University of Amsterdam, june 1994.

[94] A. Schoneveld,].F. de Ronde, PM.A. Sloot, and].A. Kaandorp. A par-
allel cellular genetic algorithm used in finite element simulation. In H-
.M. Voigt, W. Ebeling, I. Rechenberg, and H-.P. Schwefel, editors, Parallel
Problem Solving from Nature (PPSN 1V), pages 533-542, 1996.

[95] A. Schoneveld, J.A. Kaandorp, and PM.A. Sloot. Parallel simulation of
growth models. In prep.

[96] W. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois, Urbana, 1949.

[97] D. Sherrington. Complexity due to disorder and frustration. In E. Jen,
editor, 1989 Lectures in Complex Systems, volume II of Santa Fe Institute
Studies in the Sciences of Complexity, pages 415-453. Addison-Wesley, 1990.

[98] PM.A. Sloot. High performance simulation. EUROSIM - Simulation News
Europe, (15):15-18, 1995.

[99] PM.A. Sloot. Modelling for parallel simulation: Possibilities and pitfalls,
invited lecture. In Eurosim’95, Simulation congress, pages 29—44, Amster-
dam, the Netherlands, 1995.

[100] PM.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B.J. Overeinder. Parallel
Scientific Computing and Simulation. Wiley Book Series, 1998.

[101] PM.A. Sloot,].A. Kaandorp, and A. Schoneveld. Dynamic complex sys-
tems (dcs): A new approach to parallel computing in computational
physics. Technical Report TR-CS-95-08, University of Amsterdam, 1995.

[102] G.B. Sorkin. Simulated annealing on fractals: Theoretical analysis and
relevance for combinatorial optimisation. In W.J. Dally, editor, Advanced
Research in VLSI, Proceedings of the 6th MIT Conference, pages 331-351,
1990.

84

[103] PE Stadler and R. Happel. Correlation structure of the landscape of the
graph-bipartitioning problem. Journal of Physics A, 25:3103-3110, 1992.

[104] PF. Stadler and W. Schnabl. The landscape of the traveling salesman
problem. Physics Lettters A, 161:337-344,1992.

[105] S. Succi, R. Benzi, and F. Massaioli. A review of the lattice Boltzmann
method. In R.A. de Groot and]. Nadrchal, editors, Physics Computing
'92, pages pp 177-183, Singapore, 1992. World Scientific.

[106] T. Toffoli. Cellular automata as an alternative to differential equations in
modeling physics. Physica D, 10:117-127, 1984.

[107] M. Tomassini. The parallel genetic cellular automata: application to
global function optimization. In R.F. Albrecht, C.R. Reeves, and N.C.
Steele, editors, Artificial neural nets and genetic algorithms, pages 385-391,
Wien, 1993. Springer-Verlag.

[108] J.M. Voogd and PM.A. Sloot. Simulated annealing on h.p.c. systems: Ap-
plied to crystallization with spherical boundary conditions. In A. Ver-
braeck and E. J. H. Kerckhoffs, editors, European Simulation Symposium
1993, pages 371-376, Delft, The Netherlands, 1993. Society for Computer
Simulation International.

[109] J.M. Voogd, PM.A. Sloot, and R. van Dantzig. Comparison of vector and
parallel implementations of the simulated annealing algorithm. FGCS,
11:467-475,1995.

[110] E.D. Weinberger. Correlated and uncorrelated fitness landscapes and
how to tell the difference. Biological Cybernetics, 63:325,1990.

[111] C.P. Williams and T. Hogg. Using deep structure to locate hard problems.
In Proceedings of the 10th National Conference on Artificial Intelligence, pages
472-477,San Jose, California, 1992.

[112] C.P. Williams and T. Hogg. Phase transitions and coarse-grained search.
In Workshop on Physics and Computation, Dallas, Texas, 1994.

[113] S. Wolfram. Universality and complexity in cellular automata. Physica
D, 10:1-35, 1984.

[114] S. Wolfram. Undecidability and intractability in theoretical physics. Phys.
Rev. Let., 54:735-738,1985. In: Cellular Automata and Complexity.

[115] S. Wolfram. Theory and Applications of Cellular Automata. World Scientific,
Singapore, 1986.

85

