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Preface Lecture notes on Stochastic Simulation
The real purpose of modelling and simulation is to discover that nature hasn't misled you into thinking
you know something, you don't actually know.

Adapted from R. Pirsig

In  the  ever  growing  field  of  computer  simulation  stochastic  simulation  plays  a  more  and  more
prominent role. This is mainly due to the enormous potential of nowadays computer systems. The type
of systems that  need to  be  studied  through stochastic  simulation are  systems of  which the  behaviour
can  only  be  predicted  by  explicit  simulation,  rather  than  analytical  calculation.  We  classify  these
systems by "computationally irreducible complex systems". Examples are: The motion of molecules in
a  classical  liquid,  light  beams  in  ray-tracing  optics,  spreading  phenomena  (of  diseases,  forest  fires
etc.), growth phenomena (of crystals or macroscopic biological entities), or more general, all problems
from physics that can be described in terms of N-body interactions.

This  text  is  meant  to  be  background  undergraduate  material  for  self  study  in  the  field  of  stochastic
simulation  of  problems  in  physics.  The  text  is  accompanied  by  addenda  with  exercises  and  training
material: there is no way you can understand computer simulation without actually doing it!

The course can be considered as a good preparation for courses on more advanced topics of simulation
such  as  Computational  Physics  II:  "Understanding  Molecular  Simulations",  "Parallel  Scientific
Computing and Simulation" and "Simulation of Complex Systems".

This  text  started  with  the  preparation  of  a  lecture  on  modelling  and  simulation  at  the  1994  CERN
summer school in Hungary. Large parts of the original idea's and text are adapted from, and motivated
by, the literature listed at the end of this document.

This  text  is  clearly  a  compromise  where  I  have  chosen  stimulating  examples  from  computational
physics  rather  than  rigorous  treatment  of  selected  topics.  Since  I  plan  to  update  the  text  each  year  I
would appreciate to receive your comments, suggestions, additions, and corrections.

Computer simulation is fun, but we have to stay critical and keep a close watch on the figures and data
we  produce  and  ask  ourselves  if  it  is  physics  we  are  looking  at  or  rather  a  poor  mimic  of  it.  In  the
words  of  E.  Wigner  (after  seeing  a  complicated  computer  simulation):  "I  think  the  computer
understands  it, now I want to understand  it!"

Peter Sloot

Amsterdam, January 2002

Email: sloot@science.uva.nl

URL: http://www.science.uva.nl/~sloot
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1 Monte Carlo Methods & Variance Reduction
Monte  Carlo  method  [Origin:  after  Count  Montgomery  de  Carlo,  Italian  gambler  and  random-
number generator  (1792-1838).]  A method of jazzing up the action in certain statistical  and number-
analytic environments by setting up a book and inviting bets on the outcome of a computation.

-S. Kelly-Bootle

The Devil's DP Dictionary

1.1 Introduction

In  this  chapter,  one  of  the  most  interesting  probabilistic  simulation  methods,  called  "Monte  Carlo"
(MC), is introduced. It can be applied to study all kinds of systems. E.g. statistical physics problems,
crystallisation  processes,  phase  transitions  in  systems  with  large  degrees  of  freedom,  evaluation of
integrals  of high dimensionality,  etc.  The MC technique will  be compared with a standard numerical
integration technique: Simpson's rule. In principle MC simulations are static, stochastic and discrete of
nature.  Furthermore  several  variance  reduction  techniques  for  probabilistic  simulations  will  be
introduced.  Such  techniques  can  aid  in  arriving  faster  at  a  result  that  falls  within  certain  given  error
bounds. 

A  working  knowledge  of  statistics  is  expected.  Please  read  Appendix  A  for  an  overview  of  the
relevant aspects of Probability theory and statistics.

1.2 Monte Carlo Integration

à 1.2.1 Motivation

In many particle systems, thermodynamical observables are described by integrals such as:

    

(1.1)Z = ‡ ... ‡ d  rê1 ... d  rên e-b ⁄i< j  vIri, jM
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In quadrature approximation in 10×10×10 box and with N=20 particles we have 103 N = 1060points to
evaluate, without taking any symmetries into account. On a machine with 100 MFlop/s it would take
1052seconds, what is 1037times more than the age of Universe.

à 1.2.2 Introduction to Numerical Integration
We  first  briefly  discuss  "classical"  methods  of  numerical  integration.  Consider  a  one-dimensional
definite integral of the form:

(1.2)q = ‡
a

b
f HxL dx.

a b

f(x)

For certain choices of the integrand f(x),  this integration can be done analytically.  However there are
many common functions whose integrals are intractable and which must be evaluated numerically. 

The  simpliest  numerical  integration  method is  the  rectangular  approximation.  We divide  the  interval
[a, b] in n equal parts of length Dx = (b - a)/n.

 

The estimate of the integral is the sum of the rectangles:

(1.3)qn = ‚
i=0

n-1

f HxiL Dx

The next method uses trapezoids instead of rectangles. 
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The area of each column is equal to:

(1.4)1
2 @ f Hxi+1L + f HxiLD Dx

what gives the total value:

(1.5)qn = A 1
2  f Hx0L + ⁄i=1

n-1 f HxiL + 1
2  f HxnLE

The midpoint rule is another method to estimate an integral on the small interval.

a+h/2

(1.6)‡
a

a+h
f HxL dx > h a +

h
2

It can be shown that errors of trapezoidal approximation HTerrorL and of midpoint rule HMerrorLare related
in such a way that Terror > - 1

2  Merror.

(1.7)
T = ‡

a

b
f HxL dx + Error

M = ‡
a

b
f HxL dx -

1
2

 Error

We can cancel these errors by combining both approximations:

(1.8)
1
3

 T +
2
3

 M >‡
a

b
f HxL dx

It gives the Simpson's rule:

(1.9)S = hB 1
6

 f HaL +
2
3

 f a +
h
2

+
1
6

 f Ha + hLF
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The Simpson' s rule applied to the whole interval divided in n parts of length Dx is given by :

(1.10)qn =
1
3
@ f Hx0L + 4 f Hx1L + 2 f Hx2L + 4 f Hx3L + ∫ 2 f Hxn-2L + 4 f Hxn-1L + f HxnLD Dx.

Simpson's rule requires that n is even. It can be shown that the error in this estimation is proportional
to n-4. More general one can show for numerical integration techniques that if the error is proportional
to n-a in one dimension, then the error in d dimensions is proportional to n-aêd .

Question:  Show qualitatively why the prefactor in (1.10) is 1/3.

Question:  Show qualitatively why the exponent in the error for d-dimensions equals -a/d.

à 1.2.3 Integral Estimation using Hit-Miss. 
A method that can be seen as a MC method is the so-called "Hit-Miss" technique. The principle is as
follows: 

Let g(x) be a bounded function over a finite interval, for example 0§g(x)§b  with x in the interval [0,
1]. We are again interested in estimating:

(1.11)q = ‡
0

1
gHxL dx.

The  hit-miss  method  for  accomplishing  this  is  to  generate  a  pair  of  independent  random  numbers
U1and  U2.  Next  set  X=U1and  Y=bU2.  In  this  way  random  points  (X,  Y)  are  generated,  that  are
uniformly distributed in a rectangle of length 1 and height b. Now set

(1.12)I = IHX , Y L =
1
0

 
if Y < gHX L
otherwise,

then 

(1.13)E@ID =
1
b

 ‡
0

1
gHxL dx,

(1.14)q = E@ID b.

That is fun! We observe that by just "throwing darts" in a confined space and calculating the ratio of
the number of "hits" under the integral and the total number of "hits and misses" (Equation 1.14), we
get an approximation of the numerical value of the Integral under study.

Note that we have used E[X] to denote the Expectation of variable X, this is equal to the average of X.
Often we use the notation XX\ for the same operation (see Appendix A).

Question:  Give the Hit and Miss algorithm for Integration with arbitrary boundaries.
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1.2.4 Integral Estimation using Monte Carlo
The  principle  behind  the  Monte  Carlo  method  can  be  explained  by  means  of  a  simple  example.
Assume we have a function g(x) of which we wish to calculate the following:

(1.15)q = ‡
0

1
 gHxL dx.

If we take a uniformly distributed random variable, say U , then the following holds:
(1.16)q = E@gHULD.

Question:  explain why this is true (see Appendix A).

If  we have a  row of independent  random variables  U1, …, Uk that  are  uniformly distributed  over  the
interval  [0,1]  the  random  variables  gHU1L, …, gHUkL  are  independent  and  identically  distributed
random variables having a mean q. Therefore by the strong law of large numbers, see equation (A.23),
it follows that:

(1.17)
1
k

 ‚
i=1

k

gHUiLö q, for k ö ¶.

So  q  may  be  approximated  by  generating  a  large  number  of  random  numbers  Uiand  taking  as  our
approximation  the  average  value  of  g(Ui).  The  utility  of  using  random  numbers  to  approximate
integrals becomes more apparent in the case of multidimensional integrals. g can be a function with an
n-dimensional argument where we want to compute:

(1.18)q = ‡
0

1
 ‡

0

1
 …‡

0

1
 gHx1, …, xnL dx1 … dxn.

Similar to the one dimensional case we can now estimate the value of q using the following:
(1.19)q = E@gHU1, …, UnLD,

where U1, …, Un  are independent uniform [0,1] random variables. If we now generate k independent
sets, each consisting of n independent uniform [0,1] random variables:

(1.20)

U1
1, … Un

1

U1
2, … Un

2

ª ª ª

U1
k, … Un

k

then,  since  the  random  variables  gI  U1
i , …, Un

i  M  for  i=1,  …,  k   are  all  independent  and  identically
distributed random variables with mean q, we can estimate q by 
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(1.21)q =
1
k

 ‚
i=1

k

gIU1
i , …, Un

i M for k ö ¶.

à 1.2.5 Generalization  of MC Sample Mean Integration
We would like  to use Monte Carlo integration on the interval from a to b:

(1.22)q = ‡
a

b
 gHxL dx = GHbL -GHaL.

Introducing new variable y =
x - a
b - a

we get :

(1.23)y =
0 x = a
1 x = b

and dx = Hb - aL dy.

Inserting this into our integral with x = Hb - aL y + a we obtain

(1.24)q = ‡
0

1
gHHb - aL y + aL Hb - aL dy = ‡

0

1
hHyL dy

To extend our interval to infinity, for example:

(1.25)q = ‡
0

¶

 gHxL dx

we do this by substituting y =
1

x + 1
 what gives :

(1.26)y =
1 x = 0
0 x = ¶

and dx = -
1

y2
 dy.

We modified the integral to the standard form q = ‡
0

1
hHyL dy, with :

(1.27)hHyL = -
gI 1

y - 1M
y2

 dy.

à 1.2.6 Error Analysis of Monte Carlo Integration

To estimate the error of sample mean integration we compute the mean square error of 
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(1.28)qn =
1
k

 ‚
i=1

k

gHUiL

Since we know that E@qnD = q we can put

(1.29)

EAHqn - qL2E = VarHqnL

= Var
1
k

 ‚
i=1

k

gHUiL

=
1

k2
 ‚
i=1

k

VarHgHUiLL

=
sg

2

k

where sg
2is the variance in the observed values g(Ui). We see that the uncertainty in the estimate of 

the integral decreases as 1/ k and that the precision increases for smaller sg
2, which implies a 

smoother function g. These observations are independent of the dimensionality of the problem, 
whereas for conventional methods, such as Simpson's rule or the trapezoidal rule, the error tends to 
increase with dimensionality, as we saw above. This independence of the dimensionality is one of the 
important characteristics of MC, explaining its widespread use.

à 1.2.7 Example 1: Monte Carlo Integration
Assume we want to estimate 

(1.30)q = ‡
0

1
e-x dx.

We then  simply  generate  k  random numbers  Ui,  which  are  drawn  from a  uniform [0,1]  distribution.
With  equation  (1.17)  we  then  can  estimate  the  integral.  The  error  in  the  estimation  can  be
approximated using equation (1.29). Say q(k)  is the estimate of the integral  after k  "trials" and  sk  is
the estimate of sgafter k "trials". Typical results could look like:

qHkL sk sk ë k k
0.62906 0.18002 -0.00306 3600
0.63305 0.18201 0.00092 7200

We can observe in this "experiment" that for k > 3000 the variance in the output remains unchanged,
which  is  logical  since  the  uncertainty  in  an  individual  trial  is  constant,  whereas  the  error  in  the
estimation may still reduce for larger k. This is an experimental indication of a well known theoretical
result that states that the error in the estimation resembles:
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(1.31)sq =
sk

k
.

We note that we can reduce the error in MC integration by:

æ  increasing the number of trials

æ using  more  efficient  trials  (i.e.  sampling  in  the  neighbourhood  of  fast  fluctuating  values  of  the
function g(x). This brings us to the topic of "variance reduction." The following example gives
an  idea  of  the  amount  of  work  that  may  arise  when  simply  applying  MC simulation,  and  not
considering the possibility of variance reduction.

à 1.2.8 Example 2: Necessity  of Variance Reduction
Consider a stochastic  approximation where the observable Xi  is  determined (with all  X's  independent
and random). We model, for the sake of simplicity, the probabilistic behaviour by:

(1.32)P 8Xi = 1< = 1 - P 8Xi = 0< = p, where p = 10-6.

Now in order to allow for a reliable approximation we want to construct a 95% confidence interval of
"p" with a length of say: 2ä10-6, or equivalently:

(1.33)X ≤ Z0.025 μ
s

n
,

where  n  equals  the  number  of  trials.  Then from statistics  we know that  the  length  of  the  confidence
interval around p, is given by 

(1.34)2 μ Z0.025 μ
s

n
= 2 μ 10-6.

With unit normal  Z0.025= 1.96 and  s = VarHXiL =  pH1 - pL  for the used random variables 

Xi, we find that 

(1.35)n =
2 μ 1.96 μ pH1 - pL

2 μ 10-6
.

Therefore n = 3.8×106, that is more than a million simulation runs to obtain the required accuracy! It is
clear that a method that can reduce the variance of individual "trials" may be very helpful in obtaining
an estimate that doesn't need as many trials as "normal" MC but still provides the same accuracy.
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1.3 Variance Reduction Techniques

à 1.3.1 Introduction
In  a  typical  simulation  study,  one  is  interested  in  determining   q,  a  parameter  connected  with  some
stochastic  model.  To  estimate  q  ,  the  model  is  simulated  to  obtain,  among  other  things,  the  output
datum X which is such that q= E[X]. Repeated simulation runs, the ith one yielding the output variable
Xi  , are performed. The simulation study is then terminated when n runs have been performed and the
estimate of  q is given by:

(1.36)X =
1
n

‚
i=1

n

Xi.

Because this results in an unbiased estimate of q (the estimator of a parameter is an unbiased estimator
of that parameter if its expected value is equal to the parameter), it follows that its mean square error
(MSE) is equal to its variance. That is:

(1.37)MSE = E@IX - qM2D = VarHX L =
VarHX L

n
.

Hence  if  we  obtain  a  different  unbiased  estimate  of   q  having  a  smaller  variance  than  does  X  ,  we
would obtain an improved estimator, this is called variance reduction.

The most relevant variance reduction techniques are:

æ The use of Control Variates

æ Conditioning

æ Stratified Sampling

æ The use of Antithetic Variables

æ Importance Sampling

In  this  text  we  will  focus  on  Antithetic  Variables  and  Importance  Sampling  techniques.  For  a  more
extensive treatment the reader is referred to for example [18]. 
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à 1.3.2 The use of Antithetic Variables.
Suppose  we are  interested  in  using  simulation  to  estimate  q  =  E[X].  and  suppose  we have  generated
X1and  X2,  which  are  identically  distributed  random  variables  having  mean  q.  Then  from  equation
(A.21) it follows that

(1.38)Var I X1 + X2

2
M =

1
4
@VarHX1L + VarHX2L + 2 CovHX1, X2L D.

Hence  it  would  be  advantageous  (in  the  sense  that  the  variance  would be  reduced)  if  X1and  X2were
negatively or anti-correlated instead of independent. To see how we might arrange for X1 and X2 to be
negatively correlated, suppose that X1 is a function of m random numbers:

(1.39)X1 = hH U1, U2, …, UmL,

where  U1,  U2,  …,  Umare  m  independent  random  numbers.  Now  if  U  is  a  random  number  uniform
[0,1]) then so is 1-U. Hence the random variable 

(1.40)X2 = hH 1 - U1, 1 - U2, …, 1 - UmL,

has  the  same  distribution  as  X1.  In  addition,  since  1-U  is  clearly  negatively  correlated  with  U,  we
might hope that X2  might be negatively correlated with  X1. Indeed one can prove in the special case
where h is a monotone function of each of its coordinates that X1 and X2 are negatively correlated. 

Hence, after we have generated U1, U2,  …, Um  to compute X1, we can use the set 1 - U1, 1 - U2,  …,
1 - Um   to compute X2. In addition, it should be noted that we obtain a double benefit: not only does
our resulting estimator have smaller variance, but we also save the time of generating a second set of
random numbers.

Example: The use of Antithetic Variables

Suppose we are interested in using simulation to estimate

(1.41)q = EAeU E = ‡
0

1
ex dx = e - 1.

Since the function h(U)=eU is clearly a monotone function, the antithetic variable approach is expected
to lead to a variance reduction. Note that Equation (A.20) gives

(1.42)
CovIeU , e1-U M = EAeU  e1-U E - E@eUD E@e1-U E

= e - He - 1L2 = -0.2342,

and 

(1 43)

Var HeUL = E@e2 UD - IE@eUD M2

= ‡
0

1
 e2 x dx - He - 1L2
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=
@e2 - 1D

2
- He - 1L2 = 0.2420

= Var He1-UL .

We see that the use of independent random numbers results in a variance of 

(1.44)Var J eU1 + eU2

2
N =

1
4

Var HeU1L + Var HeU2L + 0 = Var HeUL
2

= 0.1210,

whereas the use of the antithetic variables U and 1-U gives a variance of 

(1.45)Var J eU + e1-U

2
N =

Var HeUL
2

+
Cov HeU , e1-UL

2
= 0.0039,

which is a variance reduction of 96.7 %.

à 1.3.3 Importance Sampling

Let  Y = HY1, …, YmL  denote  a  vector  of  random  variables  having  joint  probability  density  function
f(Y ), and suppose we are interested estimating

(1.46)q = E@hHY LD = ‡ hHyL f HyL d y1 … d ym ,

where the above is meant to be an m-dimensional integral on the unit hypercube. 

Suppose that a direct simulation of the random vector Y  so as to compute values of h(Y ) is inefficient,
possibly because it is difficult to generate the random vector Y ,  or the variance of h(Y ) is large, or a
combination of both. 

Another way in which we can use simulation to estimate q is to note that for any other random vector
W = HW1, …, WmL,  which  takes  values  in  the  same  region  as  does  Y  and  has  joint  density  function
g(W ), q can be expressed as:

(1.47)

q = ‡
hHwL f HwL

gHwL
 g HwL dw1 … dwm

= E
hHW L f HW L

gHW L
.

Therefore we can estimate q by successively generating values of the random vector W  and then using
as the estimator the resulting average of the values of hHW L f HW L/gHW L. If the density function gHW L
can be chosen to be similar in shape to the function hHW L f HW L then their ratio will not vary much and

so  hHW L f HW L/  gHW L  will  have  a  small  variance.  Unfortunately,  however,  this  is  often  difficult  to
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accomplish and usually a small simulation experiment is necessary to see if this approach does indeed
result in an acceptably small variance. 

Example: Importance Sampling

Say one is interested in estimating the following integral:

(1.48)H = ‡
a

b
 hHxL dx.

We may introduce a positive function p(x) with the characteristic:

(1.49)1 = ‡
a

b
 pHxL dx

and rewrite equation (1.48) as :

(1.50)H = ‡
a

b
 
hHxL
pHxL  pHxL dx .

Therefore one can estimate the integral H after n "trials" by 

(1.51)Hn =
1
n

 ‚
i=1

n hHXiL
pHXiL

,

where  now  the  values  of  Xi  are  not  uniformly  distributed  on  the  interval  [a,  b]  but  are  distributed
according  to  p(x).  Xifollows  from  P-1HU L,  the  inverse  of  the  cumulative  distribution  function
PHxL = Ÿ-¶

¶ pHxL d x  and U  is  the uniform distribution.  Moreover p(x)  should be chosen to mimic h(x),
because in that case the integrand will vary slowly, which means that the variance will be small.

How to choose the best pHxL? We wish the variance of H to be small and since sH
2 =

shHxLêpHxL2 ë N we must reduce variance of hHxL ê pHxL. It is given by :

(1.52)s hH xL
p HxL

2 = [ hHxL
pHxL - [ hHxL

pHxL _
2

_

and since [ hHxL
pHxL _ = H it is equal to

(1.53)[ hHxL
pHxL - H

2

_ = ‡
0

1 hHxL
pHxL - H

2

 pHxL dx

The best solution is to take normalized version of hHxL :

(1.54)pHxL =
hHxL

Ÿ0
1hHxL dx

Then the variance will vanish and the result will be exact.We can say that in that case we can estimate
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the  value  of  integral  using  only  one  random  number!  The  problem  is  that  we  must  know  the  exact
value of the integral before.

Of course the computational cost of sampling an arbitrary random variable is higher than that for using
uniformly distributed variables. Table 1.1 shows an example where importance sampling is compared
with standard Monte Carlo estimation. The results are for estimation of the integral: 

(1.55)H = ‡
0

1
 e-x2

 dx =
p

2
 Erf H1L = 0.746824.

pHxL uniform @0, 1D pHxL = A e-x

n Hnumber of trialsL 2000 1000
Hn 0.7452 0.7482
s 0.2009 0.0544

s ë n 0.0016 0.0017
CPU ê trial 0.0077 0.0280
total CPU 154 28

Table 1.1: Importance sampling versus simple Monte Carlo (The value of A is 
chosen such that p(x) is normalised on the interval [0, 1]).

Question:  What would you chose for A? Explain.

It is clearly visible that the variance per trial is reduced significantly when using importance sampling.
The  CPU  consumption  per  trial  is  much  higher  for  importance  sampling.  Still,  since  the  number of
trials  necessary  to  obtain  results  with  comparable  accuracy  is  much  lower  for  importance  sampling,
the total amount of time spent is lower than when just applying Monte Carlo integration. 
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2 Markov Chains and Metropolis 

2.1 Introduction: Markov chains

In classical physics, a basic role is played by the fundamental principle of scientific determinism: from
the  state  of  a  physical  system  at  the  time  t0  ,  one  may  deduce  its  state  at  a  later  instant  t.  As  a
consequence one obtains a basic method of analysing physical systems: the state of a physical system
at a given time t2  may be deduced from a knowledge of its state at any earlier (later) time t1  and does
not depend on the history of the system before (after) time t1. 

For  physical  systems,  which  obey  probabilistic  laws  rather  than  deterministic  laws,  one  may  use  an
analogous principle: the probability that the physical system will be in a given state at a given time t2
may  be  deduced  from  a  knowledge  of  its  state  at  any  earlier  time  t1,  and  does  not  depend  on  the
history  of  the  system  before  time  t1.  Stochastic  processes  which  represent  observations  on  physical
systems satisfying this condition are called Markov processes. 

A special kind of Markov process is a Markov chain; it may be defined as a stochastic process whose
development may be treated as a series of transitions between certain values (called the "states" of the
process)  which  have  the  property  that  the  probability  law  of  the  future  development  of  the  process,
once it is in a given state, depends only on the state and not on how the process arrived in that state. 

Example: Written language as a Markov chain

The letters of the alphabet may be divided into two categories, vowels and consonants. Let us denote a
letter  by a 0 if  it  is  a vowel and by a 1 if  it  is  a  consonant.  A page of written text  then appears  as a
sequence of 0's and 1's. The vowels and consonants form a Markov chain if given any string of letters
the probability for the next letter to be a vowel or consonant (0 or 1) is the same as the probability that
the next letter will be a vowel or consonant knowing only the nature of the last letter of the string. For
most languages this would not be the case, although it does seem to be the case for sufficiently simple
languages  such  as  Samoan.  In  this  language  a  consonant  is  never  followed  by  a  consonant,  and  a
vowel has probability 0.51 of being followed by a vowel. 

Example: Children throwing a ball

A group of 4 children playing a game by throwing a ball to one another. At each stage the child with
the ball is equally likely to throw it to any of the other 3 children. Let X0 denote the child who had the
ball originally, and for n¥1 let Xn  denote the child who has the ball after it has been tossed exactly n
times. The "chain" of outcomes X0, …, Xn is a Markov chain. 
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2.2 Definitions 

A Markov process is a sequence of trials (or observations), where the probability of the outcome of a
given trial depends only on the outcome of the previous trial. Let Xk  be a stochastic variable denoting
the  outcome  of  the  k-th  trial.  The  transition  probability  at  trial  k  for  each  pair  (i,  j)  of  outcomes  is
defined as:

(2.1)Pij HkL = P@Xk = j  Xk-1 = i D.

This describes the probability that given the present state is i the next state will be j. The matrix P(k)
whose elements are given by (2.1) is called the transition matrix. For example the transition matrix for
the ball-throwing children is given by: 

(2.2)P =

0 1
3

1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0

.

So when at  a certain point  a specific  child has the ball  it  will  throw it  to one of the other 3 children
with equal probability. 

A  Markov  process  for  which  the  state  space  (the  set  of  possible  outcomes)  is  discrete  is  called  a
Markov  chain.  For  example  the  state  space  in  case  of  the  children  throwing  a  ball  is  given  by  the
children's "names": {0, 1, 2, 3}.

A Markov chain is called finite if it is defined on a finite set of outcomes. For example the number of
ball-throwing children is 4, which is definitely a finite set of possible states.

A Markov chain is called inhomogeneous  if the associated transition probabilities depend on the trial
number k. If the transition probabilities are independent of the trial number, the Markov chain is called
homogeneous. For example the ball-throwing children. Say the children have thrown the ball in total k
times. The transition probability matrix is still the same. The ball is still thrown with equal probability
to another child as when started. 

A Markov chain with transition  matrix P  is  irreducible  or  ergodic,  if  for  each pair  of solutions  (i,  j)
there  is  a  larger  than  zero  probability  of  reaching  j  from i  in  a  finite  number  of  trials.  So  given  an
arbitrary initial state every outcome in the state space is reached with probability > 0, for an infinitely
long Markov chain that  is  irreducible.  For the  ball-throwing children:  every child  is  likely to get  the
ball at least once if the game continues forever.
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Example: Discrete parameter Markov chain

Consider  a  physical  system  which  is  observed  at  a  discrete  set  of  times.  Let  the  successive
observations  be  denoted  by  X1,  X2,  …,  Xn,  ….  It  is  assumed  that  Xn  is  a  random  variable.  The
sequence {Xn} is called a chain if it is assumed that there are only a finite or countable infinite number
of states in which the system can be. The sequence {Xn} is a Markov chain if each random variable Xn
is discrete and if the following condition is satisfied: for any integer m>2 and any set of m points n1<
n2< ∫ <nm  the conditional distribution of Xnm , for given values of Xn1 , Xn2 , …, Xnm-1  depends only on
Xnm-1 , the most recent known value; in particular, for any real numbers  x1, x2, …, xm   it holds that

(2.3)P AXm = xm  X1 = x1, …, Xm-1 = xm-1E = P AXm = xm  Xm-1 = xm-1E.

2.3 The stationary distribution of a Markov chain and (a)-
periodicity. 

Finally,  the notion of what can be understood as the "stationary distribution" of a Markov chain will
be introduced. If we have a specific Markov chain that runs through a certain (discrete) state space (for
example the children) then we denote the stationary distribution of this chain as the set of probabilities
that describe that after infinitely many "trials" the Markov chain will be in a certain state. For the case
of  the  children  intuitively  one  may  deduce  immediately  that  on  the  long  run  every  child  has  equal
probability to have the ball. 

The stationary distribution of a finite homogeneous Markov chain with transition matrix P  is defined
as the vector q, whose ith component is given by : 

qi = lim
kö¶

P A X HkL = i X H0L = jE " j.

In case of the ball-throwing children qi= 1
4 , " i. So in the long run the ball is with equal probability in

the possession of any child, no matter what the starting conditions where. 

Finally  we'll  introduce  the  notion  of  a-periodicity  of  a  Markov  chain.  Given  a  certain  state  that  a
Markov chain is in. If we can return into this same state within one Markov step we call the chain a-
periodic. Else it is called periodic. For example the ball-throwing children: since a child is not allowed
to throw the ball to itself the next state within the Markov chain is never the same as the current state.
Therefore the Markov chain generated by the children is periodic with period 2. 
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2.4 The Metropolis Algorithm

à 2.4.1 Introduction
Given  the  idea  of  Markov  chains  we  can,  without  proving,  discuss  the  algorithm  which  has  been
introduced by Metropolis (see [14]). 

It is often very difficult or even impossible to generate random variables with an arbitrary distribution.
Using  the  Metropolis  algorithm  one  can  generate  a  homogeneous  Markov  chain  {Xn}  that  steps
through  a  state  space,  such  that  the  points  Xn  are  distributed  according  to  the  required  probability
density function p(x).

In  the  Metropolis  algorithm we generate  a  chain of  configurations  Xn  of  the system of  interest,  such
that the number of configurations in the "interval" [X, X+dX]  is proportional to p(x)dx. We do this as
follows:  Suppose  that  after  some  time  the  system  has  arrived  in  state  Xn.  We  generate  a  trial
configuration  Xt  from  Xn  by  making  a  small  change  to  Xn.  (What  is  meant  by  "a  small  change"
depends on the kind of system that is studied.) We then calculate the ratio:

(2.4)
pHXtL
pHXnL

= r.

Dependent on the value of r the trial configuration is accepted or rejected. If r¥1 the trial is accepted.
If r<1 the trial  is  always accepted with probability r.  We do this by drawing a random uniform [0,1]
number x. If r¥x  we accept Xt, else we reject it. If the trial configuration is accepted we set  Xn+1=Xt,
else   Xn+1=Xn. By repeating this Markov process we generate a chain of configurations Xn, n = 1, 2,
…,  N.  If  N  is  large  enough,  every  configuration  will  occur  in  the  chain  with  a  frequency  that  is
proportional  to  the  probability  density  p(x).  Figure  2.1  shows  the  mechanism  of  the  Metropolis
algorithm graphically for an exponential density function. 
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Figure 2.1: If r¥1 the change is accepted. If r<1 a random number x is drawn and 
the change is accepted if r¥x.

à 2.4.2 Recipe for the Metropolis Algorithm
One starts  by  defining  a  "random walk"  with  a  transition  probability  Gij  being  the  probability  to  get
from  "state"  Xi  to  X j  such  that  the  distribution  of  the  points  (or  states)  Xiconverges  to  p(x).  A
sufficient condition is the so-called detailed balance condition:

(2.5)pHXiL Gij = pHX jL G ji

Which states that the flow of going from state i to j is equal to the flow of going from state j to i, where
the  flow  of  going  from  state  i  to  j  is  given  by  the  probability  of  being  in  that  state  i  times  the
probability of going from state i to j. For example:  

(2.6)Gij = min B1,
pHX jL
pHXiL

F.
Given this, one can generate Xi+1 from Xi by the following pseudo code:

Choose trial position Xt=Xi+δi with δi random over [-δ,δ]

Calculate Γij = min A1, pHXi+1L
pHXiL E

if Γij >= 1: accept move and put Xi+1=Xt 
if Γij <  1: generate random number R (uniform on [0,1])

         if R <= Γij accept move and put Xi+1=Xt

         else        put Xi+1=Xi

It is efficient to take d  such that roughly 50% of the trials are accepted. Furthermore the walk can be
started best at a value of X at which p(X) has a maximum. It can be shown that this method guarantees
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that, for a large number of steps, "all states" are explored and an equilibrium will be found according
to Gij. 

à 2.4.3 Variance in the Metropolis-Markov chains
If  we  apply  the  method  of  Metropolis  to  estimate  a  specific  stochastic  parameter  q,  we  may  be
interested  in  an  estimate  of  the  variance  involved.  Due  to  the  fact  that  now the  successive  trials  (or
observables) are statistically  correlated it is not allowed to estimate the variance (fluctuations) by the
formula:

(2.7)VarHX L = s2 =
1
n

 ‚
i=1

n

Xi
2 -

1

n2
 ‚

i=1

n

Xi

2

.

In  order  to  be  able  to  estimate  the  variance  of  the  stochastic  variable  q  correctly,  we  can  only  use
observables  that  are  separated  in  time  so  far  that  the  statistical  correlation  between  them has  "died"
out. Typically one may write down a so called auto-correlation function for the simulated observables
{Xn}  in the following manner:

(2.8)Ck =
XXi Xi+k\ - XXi\2

YXi
2] - XXi\2

,

where  

(2.9)XXi Xi+k\ =
1

n - k
 ‚
i=1

n-k

Xi Xi+k.

Such a correlation function has the characteristic  that  it  dies out for increasing k.  We can calculate  a
"correlation time" t by:

(2.10)t = ‚
k

Ck .

One may then estimate the error by:

(2.11)sn
2 =

2 t

n - 1
1
n

 ‚
k=1

n

Xk
2 -

1

n2
 ‚

k=1

n

Xk

2

.

In  practice  very  often  the  variance  is  calculated  from  block  averages.  We  split  up  the  chain  in  M
blocks of length n/M. We suppose that the mean of every block is independent of the other blocks. Let
Xm be the average of X over the mth block. Then 

(2.12)sM blocks
2 =

1
M - 1

1
M

 ‚
m=1

M

Xm
2 -

1

M 2
 ‚

m=1

M

Xm

2
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is an estimate of the variance. The block length should be taken at least to be 2t. Why this is a good
value  for  the  block  length  is  not  explained  here.  An  additional  problem  shows  up  in  general  when
choosing a starting configuration. An arbitrary starting configuration will not be representative of the
so  called  "equilibrium"  distribution.  In  practice  therefore  one  has  to  equilibrate  the  system for  some
time. When the system has reached equilibrium one can start calculating characteristics of the system. 
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3 MC simulation of the Canonical Ensemble

3.1 The Canonical Ensemble

à 3.1.1 Introduction

Most physical systems exchange energy with their environment. Since such systems are usually small
in comparison to the environment, we can assume that the change in energy of the smaller system does
not influence the temperature of the larger system. Hence the larger system acts as a heat reservoir or
heat bath at a fixed absolute temperature T.

If a small -albeit macroscopic- system is placed in thermal contact with a heat bath, the system reaches
thermal equilibrium by exchanging energy with the heat bath until it attains the temperature of the heat
bath. In this state the entropy reaches its maximum.

The  system can  exist  in  any  one  of  a  number  of  microscopic  states  that  have  the  same total  energy.
Since  we only  know the  total  energy  we have  no  way to  distinguish  one  microscopic  state  from the
other or to assign probabilities to those various states.

We can imagine the evolution of a system as a flow of points in 6N-dimensional phase space (3 space
coordinates and 3 momentum coordinates per particle). If X N is a point of the phase space, then HIX N M
is  the energy of that  configuraton.   The phase space can be divided into layers of configurations that
have  the  same energy  -  such layers  are  called  energy  surfaces.  If  the  system is  ergodic,  what  means
that  averaging  over  time  is  equivalent  to  averaging  over  the  phase  space,  the  probabilities of
microstates are based on mechanical properties of the system. Therefore it is equally probable to find
the state of the system in different regions of the energy surface if those regions are equal in size. In
other words, if the system is ergodic, it will spend equal times in equal areas of the energy surface.

We can define S(E) to be the area of energy surface. Then, the ergodicity implies that the probability
distribution for the energy surface will be:

(3.1)pIX N , EM = :
1

SHEL for HIX N M = E

0 otherwise

For fixed temperature T the probability that the system is in micro state s with energy Es, is given by
the Boltzmann distribution:

(3.2)Ps =
1
Z

 e-
Es

kB  T ,
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where  Z  is  a  normalisation  constant.  The  ensemble  defined  by  (3.2)  is  known  as  the  Canonical
Ensemble. Since ⁄s Ps=1, Z is given by:

(3.3)Z = ‚
s=1

M

e-
Es

kB  T .

The  summation  in  (3.3)  is  over  all  M  micro  states  of  the  system.  The  quantity  Z  is  known  as  the
partition function of the system.

We can use (3.2) to obtain the ensemble average of the physical quantities of interest [6]. For example,
the mean energy is given by:

(3.4)X E \ = ‚
s

Es Ps =
1
Z

‚
s

Es e-
Es

kB  T .

To calculate the mean energy we integrate over all possible energy values (b stands for 1
kB  T ):

(3.5)XEs\ =
Ÿ0

¶
 Es Ps dEs

Ÿ0
¶ Ps dEs

=
Ÿ0

¶ Es e- b Es  dEs

Ÿ0
¶e- b Es  dEs

While integrating the denominator is elementary, to deal with nominator we use integration by parts,
namely the formula :

(3.6)‡
a

b
u dv = u v »ab -‡

a

b
v du

with u = Es, d v = e-b Es  d Es and v = - b-1 e-b Es . Putting that into (3.6) and (3.5) we get both integrals
calculated:

XEs\ = b -2

b -1 = 1
b = kB T

Note  that  the  energy  can  fluctuate  in  the  canonical  ensemble  as  in  contrast  to  the  micro  canonical
ensemble. We can derive various important relations among equilibrium quantities by exploitation of
this  fluctuation  possibility.  For  example  let's  consider  the  relation  of  constant  volume  response  to
energy fluctuations in the canonical ensemble:

For simplicity we adopt the notation U=XE\. From the definition of the heat capacity C we have:

(3.7)C ª
∑U
∑T

= -
1

kB T2

∑U
∑ b

.

From (3.3) we can compute:
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(3.8)

∑

∑ b
 ln Z =

∑

∑ b
 ln ‚

s=1

M

e- bEs =
1
Z

 
∑

∑ b
 ‚
s=1

M

e-bEs =
1
Z

 ‚
s=1

M ∑

∑ b
 e-bEs =

1
Z

 ‚
s=1

M

H-EL e-bEs = -X E \ = -U

It  is  a  useful  formula  for  calculating  the  mean  energy  U  from  the  given  partition  function  Z.
Differentiating once again, we have:

(3.9)

∑U
∑ b

=
1

Z2
 

∑Z
∑ b

2

-
1
Z

 ‚
s

Es
2 e-bEs

= X E \2 - Y E2 ].

So from (3.7) and (3.9) we arrive at a very useful description of the heat capacity C as a funcion of the
energy dissipation:

(3.10)C =
1

kB T2
 IY E2 ] - X E \2M.

Note that the heat capacity is derived at constant volume since the partial derivatives were performed
with the energy levels Es kept constant.

The magnetic susceptibility is another example of a response function, since it measures the ability of
-for  instance-  a  spin  to  respond or  flip  due to  a  change in  an  external  magnetic  field.  The zero  field
isothermal magnetic susceptibility is defined by the thermodynamic derivative:

(3.11)c = lim
Hö 0

∑X M \
∑ H

.

And  in  close  resemblance  to  the  derivation  of  the  heat  capacity,  we  can  relate  the  zero  field
susceptibility to the magnetisation fluctuations in the system by:

(3.12)c =
1

kB T
 IY M 2] - X M \2M.

In  the  next  paragraphs  we will  discuss  the  Ising spin  model  as  an example of a  method to study the
behaviour of canonical ensembles by means of Monte Carlo techniques.

à 3.1.2 Simulating the Canonical Ensemble
To  estimate  the  quantity  A  (e.g.  heat  capacity,  magnetisation)  by  means  of  simulation,  we  should
generate a number of microstates and take the mean value of A over that sample. We can write this in
the form:

(3.13)Am =
⁄s=1

m As e-bEs

⁄s=1
m e-bEs

CurrentValue[FileName] 29



However,  if  we  generate  the  microstates  in  a  simple  way,  many  of  them  may  have  very  small
probabilities  Ie-bEsM. Such  states  contribute  very  little  to  the  mean  value  and  make  the  simulation
ineffective. To do it better, we should make use of importance sampling introduced in Chapter 1.3. As
in section 1.3.3, we can multiply and divide (3.13) by gs:

(3.14)Am =
⁄s=1

m HAs ê gsL e-bEs  gs

⁄s=1
m H1 ê gsL e-bEs  gs

Next, if we generate microstates with probability gs, then we get:

(3.15)Am =
⁄s=1

m HAs ê gsL e-bEs

⁄s=1
m H1 ê gsL e-bEs

Now we have to choose probability distribution gs to minimise the variance. Mertopolis suggested that
it should be the Boltzmann probability:

(3.16)gs =
e-bEs

⁄s=1
m e-bEs

Such choice of gsgives us a simple method of getting Am. By inserting (3.16) into (3.15), we get:

(3.17)Am =
⁄s=1

m As

m

We  have  shown  that  we  can  obtain  our  estimated  result  by  generating  microstates  with  given
probability  distribution.  How  can  we  get  such  distribution?  The  answer  is  the  Metropolis  algorithm
introduced in Sec. 2.4.2. 

According to the Metropolis recipe, we generate a random state (n) that differs a little from the initial
(m). Then we compute the energy difference beetween them and the ratio of their probabilities:

(3.18)DEnm = En - Em and Pn

Pm
= e- bEn

e- bEm
= e- bDEnm

Then,  if  the DEnm§0 the new state  is  accepted.  If  DEnm>0 the new state  is  accepted with probability
e- bDEnm : we generate a random number x form [0,1] and accept the state if x<e- bDEnm . 
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3.2 Simulating the Ising Model

à 3.2.1 Introduction
As an example of a system that is described by the canonical ensemble we will use Ising Model. The
"Ising"  system  serves  as  one  of  the  simplest  models  of  interacting  bodies  in  statistical  physics.  The
model  has  been  used  to  study  ferromagnets,  anti-ferromagnetism,  phase  separation  in  binary  alloys,
spin glasses and neural networks. It  has been suggested [2] that the Ising model might be relevant to
imitative  behaviour  in  general,  including  such  disparate  systems  as  flying  birds,  swimming  fish,
flashing fireflies, beating heart cells and spreading diseases.

The  probabilistic  Ising  model  employs  a  constant  temperature  condition  (known  as  the  canonical
ensemble formulation). Essentially, the (2D) model is comprised of an "n by n" square lattice in which
each lattice  site  s  has  associated  with  it  a  value  of  1  (up  spin)  or  -1 (down spin).  Spins  on adjacent,
nearest-neighbour sites interact in a pair-wise manner with a strength J (the exchange energy). When J
is positive, the energy is lower when spins are in the same direction and when J is negative, the energy
is lower when spins are in opposite directions. There may also be an external field of strength H (the
magnetic field). The magnetisation of the system is the difference between the number of up and down
spins on the lattice - it reaches the maximum if all spins are oriented in the same direction. The energy
of the system is given by:

(3.19)E = -J ‚
Xij\

si s j - m0 H ‚
i

si ,

with first sum over all pairs of spins which are nearest neighbours and the second term the interaction
energy J of the magnetic moment m0  with the external magnetic field H. In spin flipping, lattice sites
are selected and either flipped or not, based on the energy change in the system that would result from
the flip. The simulation is essentially a Markov Chain simulation.

In the (probabilistic) Ising model we assume a constant temperature condition (the canonical ensemble
formulation). A lattice site is selected at random and a decision is made on whether or not to flip the
site using the Metropolis Algorithm (see previous section). The Metropolis method allows the system
to reach a "global" energy minimum rather than getting stuck in a "local" minimum at low temperature.

With respect to ferromagnetism we are familiar with materials such as iron and nickel which exhibit a
spontaneous  magnetisation  in  the  absence  of  an  applied  magnetic  field.  This  non  zero  magnetisation
occurs only if the temperature is lower than a well-defined temperature known as the critical or Curie
temperature Tc. For temperatures T > Tc the magnetisation vanishes. Hence Tc separates the disordered
phase for T > Tc from the ferromagnetic phase for T < Tc.
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TTC

M

Although  the  origin  of  ferromagnetism  is  quantum  mechanical  in  nature,  the  study  of  the  classical
Ising  spin  model  provides  much  insight  into  the  properties  of  magnetic  systems  in  the  vicinity  of  a
phase  transition.  Exceptions  are  systems  with  T`Tc  and  models  of  iron  and  nickel  where  the
individual spin moments are no longer localised.

The  physical  properties  of  interest  which  we  want  to  extract  from  a  Ising  spin  simulation  are:  The
mean energy XE\, the mean magnetisation XM\,  the heat capacity C and the magnetic susceptibility c.
We  can  estimate  these  properties  at  the  phase  transitions  by  examining  the  critical  exponents  (see
Chapter 5.3) from computer experiments.

à 3.2.2 Enumeration  of the Ising model on a 2×2 lattice
The number of possible states or configurations of the Ising model increases as 2N ,  therefore we can
only enumerate the possible configurations for small N. As an example we calculate various quantities
of interest for a 2×2 Ising model on a square lattice.

Two different configurations with 2 spins up are shown in Figure 3.1

E=0 E=8

Figure 3.1: Examples of Ising configurations on a 2×2 square lattice, with 
boundary conditions.

In Table 3.1 we list the states according to their total energy and magnetisation.
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Ò of spins UP Degeneracy Energy Magnetisation
4 1 -8 J 4
3 4 0 2
2 4 0 0
2 2 8 J 0
1 4 0 -2
0 1 -8 J -4

Table 3.1: Energy and magnetisation of 24 states of the zero-field 2×2 Ising model.

Next we can compute all the quantities of interest using Table 3.1. The partition function is given by:
(3.20)Z = 2 e8 bJ + 12 + 2 e-8 bJ.

From this equation and (3.8) we find:

(3.21)U = -
1
Z
@2 H8L e8 bJ + 2 H-8L e-8 bJD.

We can find the exact values for XE2\, XM\, X |M | \, XM 2\ and the dependence of C and c on bJ in the
same manner.

In the limit of an infinite large lattice it is also possible to solve the 2D Ising model analytically (see
for instance [10] and [13]): The best known value to date for the critical Temperature is kBTc/J = 2.271
( kBTc/J =4.5108 for 3D).
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à 3.2.3 The 2D Ising Spin Algorithm
The   2D   Ising       Spin     Algorithm

1] Create an "n by n" lattice consisting of randomly chosen site 
values of +1 and -1. The following sequence of steps 2-4 will be 
executed a number of times (this is described in step 5), first 
using the initial lattice configuration, and then using the lattice 
configuration resulting from the previous run-through of the 
sequence. We will describe the steps in terms of an arbitrary 
lattice configuration, called Lattice.

2] Select a random lattice site in Lattice.

3] Determine the energy change involved in "flipping" the spin at 
the selected lattice site. This is done in a number of steps:

3a] Determine the neighbours to the selected site. When 
the selected site is in the interior of Lattice, the 
neighbours are the sites north (above), south (below), 
west (left) and east (right) of the site. When the selected 
site is along the border of Lattice, some neighbours are 
taken from the opposing side of the lattice. This way of 
choosing neighbours for border sites is known as the 
reflecting or periodic boundary condition.

3b] The energy change that would result from flipping the 
spin of the selected lattice site is determined by the 
quantity, 2 x (value of selected site) x (B + J(total spin 
from neighbours)), where B and J are input values.

4] Use the Metropolis method to decide whether to flip the spin of 
the selected lattice site as follows:

4a] Check if there is a negative energy change as a result 
of the flip.

4b] If the energy change is non-negative, check if the 
exponential of (- energy change divided by temperature) is   

greater than a random number between 0 and 1.

4c] If one of these conditions is satisfied, flip the spin.

5] Execute the sequence of steps 2-4 m times.
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6] Create a sublist, monteCarloStepLis, containing every n2th 
element from the list of Lattice configurations. (The use of every 
n2th element corresponds to giving each lattice site an equal 
chance to be selected. Each element in monteCarloStepLis is said to 
correspond to one Monte Carlo step). 

7] Calculate for each element in monteCarloStepLis, some global 
property of the lattice, such as the long range order (the absolute 
value of the magnetisation of the lattice).

à 3.2.4 An example  run
In the next two simulations we study the natural phenomenon of ferromagnetism as an example [3, 4].
Non-zero magnetism only occurs if the temperature is lower than a well-defined temperature known as
the  Curie  critical  temperature  Tc.  For T  >  Tc  the  magnetisation  vanishes.  Tc  separates  the  disordered
phase of the spin system for T > Tc for the ordered ferromagnetic phase for T < Tc.

Explore the system for H=0 and T>Tc or T<Tc.

Figure 3.2: a) H=0; TpTc, final configuration on a 30x30 lattice, b) (Dis)Order in 
system  versus number of iterations  
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Figure 3.3: a) H=0; T just below Tc, final configuration on a 30x30 lattice, b) 
Order in system  versus number of iterations

In this example we have performed more than 100000 Monte Carlo steps for each cell. To simulate a
real  system  we  would  of  course  need  1023  cells  instead  of  the  302.  Fortunately  the  computer
experiments given here already give us some insight in the basic physics of such spin systems. Careful
experiments  with  detailed  statistical  analyses  can  indeed  reveal  very  interesting  physical  phenomena
from this  simple  probabilistic  model.  Especially  the  study  of  phenomena  like  critical  slowing  down
and phase transitions in classical fluids are fields of active research.

à 3.2.5 A Lattice gas variant of the Ising model.
The  Ising  model  can  describe  other  systems  which  might  appear  to  have  little  in  common  with
ferromagnetism. One variant  for example of the Ising model, which has been used to model a lattice
gas,  replaces  the  Ising  spin  flip  dynamics  with  spin  exchange   dynamics  in  which  a  pair  of  nearest
neighbour sites is selected, the energy change due to interchanging their  spins is determined, and the
interchange decision is again made using the Metropolis algorithm. Note that the use of spin exchange
dynamics  conserves  the  number  of  spins  in  the  lattice.  In  this  "lattice  gas"  model  "down  spins"  for
instance  represent  a  lattice  site  occupied  by  an  atom  and  "up"  spins  an  empty  site.  Note  the
resemblance with the lattice  gasses  discussed in Chapter  4.  The type of Ising lattice  gas represents  a
crude model of the behaviour of a real gas of atoms and is of historical importance as a model for the
gas-liquid  transition  and  the  critical  point.  The  important  difference  between  a  ferromagnet  and  a
lattice gas is that the total number of atoms is fixed, whereas the number of "up" and "down" spins in a
ferromagnet can change.

Since the spins correspond to atoms, we can compute the equilibrium single particle diffusion constant
of the atoms. We can built a list to record the position of each spin (atom) as a function of time. After
equilibrium  has  been  reached,  we  choose  the  origin  of  time  and  compute  XR(tL2\,  the  mean-square
displacement per atom after t  units of time. Then - as discussed in Chapter 4 - if the "atoms" undergo
a  random  walk,  we  can  use  Equation  (4.31)  to  calculate  the  self-diffusion  constant  for  different
Temperatures and numbers of occupied sites.
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à 3.2.6 Simulation of simple classical fluids
Lattice gas models can also be applied to model fluid flow. Fluid flow is in general difficult, because it
is  described  by  the  nonlinear  Navier-Stokes  equation.  The  main  idea  of  lattice  gases  is  that  if  the
fundamental conservation laws and symmetries associated with fluids are maintained, that this ensures
that the correct physics is produced at a macroscopic level after averaging over many particles.

The  input  of  a  lattice  gas  model  is  the  microscopic  behaviour.  As  the  name  already  indicates  the
particles "live" on a lattice, rather than in free space. Therefore not only the position of the particles is
restricted, but also their velocity vectors. In the simplest models only two processes are included, free
motion between collisions and the collisions.

A simple example of a lattice gas is the FHP-I model as formulated by Frisch, Hasslacher and Pomeau.
It  is  a  2-dimensional  model  and  formulated  on  a  triangular  lattice.  All  particles  will  have  the  same
speed and can only move along the links to neighbouring sites, hence there are 6 velocities:

(3.22)

v”1 = H1, 0L
v”2 = K1, 3 Oì 2

v”3 = K-1, 3 Oì 2

v”4 = H-1, 0L
v”5 = K-1, - 3 Oì 2

v”6 = K1, - 3 Oì 2

During  a  collision  we  ensure  conservation  of  mass  and  momentum  and  only  2-  and  3-particles
collisions are allowed, as is shown in Figure 3.4. If two particles collide head-on, the outgoing state is
changed in one of the  others  with equal  probability.  In  the case of a 3-body collision there is  only a
single choice of the outgoing state.  If at a given node the configuration is not found in the "collision
table" (Figure  3.4), no collision will occur. 
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HbL

Figure 3.4: The collision rules of a FHP-I model. (a) In a head on collision the 
outgoing state is randomly selected from the two remaining diagrams. (b) In a 3-
particle collision the outgoing state is the remaining one with probability 1.

In Figure 3.5 the two steps in a simulation of a lattice gas are shown. In the first step, the streaming,
the  particles  are  moved  to  the  neighbouring  lattice  site  along  the  direction  of  their  velocity.  In  the
second  step  it  is  checked  for  each  lattice  site  whether  the  occupancy  of  the  links  is  found  in   the
collision table. If that is the case, the occupancy of the links is changed accordingly, otherwise nothing
is changed.

HcL

HaL

Figure 3.5: (a) An initial configuration of a FHP-I simulation. (b) The result after 
the streaming step. (c) The result after performing collisions.

Alternative  models  can  be  defined,  which  include  more  collisions  and/or  multiple  speeds  e.g.  by
including a rest  particle.  It  is  also possible  to use a square lattice in 2 dimensions, although this will
put some extra constraints on the number of particle speeds that should be included. This is caused by
the  difference  in  symmetry  between  the  two  lattices.  Also  extensions  to  3  and  4  dimensions  can  be
made.
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4 Random Walk Methods

4.1 Introduction

In 1906 Pearson posed the "random walk" problem as follows: A drunkard begins at  a lamppost and
takes N steps of equal length in random directions, how far will the drunkard be from the lamp post?
Since this formulation, the random walk model has been extremely useful to scientists in many fields
who are studying stochastic (probabilistic) processes: physicists modelling the transport of molecules,
biologists  modelling  the  locomotion  of  organisms  and  economists  modelling  the  time  behaviour of
financial markets. General introduction and references can be found in [4, 6, 17, 22]

Chapter  4.2  describes  the  one-  and  two-dimensional  random  walks,  some  shape  characteristics  of  a
walk and the notion of the critical  exponent. Chapter 4.3 describes the Self-Avoiding walk and some
applications of the method.

4.2 1D and 2D Random walks and Diffusion Process

à 4.2.1 Simple Random Walk

The simplest  Random Walk (RW) model  consists  of  n  steps  of  equal  length,  back-and-forth  along  a
line. We start at (a lamp post) located at x=0, each step is of equal length l , the direction of each step
is independent of the previous one. At each time step the walker has a probability p of a step right and
q= 1- p of a step to the left. With np the number of steps to the right en nq the number of steps to the
left, the total number of steps N=np+nq. The net displacement after N steps is x =(np-nq)l, with -Nl §
x§Nl.

With PN (x) the probability that after N steps the walker has undergone a net displacement of x, we can
compute the mean net displacement XxN\ and the variance sN

2  of the walker by (the averages are over
all possible walks of N steps):

XxN\ = ‚
x=-Nl

Nl

x PN HxL
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sN
2 = YDxN

2 ] = YxN
2 ] - XxN\2, with

YxN
2 ] = ‚

x=-Nl

Nl

x2 PN HxL.

By using probability theory we can analyse the random walk analytically (in contrast to Monte Carlo
simulation and exact enumeration). 

After N steps the displacement xN  is given by:

(4.2)xN = ‚
i=1

N

si where si = ≤ l

and

(4.3)x2
N = ‚

i=1

N

si

2

For p = q = 1
2  we expect xHNLØ0 for NØ¶ (why?) This implies that XxN \ = 0 for N Ø ¶.

Therefore: 

(4.4)x2
N = ‚

N

i=1

si
2 + ‚

N

i∫ j=1

si s j

For i ∫ j we get

(4.5)si s j =

-l - l
-l + l
+l - l
+l + l

We see that on average there are equal chances for +l2 and for -l2. Hence:

(4.6)‚
N

i∫ j=1

si s j = 0

For i = j we get si
2 = l2 so:

(4.7)‚
N

i∫ j=1

si
2 = N l2

From above, we conclude that 

(4.8)YDxN
2 ] = N l2.
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and
(4.9)VarHxL = YxN

2 ] -XxN \2 = N l2

where Var(x) is called dispersion.

It can be shown  [17] that for general case Hp ∫ qLthe values for mean displacement and dispersion are
given by:

(4.10)
XxN\ = Hp - qL N l

YDxN
2 ] = 4 p q N l2.

We can reformulate the RW in terms of the diffusion of a molecule in a dilute gas,  a very important
interpretation of the RW model (in Appendix C on Bayes theorem we will come back to Diffusion in
terms  of  stochastic  processes).  Assume a  molecule  travels  a  distance  l  between  collisions  with  other
molecules. If the successive displacements undergone by the molecule are "statistically independent",
then the motion of the molecule is comporal to the motion of the drunkard. Since the motion of such a
molecule can also be described by a diffusion process, we can write one in terms of the other. 

à 4.2.2 RW Example
Let's have a look on a simple random walk example. If we take only 3 steps HN = 3Lof length l = 1 in
one  dimension Hd = 1L,  we  can  explicitly  enumerate  all  possible  ways  of  evolution  of  such  a  system
and compute the parameters defined above. From Table 4.1 we can see that there is only one possible
way to end at x = -3 or x = 3 and that there are three possible ways to stop at x = -1 or x = 1.

x = -3 x = -1 x = 1 x = 3
≠ ≠ ≠ ≠ ≠ Ø Ø Ø ≠ Ø Ø Ø

≠ Ø ≠ Ø ≠ Ø

Ø ≠ ≠ ≠ Ø Ø

q3 3 p q2 3 q p2 p3

Table 4.1 Probabilities for x after N=3 steps

First, we can compute 

(4.11)

Xx3\ = ‚
x=-3

3

x P3HxL = -3 q3 - 3 p q3 + 3 q p2 + 3 p3 =

= 3 Ip2 - q2M Hp + qL =

= 3 Hp + qL Hp - qL =

= 3 Hp - qL

We get the same result as from (4.10). In the similar way we find
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Yx3
2] = ‚

x=-3

3

x2 P3HxL = @3 Hp - qLD2 Hp + qL + 12 Ip q2 + q p2M =

= @3 Hp - qLD2 + 12 pqHp + qL

From (4.11) and (4.12) we obtain YD x3
2] = 12 p q.

à 4.2.3 The Diffusion Equation
The process of diffusion of a fluid molecule is described by the partial differential equation. We will
obtain this equation by inspecting 1D random walk in continuum limit. If there is an equal probability
of  taking  a  step  to  the  right  or  to  the  left,  the  random walk  can  be  written  in  terms of  the  so-called
"master equation":

(4.13)PN HiL =
1
2

 PN-1Hi + 1L +
1
2

 PN-1Hi - 1L

where PN (i)  is  the probability  that  a  walker  is  at  site  i  after  N  steps.  In order  to obtain a differential
equation for the probability density P(x, t), we set t=Nt, x=ia and PN (i)=aP(x, t), where t is the time
between steps and a is  the lattice  spacing.  This notation allows us to rewrite  (4.13) in the equivalent
form:

(4.14)PHx, tL =
1
2

 PHx + a, t - tL +
1
2

 PHx - a, t - tL .

Rearranging, subtracting P(x, t-t) from both sides and dividing by t results in:

(4.15)
1
t
@PHx, tL - PHx, t - tLD =

a2

2 t
@PHx + a, t - tL - 2 PHx, t - tL + PHx - a, t - tL D a-2.

Next, we can expand P(x, t-t) and P(x±a, t-t) in a Taylor series: 

(4.16)

PHx, t - tL = PHx, tL - t 
∑ PHx, tL

∑ t
+ ...

PHx + a, t - tL = PHx, tL - t 
∑ PHx, tL

∑ t
+ a 

∑ PHx, tL
∑ x

+
a2

2
∑2 PHx, tL

∑ x2
+ ...

PHx - a, t - tL = PHx, tL - t 
∑ PHx, tL

∑ t
- a 

∑ PHx, tL
∑ x

+
a2

2
∑2 PHx, tL

∑ x2
+ ...

After inserting the above expansions into (4.15)  the first order derivatives on the right-hand side are
cancelled to 0 by sumation. Then taking the limit aØ0 and tØ0 with ratio D = a2/2t finite, we obtain
the diffusion equation:

∑ PHx, tL
∑ t

= D
∑2 PHx, tL

∑ x2
, or in 3 Dimensions :
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∑ PHr”, tL
∑ t

= D “
2

 PHr”, tL, with

“
2

=
∑2

∑ x2
+

∑2

∑ y2
+

∑2

∑ z2
 the Laplacian operator.

Equation (4.17) is known as the diffusion or Fokker-Planck equation and is frequently used to describe
continuous  processes.  The  proportionality  constant  D  is  known  as  the  "self-diffusion  constant"  of  a
molecule.

à 4.2.4 Solution of Diffusion Equation
The solution of the 1-dimensional Fokker-Planck equation in free space can be shown to be a Gaussian
whose width increases as t1ê2:

(4.18)PHx, tL =
1

4 p D t
 e- 1

2
 J x2

2 D t
N ,

where P(x,t) is the probability of finding the particle at point x at time t if the particle started at x=0 at
t=0. To prove that (4.18) is the solution of diffusion equation, we can insert it into (4.17) and after a
few differentiations we can see that it works. 

The Figures 4.1 and 4.2 show how the probability distribution for 1D and 2D changes with time:

t=2 t=6

Figure 4.1: PHx, tLfor two time points
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t=2

Figure 4.2: PHx, y, tLfor two time points

The numerical solution of the prototypical parabolic partial differential equation (4.17) is explained in
[10] and [16]. An indirect method of analysis of the Fokker-Planck equations (4.17), is to use a Monte
Carlo method, that is to replace (4.17) by a corresponding random walk on a lattice with discrete time
steps.  Since the asymptotic behaviour of the partial  differential  equation and the random walk model
are equivalent, this approach can be seen as using the Monte Carlo method as a method             of     numerical
analyses.  In  contrast,  if  our  goal  is  to  understand  a  random  walk  lattice  model  directly,  the  Monte
Carlo technique is a simulation                 method, the difference is disappearing. In the course Parallel Scientific
Computing and Simulation [19], we tossed the name "Natural Solvers" for this type of techniques and
use them to exploit the implicit parallelism in the problem at hand.

à 4.2.5 Self-diffusion Constant and Random Walk
In this subsection we will find the relation between the self-diffusion constant D and the random walk
properties. We will do it by comparing the mean square displacement YDx2 ] for both cases.

First,  we introduce time scale into random walk:  if  we take the time between steps t  to be such that
N=t/t with step lengths l then (4.10) can be rewritten in the form:

(4.19)YDx2 ] = 4 p q l2Ht ê tL.

Next, we will compute  YDx2 ] for probability distribution PHx, tL satisfying the diffusion equation. As
a first step we will find  XxHtL \, which is defined as:

(4.20)Xx HtL\ = ‡
-¶

¶

x PHx, tL d x

To find the result, we multiply both sides of diffusion equation by x and integrate:

(4.21)‡
-¶

¶

x 
∑ PHx, tL

∑ t
 d x = D‡

-¶

¶

x 
∑2 PHx, tL

∑ x2
 d x

Left-hand side integral can be simply transformed, since x and t are independent variables:
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(4.22)‡
-¶

¶

x 
∑ PHx, tL

∑ t
 d x =

∑

∑ t
 ‡

-¶

¶

x PHx, tL d x =
∑

∑ t
 Xx HtL\

The right-hand side can be integrated by parts (see Equation 3.6), what leads to:

(4.23)D‡
-¶

¶

x 
∑2 PHx, tL

∑ x2
 d x = DBx 

∑ PHx, tL
∑ x

»
x=-¶

x=+¶
-‡

-¶

¶ ∑ PHx, tL
∑ x

 d xF

The  first  term  is  equal  to  zero  because  P(x,t)  and  all  its  spatial  derivatives  are  0  in  infinity  (it  is  a
probability distribution function!). The second term also zeroes: PHx = ¶, tL - PHx = -¶, tL=0. Hence,
we find that:

(4.24)
∑

∑ t
 Xx HtL\ = 0

what means that XxHtL \ is constant. Since x = 0 at t = 0 we can see that XxHtL \=0 for any t.

To  compute  YDx2 ]  the  same  procedure  is  required.  Since  XxHtL \=0,  we  can  use  the  notation
YDx2 ]=Yx2 ]. We start from diffusion equation multiplied by x2and integrate:

(4.25)‡
-¶

¶

x2 
∑ PHx, tL

∑ t
 d x = D‡

-¶

¶

x2 
∑2 PHx, tL

∑ x2
 d x

The  left-hand  side  gives  us  ∑
∑t  Yx2 HtL]  in  the  same  way  as  above.  The  right-hand  side  has  to  be

integrated by parts twice, what gives:

(4.26)
D‡

-¶

¶

x 
∑2 PHx, tL

∑ x2
 d x = DBx2 

∑ PHx, tL
∑ x

»
x=-¶

x=+¶
-2 ‡

-¶

¶

x 
∑ PHx, tL

∑ x
 d xF =

= DBx2 
∑ PHx, tL

∑ x
»

x=-¶

x=+¶
- 2 x PHxL »

x=-¶

x=+¶
+ 2 ‡

-¶

¶

PHx, tL d xF

The  first  two  terms  are  equal  to  zero  and  the  integral  in  the  second  term  gives  1,  since  PHxL  is
normalised probability distribution function. From that we achieved the equation:

(4.27)
∑

∑ t
 Yx2 HtL] = 2 D

what is equivalent to:
(4.28)Yx2 HtL] = 2 D t

In d-dimensional space it will be:
(4.29)Yx2 HtL] = 2 d D t

Now,  we  can  return  back  to  our  random  walk  result.  Comparing  (4.19)  and  (4.29)  we  find  that  the
diffusion constant of a random walker in one dimension is given by:
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(4.30)D =
4 p q l2Ht ê tL

2 d t
=

l2

2 t
for p = 1 ê2.

The random walk model in higher dimensions is a bit more complicated then the random walk in one
dimension.  In  one  dimension,  each  step  of  the  walk  is  either  0  degrees  (i.e.,  a  forward  step)  or  180
degrees  (i.e.,  a  backwards  step)  with  respect  to  the  preceding  step.  In  higher  dimensions,  a  step  can
take  a  range  of  orientations  with  respect  to  previous  steps.  For  2D we consider  a  random walk on a
lattice. This kind of walk is appropriately referred to as a (two-dimensional square) lattice walk. This
walk consists of steps of uniform length, randomly taken in the North, East, South or West direction.

à 4.2.6 Analyses of the two-dimensional  lattice walk
In  studying  a  process  that  is  random  in  nature,  we  are  often  interested  in  its  mean,  or  average,
properties.  To  obtain  the  mean value  of  a  quantity,  the  quantity  is  computed a  number  of  times,  the
values that  are obtained are summed, and the result  is  divided by the number of computations. We'll
look at two measures of the mean "size" of a two-dimensional lattice walk: "the mean-square end-to-
end distance" and "the mean-square radius of gyration".

The square end-to-end distance, r2, of a two-dimensional lattice walk is given by (x f -xiL2 + Hy f - yiL2

where  (xi,yi)  and  (x f ,y f )  are  the  initial  and  final  locations  of  the  walk,  respectively.  Choosing  the
origin (0, 0) as the starting point of the lattice walk, simplifies the formula to (x f

2  + y f
2 ).

The mean square radius of gyration, XRg
2\, of a random walk is the sum of the squares of the distances

of  the  step  locations  from the  centre-of-mass  divided by the  number of  step  locations.  The centre of
mass is the sum of the step locations divided by the number of step locations. The computations of the
centre of mass and the sum of the squares of step distances from the centre of mass are straightforward
(see Section 5.3.2).

The  critical  exponent  of  a  random  walk  is  a  measure  that  has  been  found  experimentally  (in  the
laboratory)  and  theoretically  (on  paper)  indicating  that  both  Xr2\  and  XRg

2\  have  a  power  law
dependence on the number of steps in the walk, N. The power, n, in the relationship 

YDxN
2] º N2 n Hfor N >> 1L

is known as the "critical exponent" of the walk, a typical example of an asymptotic scaling law: If the
number of steps is doubled, the net mean square displacement of the walk is increased by a factor of
2n. For one dimensional random walks we find from (4.10) that n= 1/2. The critical exponent is found
to depend on the structure and dimension of the lattice as well as on the nature of the walk (see also
Chapter 5.3).

à 4.2.7 Monte Carlo Simulation of Self-diffusion Constant
We have  shown that  it  is  possible  to  siumulate  diffusion process  by means of  random walk  method.
Using equation (4.29) we can estimate the self-diffusion constant:
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(4.31)D =
Yx2 HtL]
2 d t

During simulation, if we estimate the error of D, we can observe two effects, shown on Fig. 4.3

t

σ D(t)

2

1

Figure 4.3: Estimated error of self-diffusion constant during simulation

Effect  1:  At  the  beginning,  the  particle  is  still  located  in  the  neighbourhood  of  starting  point.The
simulation has not reached the stable state yet, so Xx\ ∫ 0.

Effect 2: After longer time we see that s DHtLØc∫0

How to estimate the behaviour of VarHDHtLL? We know from (4.31) that

(4.32)VarHDL = Var
Yx2 HtL]
2 d t

~
1

t2
 VarIx2M

since VarHa xL = a2 VarHxL (we use the notation Yx2 HtL] = x2). 

Next:

(4.33)VarIx2M = Yx4 HtL] - Yx2 HtL]2
~ t2

since from (4.19)  YDx2 ] ~ l2

t  t

Hence, combining (4.32) and (4.33) the time t  is reduced. We conclude, that for large t  the deviation
of DHtLis time independent.
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4.3 The Self-Avoiding Walk

The steps of the random walk model described, are independent of one another. Incorporating various
short-range  interactions  between  the  steps,  such  as  placing  angular  restrictions  on  successive  steps,
does  not  change  the  model's  global  properties.  For  example,  the  value  of  Xr2\  simply  re-scales
(changes  by  a  proportionality  constant).  However,  the  introduction  of  long-range  interactions,
specifically,  the property of self-avoidance (excluded volume) which prohibits  a walk from returning
to a location it  has previously  visited,  fundamentally affects the properties  of the walk. For instance,
the critical exponent of the walk becomes non-integer. 

The  model  of  a  random  walk  with  excluded  volume,  known  as  the  self-avoiding  walk  (SAW),  has
several areas of application. The leading area is in polymer physics where an SAW represents a long
chain molecule consisting of many small molecules connected together by covalent chemical bonds (a
polymer chain can be visualised as  a pearl  necklace).  Actually there are  few research areas in which
random walk models play as important a role as in polymer physics. The earliest investigations (1934)
of  polymer  configurations  were  phrased  in  terms  of  random  walks.  Over  the  past  50-60  years  our
understanding  of  the  statistical  properties  of  long,  flexible  polymer  chains  and  of  random walks  has
developed  in  parallel  (typical  observed  values  of  the  critical  exponent  equals  n=3/4  with  pre-factors
depending on the structure of the monomers and on the solvent).

Other systems that make use of the SAW model are: the zero-component ferromagnet, the NØ0 limit
of  the  N-vector  model  (a  generalisation  of  the  Ising  model),  and  the  SAW is  relevant  to  the  general
subject of critical phenomena. 

The  SAW  is  quite  difficult  to  analyse  analytically  (with  paper-and-pencil)  and  computational
experimentation has proven to be an indispensable tool for studying the model.

In studying the average properties of the random walk, a number of n-step walks are examined, each
of which is grown by adding one step after another until n steps have been executed. This method of
generating a  sample of  walks is  not  useful  for  studying the  SAW because the  occurrence  of a single
misstep resulting from a step intersecting a previous step, makes it necessary to discard the walk and
start a new one from scratch. The likelihood of such a misstep becomes increasingly likely as the walk
proceeds and hence, the attrition rate for generating SAW's by growing them is prohibitively high.

An  alternative  approach  to  producing  SAW's  is  to  start  with  a  self-avoiding  walk  and  rearrange  its
shape,  counting  each  rearrangement  as  another  SAW  (this  process  guarantees  that  the  length  of  the
walk is conserved). We will look at a well-known algorithm for accomplishing this rearrangement: the
"slithering snake" or "reptation" algorithm (respectively: [4], and [6] or more detailed in [21]).

For simplicity consider a model polymer chain in which all bond angles are 90°. As an example the 5
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independent  N=5  polymer  chains  are  shown  in  Figure  4.4.  Note  that  other  chains  differ  only  by
rotation and/or reflection. The method then can be summarised as follows:

HaL HbL HcL

HdL HeL

Figure 4.4: The only  5 independent possible walks of N=5 polymer on a square 
lattice with 90° bond angles.

Slithering           Snake       or   Reptation       Algorithm

1] Choose a chain at random and remove the tail link.

2] Attempt to add a link to the head of the chain. (There is a 
maximum of two directions in which the new head link can be added).

3] If the attempt violates the self-intersection constraint, return 
to the original chain and interchange the head and tail. Include 
the chain in the statistical sample.

4] Repeat many times and determine the mean-square, end-to-end 
distance.

Note that from Figure 4.4a we obtain on average 0.5c and 0.5d, it can easily be verified that in the end
all five chains are equally probable.

There  are  2  fundamental  drawbacks  to  using  this  algorithm.  One  problem is  that  it  is  possible  for  a
SAW to find itself in a "double cul-de-sac" shape from which it cannot extricate itself:
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Figure 4.5: Non ergodic Cul-de-Sac SAW.

Because  a  SAW  can  become  trapped  in  a  configuration  from  which  it  can  not  escape,  this  SAW
method  is  "non-ergodic"  (a  process  is  said  to  be  "ergodic"  if  any  sequence  or  significant  sample  is
equally  representative  of  the  whole).  Hence  we  see  that  the  method  introduces  a  small  bias  to  our
statistical  sample  and  the  calculated  mean  end-to-end  distance  will  be  slightly  larger  than  if  all
configurations were considered. The critical exponent found in the slithering snake algorithm however
has found to be correct. 

Another problem with the slithering snake algorithm is that, because the walk moves one segment at a
time,  the  SAW rearranges  itself  rather  slowly,  and very large  number of  steps  must  be  performed in
the simulation to obtain large-scale shape changes. Both these shortcomings can be addressed in the so-
called "Pivot algorithm".

The pivot algorithm is a very efficient "dynamic" algorithm for generating d-dimensional SAW's in a
canonical  ensemble (i.e.,  with a  fixed number of steps).  It  is  based on randomly selecting one of the
(2d)  d!  symmetry  (rotation  or  reflection)  operations  on  a  d-dimensional  lattice  and  applying  the
operation to the section of the SAW subsequent to a randomly selected step location, called the pivot.
In two dimensions, it is sufficient (for ensuring ergodicity) to consider just three of the eight symmetry
operations,  specifically  rotations of +90, -90 and 180 degrees.  To perform these rotations, three two-
dimensional rotation matrices, rot90, rot270 and rot180 are defined.

The use  of  these  matrices  can  be  illustrated  by  rotating  the  unit  vector  pointing  in  the  east  direction
about the origin, {0, 0}. Rotation is accomplished by matrix multiplication. The unit vector in the east
direction,  is  rotated  to  point  in  the  north,  south  and  west  direction  by  rot90,  rot270  and  rot180,
respectively.

Figure 4.6:  SAW and the results after applying the Pivot algorithm for 90, -90 
and 180 degrees about the second step location in the chain.

The  first  picture  is  the  starting  chain  SAW  configuration  and  the  2nd,  3rd  and  4th  pictures  are  the
SAW  configurations  that  result  from  rotations  of  90,  -90  and  180  degrees  about  the  second  step
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location in chain. The pictures confirm that the pivot operation has been done correctly. 

Building  on  the  example  above,  we  can  write  down  the  algorithm  for  performing  the  pivoting
operation on any SAW:

The   Pivoting          Self     Avoiding          Walk     in   2D

1a] Create an n-step SAW on a two-dimensional square lattice.

1b] Calculate the square end-to-end distance of the SAW and call it 
squaredist.

The following sequence of steps 2-5 will be executed a number of 
times (this is described in step 6), first using the initial SAW 
configuration given in step 1, and then using the value of the SAW 
configuration resulting from the previous run-through of the 
sequence . We will describe the steps in terms of an arbitrary SAW 
configuration, which we'll call config.

2] Choose at random, a pivot point k (0<k<n) along config and 
divide config into two parts: one part, consisting of the steps in 
config prior to and including k, is called fixsec, and the other 
part, consisting of the steps in config subsequent to k, is called 
movesec. 

3] Choose at random, a symmetry operation of the lattice.

4] Apply the operation to movesec to obtain the rotated chain 
section, and call it newsec.

5] Check if any of the step locations in newsec and fixsec 
coincide. 

If they do not coincide, create a new SAW configuration, 
naming it newconfig, by joining newsec and fixsec, calculate its 
square end-to-end distance and add that to squaredist, and 
return newconfig. 

If they do coincide, calculate the square end-to-end
distance of the previous SAW configuration, config, add that 

to squaredist,and return config.

6] Execute the sequence of steps 2-5, m times, starting with the 
initial SAW.

7] Determine the mean-square end-to-end distance.
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As expected,  a  single  pivot  can  produce  a  much bigger  change  in  the  SAW shape  than  can  a  single
"slither",  but  for  a  large  number  of  rearrangements,  the  two  algorithms  give,  on  average,  the  same
results.

à 4.3.1 Restricted  random  walks and simple lattice gasses
As  shown  in  the  previous  paragraph,  restrictions  (and  boundaries)  do  have  a  serious  impact  on  the
random walks.

Consider a one-dimensional lattice which has "trap" sites at x=0 and at x=a (a>0). A RW begins at site
x0  (0<x0<a) and steps to nearest neighbour sites with equal probability. If we perform a Monte Carlo
simulation we find that the mean "first passage time t" for the particle to be trapped is given by: 

(4.34)Xt\ =
x0Ha - x0L

2 D
,

with D the self-diffusion constant in the absence of the traps and the average is over all possible walks.
Such random walk models have played an important role in material sciences. For example, consider
the following idealised  model of  energy transport  in solids.  The solid is  represented as  a lattice  with
two  types  of  sites:  Hosts  and  Traps.  An  incident  photon  is  absorbed  at  the  host  site  and  excites  a
molecule. The excitation energy or "exciton" is transferred at random to one of its neighbours and the
original  excited  molecule  returns  to  its  ground state.  The exciton  wanders  through the  lattice  until  it
reaches  a  trap  site.  The  exciton  is  then  trapped  and  a  physical  process  such  as  a  chemical  reaction
occurs. 

One version of this energy transport model is a one-dimensional lattice with traps placed on a periodic
sub lattice. Since the traps are placed at regular intervals, we can replace the RW on the infinite lattice
by a random walk on a ring:

Figure 4.7: Equivalence of a regular lattice of traps with periodicity 4 and a ring 
of N=3 host sites with one trap site. The trap sites are denoted as open circles.

Another example is a crystalline solid, where the imperfections are a variety of defects. The simplest
imperfection is a lattice vacancy, e.g. the absence of an atom from a lattice site and the placement of
an  additional  atom  on  the  surface.  At  finite  temperature,  a  certain  number  of  lattice  vacancies  are
always  present  in  the  otherwise  perfect  crystal.  In  many  cases  the  vacancy  diffuses  by  exchanging
places at random with neighbouring atoms. Assuming that at time t=0 a vacancy is at  the centre of a
circle  of  radius  r,  we  can  use  Monte  Carlo  simulations  to  determine the  mean time for  a  vacancy to
reach the surface of the metal at  a distance r  away, and determine the probability distribution for the
"first passage time".

Although the above problems involved random walkers on a lattice,  it  was not necessary to store the
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positions of the lattice sites or the path of the walker. In the following example, we consider a random
walk model which requires us to store the lattice positions of a "gas" of random walkers.

Consider  a  non  zero  concentration  c  of  random walkers  (particles)  on  a  square  lattice.  Each  particle
moves  at  random  to  empty  nearest-neighbour  sites  but  double  occupancy  of  sites  is  excluded;
otherwise the particles  are non interacting.  Such a model is an example of a Lattice Gas  (we discuss
this  concept  of  lattice  gasses  in  more  detail  in  Appendix  D).  Note  that  the  motion  of  an  individual
particle  is  correlated  with  the  motion  of  the  other  particles.  The  physical  motivation  of  this  model
arises  from  metal  physics  where  diffusion  is  caused  by  thermal  vacancies  whose  concentration
depends on the temperature. The main physical quantity of interest is the self-diffusion constant D of
an individual (tagged or tracer) particle. The algorithm for a MC simulation of D can be described as
follows:

Monte Carlo Simulation of the self-diffusion constant D

1] Occupy the lattice sites at random with a concentration of c 
particles (0<c≤1). Tag each particle and record its initial 
position.

2] At each time step choose a particle at random and choose one of 
its neighbouring sites. If this site is empty, the particle is 
moved to this site; otherwise the particle remains in its current 
position.

The measure of time in this  context  is  arbitrary.  The usual  definition which we will  use often is that
one unit of "time" corresponds to "one Monte Carlo step per particle" each particle attempts one jump
on the average. The diffusion constant D is obtained as the limit tØ¶ of D(t), where D(t) is given by:

(4.35)DHtL =
1

2 d t
 YDR HtL 2]

and  XDRHtL 2\ is the net mean-square displacement per tagged particle after t  units of time.
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5 Simulation  of Percolation

5.1 Introduction

In  this  chapter  we  address  the  notion  of  geometrical  phase  transitions  by  studying  percolation
methods. Percolation is concerned with connectivity. P.G. de Gennes, winner of the 1991 Nobel Prize
in Physics for his profound work on the theoretical physics of disordered materials, has described the
percolation  transition  in  the  following  way:  "many  phenomena  are  made  of  random  islands  and  in
certain conditions, among these islands, one macroscopic continent emerges."

Historically percolation theory goes back to Flory and to Stockmayer who used it during World War II
to describe how small branching molecules form larger and larger macromolecules if more and more
chemical  bounds  are  formed between  the  original  molecules.  Percolation  phenomena are  widespread
in  nature.  One  of  the  most  common  places  to  observe  percolation  is  in  the  kitchen  when  jello  is
prepared or  when milk curdles.  This  sol-gel  transition,  as  it  is  called,  occurs  in chemical systems, (a
polymerisation  reaction  and  the  vulcanisation  of  rubber),  biological  systems  (the  immunological
antibody-antigen  reaction  and  the  coagulation  of  blood),  and  in  physical  systems  (in  critical
phenomena). A nice example is due to Stauffer [20] where the dynamics of forest fires are discussed.
We will look more generally at the clustering that occurs in the random site percolation model.

5.2 (Random) Site Percolation

The  random  site  percolation  model  consists  of  an  m  by  m  random  Boolean  lattice.  This  is  a  lattice
whose sites have values 0 and 1, where 0 represents an empty site and 1 represents an occupied site.
The probability p, of a site being occupied is independent of its neighbours. A cluster is defined as a
group of occupied nearest-neighbour (nn) sites (nn sites are those above, below, left or right of a site).
Two  occupied  sites  belong  to  the  same  cluster  if  they  are  linked  by  a  path  of  nearest-neighbour
connections joining occupied sites. Spanning clusters "span" the lattice from one side to the other, this
typically  occurs  at  values  p~1.  In  the  limit  of  an  infinite  lattice  there  exists  a  well  defined  critical
probability  pc  such  that  below  that  value  no  spanning  cluster  exists  and  just  above  pc  a  spanning
cluster emerges. This implies a qualitative change in connectedness from one state to the other ö  a
phase transition.
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Figure 5.1: Example of spanning cluster.

Examples  of  percolation  phenomena  are  the  electrical  conductivity  of  composite  systems  made  of  a
mixture  of  metallic  and  insulating  materials,  the  spread  of  disease  in  population,  the  behaviour of
magnets diluted by non magnetic impurities, and the characterisation of gels.

The standard description of the Site Percolation program

1] Each site on a two-dimensional m by m square lattice is assigned 
a value of a=Random[].

2] If a≤p, its value is changed to 1; otherwise its value is 
changed to 0.

Once  the  clusters  are  identified  (visually  or  numerically),  there  are  a  number  of  cluster-related
quantities that are interesting to look at, such as the spatial characteristics of clusters (e.g., their Fractal
dimensions)  as  a  function  of  p  and  the  percolation  threshold,  which  is  the  value  of  p  at  which  a
spanning cluster (an uninterrupted path across the lattice) first appears. 

Typical parameters characterising site percolation are:

1]  The  mean cluster-size  distribution  (the  size  here  denotes  the  number of  sites  in  the  cluster,  rather
than its spatial extent)

(5.1)nsHpL =
Average number of clusters of size s

Total number of sites in the lattice
.

2] The probability that an occupied site chosen at random is part of an s-site cluster:

(5.2)ws =
s ns

⁄s s ns
.

3] The mean cluster size S:

(5.3)S = ‚
s

s ws =
⁄s s 2 ns

⁄s s ns
.
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4] The probability P¶(p) that an occupied site belongs to the spanning cluster:

(5.4)P¶ =
Number of sites in the spanning cluster

Total number of occupied sites
.

For an infinite lattice, P¶(p)=0 for p<pc and P¶(p)=1 for p=1.

à 5.2.1 Cluster labelling
We will discuss a method to perform automatically cluster labelling: the determination of the existence
of a connected path and counting the number of clusters (see Figure 5.2).  The best known method is
the  famous  Hoshen-Kopelman  algorithm  [9]  (named  after  its  creators),  which  involves  scanning  the
lattice just  once. The difficulty is that  assignment of a site to a cluster is a global  rather than a local
property of the site.

The Hoshen-Kopelman Algorithm

We'll be labelling a nested list r (the lattice), consisting of m 
lists, each containing m elements which are either zero's or one's.

1] A list u, is created by adding: (a) a zero to the front of each 
of the lists in r and (b) a list of (m + 1) zero's to the front of 
r (in a matrix representation of r, this operation takes the m×m 
matrix and forms an (m + 1)×(m + 1) matrix by adding a top row of 
zero's and a left column of zero's).

2] Two lists ul and ulp, are created with the same size as u and 
consisting of all zero's. 

3] The list u is scanned in a "typewriter" fashion, starting from 
position {2, 2} and proceeding along each row in succession, going 
from the second element to the last element in the row. The 
elements in ul and ulp are changed during the scan of u according 
to the criteria that follow:

Note: In the following step, we will refer to the elements in u and 
ul as sites. A site with a value of zero will be said to be empty 
and a site with a non-zero value will be said to be occupied. 
Additionally, we will refer to the site u[[i, j-1]], lying to the 
left of u[[i, j]], as uback, the site u[[i-1, j]], lying above 
u[[i, j]], as uup, the site ul[[i, j-1]], lying to the left of 
ul[[i, j]], as ulback, and the site ul[[i-1, j]], lying above 
ul[[i, j]], as ulup.

3a] At each site, u[[i, j]], look to see if it is occupied or
empty and do the following:
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3a1] If u[[i, j]] is empty, go on to the next site.

3a2] If u[[i, j]] is occupied, look at the nearest 
neighbour (nn) site in the previous column, uback, and 

the nn site in the previous row, uup, and do the 
following:

3a2a] If both uback and uup are empty, set ul[[i,j]] 
equal to one more than the current maximum 
value in ul and then add this new maximum value in
ul to ulp.

3a2b] If only one of the uback and uup sites is
occupied, set ul[[i, j]] equal to the non-zero value 
of ulup or ulback.

3a2c] If both uback and uup are occupied, set 
ul[[i, j]] equal to the smaller of ulp[[ulup]] and 
ulp[[ulback]] and set the value of the position in 
ulp having the larger of the values of ulp[[ulup]] 
and ulp[[ulback]] equal to the smaller of these
values.

4] After the scan in step 3 is completed, relabel the occupied 
sites in ul so that connected sites (i.e., occupied sites adjacent 
to occupied sites) have the same number and change the cluster 
numbers in ul so that they run sequentially, without any gaps.

4 5

3 3

2 2

1 2

2 21 1

Figure 5.2: A labelled percolation configuration of a square lattice with L=5.
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5.3 Critical Exponents and Finite-Size scaling

à 5.3.1 Introduction
Most substances exhibit a thermodynamical phase transition with respect to temperature and pressure
(e.g.  from  ice  to  water  to  vapour  etc.)  and  a  critical  point  beyond  which  it  is  no  longer  possible  to
distinguish between different phases.

Consider for example a forest fire modelled by percolation. We are interested in the lifetime of the fire
(in  terms  of  the  number  of  Monte  Carlo  sweeps)  with  respect  to  the  probability  p  that  a  tree  is
expected  at  a  site  of  the  lattice.  In  Figure  5.3  we  have  shown  the  behaviour  of  the  lifetime  in  the
vicinity of critical probabilities p.

0.4 0.5 0.6 0.7

LifeTime

Fire

p

Figure 5.3: Average termination time for forest fires, as simulated on a square 
lattice. The centre curve corresponds to the simplest case described in the text. The 
left-hand curve gives data if the fire can spread to both nearest and next-nearest 
neighbours. For the right-hand curve two burning trees are needed to ignite a 
nearest or next-nearest neighbour (adapted from [20]).

Note that if we increase p to the percolation threshold pc  (the critical point) then the lifetime seems to
grow exponentially,  whereas beyond pc  the lifetime decreases again. We can interpret this behaviour
by noting that beyond pc spanning clusters occur (e.g. from the bottom of the lattice to the top) and the
fire dies out. Just before pc  however the fire needs a long time to find out that it cannot penetrate the
forest, and thus only after many sweeps through the lattice the fire will be extinguished. Therefore the
lifetime will become very large if p approaches pc  from below or above, this behaviour is also known
as "critical slowing down".
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Another familiar but less known example of a critical point occurs in magnetic systems at the so-called
"Curie"  (or  critical)  temperature  Tc.  At  low temperatures  some substances  exhibit  ferromagnetism,  a
spontaneous  magnetisation  in  the  absence  of  an  external  magnetic  field.  If  we  would  raise  the
temperature of such a ferromagnet the spontaneous magnetisation decreases and vanishes continuously
at a "critical" temperature Tc. For T > Tc  the system is a paramagnet. In Chapter 6 we will investigate
this  behaviour.  Since  the  understanding  of  thermodynamic  phase  transitions  requires  a  strong
background  in  statistical  physics,  it  is  of  interest  to  study  the  percolation  phase  transition.  Although
percolation is an unusual phase transition since temperature is not involved, we find that properties of
the  geometrical  transitions  in  the  percolation  problem  can  serve  as  a  simple  introduction  to
thermodynamic phase transitions.

A major  conclusion will  be that  in  the vicinity  of a  phase transition,  the  qualitative  behaviour of the
system  is  governed  by  the  appearance  of  the  long-range  correlation.  For  instance  we  know  that  the
essential  physics  near  the  percolation  threshold  is  associated  with  the  existence  of  large  but  finite
clusters. For example for p<pc we know that ns decays exponentially with s;  for p>pc ns will decrease
more  rapidly  with  s.  However  for  p=pc,  the  s-dependence  of  ns  is  qualitatively  different  and  ns

decreases much more slowly. This different behaviour of ns  at pc  is due to the presence of all length
scales  (large  and  small).  A  more  direct  way  of  observing  the  effects  of  the  length  of  clusters  is  to
introduce a characteristic linear dimension or "mean connectedness length" x(p). Next, we will explore
x(p) in more detail.

à 5.3.2 Parameters in the vicinity of a phase transition
One  operational  definition  of  x  is  to  identify  it  with  the  "radius  of  gyration"  Rs  of  the  largest  non-
spanning cluster (see Chapter 4.2). The radius of gyration of a single cluster of s particles is given by

(5.5)

Rs
2 =

1
s

 ‚
i=1

s

Hri - rêL2, where

rê =
1
s

 ‚
i=1

s

ri.

Here ri  is the position of the ith site in the cluster and rê   is the centre-of-mass of the cluster. For large
lattices  we find  that  x(p)  is  an  increasing  function  of  p  for  p<pc,  and  a  decreasing  function  of  p  for
p>pc:
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ξHpL

pc p

Figure 5.4: Qualitative behaviour of the mean connectedness length x.

Furthermore  x(p=pc)  is  approximately  equal  to  the  lattice  size  L  and  diverges  as  LØ¶,  since  as  p
approaches pc  the probability that two sites are in the same cluster increases. Therefore we expect that
for  LØ¶,  x(p)  diverges  in  the  critical  region,  |p-pc|  `  1.  In  Chapter  4.2  we  introduced  the  critical
exponent n, experiments show the following relation hold in the limit LØ¶:

(5.6)

xHpL º » p - pc »-n

and for P¶Hthe order parameterL
P¶ º Hp - pcLb

and the mean clustersize
SHpL º » p - pc »-g .

Table 5.1 summarises the critical exponents for the percolation and magnetism phase transitions:

Quantity Functional form Exponent d = 2 d = 3
Percolation

Order parameter P¶ º Hp - pcLb b 5 ê36 0.4
Mean size of finite clusters SHpL º » p - pc »-g g 43 ê18 1.8
Correlation length xHpL º » p - pc »-n n 4 ê3 0.9
Cluster numbers ns º s-t t 187 ê91 2.2
Magnetism

Order parameter M HTL º HTc - T Lb b 1 ê8 0.32
Susceptibility cHTL º » T - Tc »g g 7 ê4 1.24
Correlation length XHTL º » T - Tc »-n n 1 0.63

Table 5.1: Critical exponents for percolation and magnetism phase transitions in 
d=2 and 3 dimensions [6]. Note the scaling law: 2b +g ~ n d.

Since  we  can  only  simulate  finite  lattices  a  direct  fit  of  the  measured  quantities  of  Table  5.1  to
Equations (5.6) will not yield the correct estimates. The reason is that finite size effects don't allow a
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close approach of p to pc. (e.g. since x(p) is comparable to L for p close to pc) For p`pc  or pppc the
physical  quantities  are  not  affected  by  the  finite  size  of  L.  We  can  however  by  means  of  finite  size
scaling study the critical exponents.

Notice that after inversion of x(p) in Equation (5.6) and substitution of x by L (for p ~ pc) results in:

(5.7)
… p - pc … H º LL-1ên

P¶Hp = pcL º L-bên for L Ø ¶

With  this  relation  we  can  determine  the  critical  exponents:  Suppose  that  we  generate  percolation
configurations  at  p  =  pc  for  different  values  of  L  and  analyse  P¶  as  a  function  of  L.  Then  if  L  is
sufficiently  large,  we can use the asymptotic relation (5.7)  to estimate the ratio b/n.  Similar analyses
can be done for the other parameters of Table 5.1. 

More  generally  speaking  systems with  correlation  functions  that  decay  as  power  laws  are  said  to  be
scale invariant. This terminology reflects the familiar fact that power laws look the same on all scales.
For example, the replacement of xØax in the function f(x) = Ax-h yields, for any value of the exponent
h a function g(x) that is indistinguishable from f(x), except in the amplitude A by the factor a-h. This
invariance does not hold for functions that decay exponentially, since making the same replacement in
the function e-xêx  changes the correlation length x (the characteristic scale for decay) by a factor a. An
enormous  variety  of  systems  in  physics,  chemistry,  and  biology  seem  to  exhibit  scale  invariance  in
some  form  or  another.  The  origin  of  the  ubiquitous  occurrence  of  scale  invariance  in  systems  with
short-ranged  interactions  remains  largely  mysterious.  This  is  in  part  because  the  systems  that  have
been  studied  are  those  in  thermodynamic  equilibrium.  Straightforward  arguments  show  that  in  the
absence of special symmetries or long-range interactions, scale invariance in equilibrium systems can
occur  only  at  isolated  critical  points  or  surfaces  in  parameter  space;  for  more  generic  choices of
parameters exponential behaviour will be obtained. Therefore one might expect that an explanation for
the  widespread  occurrence  of  scale  invariance  is  due  to  systems  being  driven  externally  into  non
equilibrium.  This  is  however  outside  the  scope  of  this  course,  the  interested  reader  is  referred  to  [7]
and [8] and references therein.
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5.4 Renormalisation

An  important  step  in  the  determination  of  critical  exponents,  was  made  by  the  development  of  the
renormalisation group method, for which Kenneth Wilson in 1981 was awarded with a Nobel prize in
physics. This method allows one to extend the examination of physical quantities near a critical point
on  different  length  scales  beyond  finite  size  scaling  and  will  directly  yield  the  critical  exponents.
Although it was initially used to study thermodynamic phase transitions,  it will be illustrated here by
the percolation transition.

Consider a lattice where a cell is occupied with a probability p=p0<pc  and imagine to look at it from
an  increasing  distance.  By  moving  further  away  from  it  one  is  not  able  to  distinguish  independent
sites.  Details  such  as  single  site  clusters  and  narrow  bridges  connecting  large  "blobs"  will  become
invisible.  As  a  consequence  the  connectedness  x  will  decrease  and  the  less  detailed  picture  would
resemble one generated with a probability p1<p0  and have a connectedness x( p1)<x(p0). Continuation
of considering the system at larger  distance will  eventually lead to the limiting case of a trivial  fixed
point p=0.

A similar type of reasoning for the case p=p0>pc,  shows that at larger distances the unoccupied sites
will be absorbed in the clusters, and the overall behaviour would look the same as if it were generated
at a probability p1>p0. In the limiting case this would lead to the trivial fixed point p=1. Only at p=pc

the  lattice  would  look  the  same  at  each  distance,  therefore  pc  can  be  considered  to  be  a  nontrivial
fixed point.

In a renormalisation theory one tries to capture the above described effect in a transformation, which
tells  us  how  the  quantity  of  interest,  in  this  case  percolation,  behaves  if  it  is  considered  on  a  larger
length  scale.  This  is  achieved  by  introducing  supersites,  which  describe  the  effective  behaviour  of  a
group  of  unit  sites.  In  the  case  of  a  square  lattice,  a  natural  supersite  is  defined  by  2×2  unit  sites,
although also larger, preferably square-like groups can be used.
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Figure 5.5: The seven vertically spanning configurations of a 2×2 cell

For simplicity we will consider here vertical spanning criterion. In this case there are seven spanning
2×2  configurations,  which  are  shown  in  Figure  5.5.  In  order  to  preserve  the  main  features  during  a
renormalisation step, we will replace all spanning 2×2 cells by an occupied site and the non-spanning
cells by an empty site. In Figure 5.6 four successive steps in the renormalisation process are shown for
a 16×16 lattice with p=0.7

Figure 5.6: A percolating configuration generated at p=0.7 and three successive 
steps of the renormalisation procedure.

Note  that  using  this  procedure  allows  one  to  estimate  pcbut  is  not  capable  yet  of  providing  critical
exponents.  The  renormalisation group method we need to estimate the critical  exponents consists of
two parts:
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1)  an  average  over  the  underlying  variables  together  with  a  specification  of  the  variables  that
determine the state of the renormalised configuration.

2) a parametrisation of the renormalised configuration in terms of the original parameters and possibly
others.

Using the same average as before and replace the b2  sites on the original lattice by a single cell with
linear  dimension  b,  which  represents  whether  the  original  lattice  sites  were  spanning  or  not.  We
assume  that  the  new  cells  are  independent  and  are  occupied  with  a  probability  p',  which  is  some
function  R(p)  of  the  original  probability  p.   In  the  case  of  b=2  we  find  (see  Figure  5.5)  that  the
renormalisation transformation R(p) is given by

(5.8)p ' = RHpL = p4 + 4 p3H1 - pL + 2 p2H1 - pL2.

The fixed points of this transformation are found by solving
(5.9)p* = RHp*L,

which  leads  to  the  trivial  fixed  points  p*=  0  and  p*=  1,  and  a  non-trivial  fixed  point  p*=  0.61804,
which  can  be  associated  with  pc.  This  calculated  value  of  p*  for  b=2  should  be  compared  with  the
estimate pc=0.5927.

The connectedness length x transforms as
(5.10)x ' = x êb,

 which can be transformed by using (5.6) pº pc to

(5.11)p ' - p* »-n =
» p - p* »-n

b
,

where pc is identified with p*. Expanding the renormalisation transformation  (5.9) near p* in terms of
(p-p*) gives

(5.12)
p ' - p* = RHpL - RHp*L º lHp - p*L,

l =
d RHp = p*L

d p.

Combining these results give  
(5.13)» p ' - p* »n = lnHp - p*L n = b » p - p* »n,

hence the critical exponent n can be obtained

(5.14)n =
log b
log l

=
log 2

log 1.5279
= 1.635.

The result of this simple calculation compares not bad with the exact result n=4/3 (see Table 5.1), the
accuracy of the result,  however,  is not known. Better estimates for both pc  and n  can be obtained by
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considering larger cells. However, the number of configurations 2b2for a b×b cell increases rapidly and
for  b>7  this  exact  enumeration  is  not  practical  anymore,  but  could  be  combined  with  for  instance  a
Monte Carlo approach. 

The  main  assumption  in  this  renormalisation  approach  is  that  the  occupancy  of  each  cell  is
independent  of  the  other  cells.  Although  this  is  correct  for  the  initial  lattice,   it  is  not  true  anymore
after  a  renormalisation step,  because some information will  be lost  in the process.  Some connections
can  be  lost,  while  new connections  can  be  formed.  An  example  of  the  later  is  shown in  Figure  5.7,
where an interface separates the left and right side and disappears after renormalisation.

Figure 5.7: Example of an interface, which after renormalisation is connected. 
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6 Modelling Accretion Processes
Main reference: 

Computer Simulations with Mathematica: Explorations in Complex Physical and Biological Systems.
Richard J. Gaylord  and  Paul R. Wellin. Copyright 1994 TELOS/Springer-Verlag

General references:

Leonard Sander. Fractal Growth Phenomena. Scientific American, 256(1), 94-100, 1987.

Brian Hayes. Nature's Algorithm. American Scientist, 82(May-June), 206-210, 1994.

6.1 Introduction

Accretion  is  a   process  in  which  particles  undergo  motion  until  they  encounter  another  particle  to
"stick to".  As particles coalesce, large, irregularly shaped clusters are formed. If the clusters are free-
floating, the process is known as aggregation, and if the clusters are attached to a surface, the process
is known as deposition. We will look at one example of each of these processes:

In  diffusion-limited  aggregation,  a  particle  undergoes  Brownian  motion  until  it  makes  contact  with
another  particle.  The free-floating cluster  that  is formed is known as a diffusion-limited aggregate or
DLA.  This  mechanism  underlies  a  wide  variety  of  natural  phenomena,  including  crystallization,
colloidal and polymeric condensation, soot formation, and dielectric breakdown. 

In  ballistic  deposition,  a  particle  starts  above  a  solid  substrate  or  surface  and  follows  a  straight-line
downward trajectory until it reaches the surface or makes contact with another particle. Deposition has
many applications in the area of materials fabrication, such as: thin-film formation, vapor deposition,
sputtering, and molecular-beam epitaxy. 
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6.2 The Diffusion-Limited Aggregation Model

The  DLA  model  is  most  easily  described  in  physical  terms.  At  any  time  during  DLA  growth,  the
system consists of a cluster  of particles and a particle executing a random walk. Initially,  the cluster
contains  just  a  single  seed  particle.  The  cluster  grows  via  a  simple  process:  A  particle  starts  at  a
randomly chosen location along the perimeter of a circle centered on the seed, and executes a random
walk until the particle is either a certain distance outside the circle, in which case it vanishes, or until
the particle  is  adjacent  to the cluster,  in which case it  joins  the cluster.  This process is repeated,  one
particle at a time, until the cluster reaches a given size.

In  this  chapter  we  give  examples  of  the  principal  algorithms  and  possible  implementations  in
Mathematica.

à 6.2.1 The Algorithm
The model employs a two-dimensional square lattice.

(1) Create a list, called occupiedSites, containing the lattice site {0, 0}.

The following sequence of steps 2 through 3 will be executed a number of times (this is described in
step  4),  first  using  the  value  of  the  initial  cluster  occupiedSites,  given  in  step  1,  and  then  using  the
value of occupiedSites resulting from the previous run-through of the sequence. 

(2a)  Determine  the  lattice  site  nearest  to  a  randomly  chosen  location  along  the  circumference  of  a
circle  whose  radius,  rad,  equals  a  specified  value,  s,  plus  the  maximum absolute  coordinate  value  in
occupiedSites.

(2b)  Starting  at  the  selected  lattice  site,  execute  a  lattice  walk  until  the  step  location  is  either  at  a
distance greater than (rad + s), or on a site that is contiguous (adjacent) to a site in occupiedSites. Call
the final step location of the walk, loc. 

(3) Check if loc is adjacent to a site in the occupiedSites list and if it is, add loc to occupiedSites.

(4) Execute the sequence of steps 2 through 3 until the length of occupiedSites reaches a value n.

à 6.2.2 Implementation (only for those interested in Mathematica 
implementations).

Step 1. The list containing the seed site is written as
occupiedSites = 880, 0<<
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Step 2. The radius of the circle which a random walker starts from is given by 
rad = Max@Abs@occupiedSitesDD + s

The walk starts from a randomly chosen location on the circle, which is given by 
HRound@rad 8Cos@Ó1D, Sin@Ó1D<D &L@Random@Real, 80, N@2 πD<DD

Each new step of the walk is generated using
Ó1 + 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<PRandom@Integer, 81, 4<DT &

where # represents the current step location of the walk.

Note: The one-dimensional analog to this anonymous function was discussed in Chapter 1.

The random walk is terminated when True is returned using

Plus @@ Ó12 > Hrad + sL2 »» occupiedSites ›
HFunction@y, y + Ó1D ê@ 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<L ≠ 8< &

Note: The first test determines if the step location is at a square distance greater than (rad + sL2  from
the seed site and the second test determines if the step location is adjacent to a site in occupiedSites. 

The  final  location  of  the  random  walk,  which  is  called  loc,  is  determined  using  the  FixedPoint
function with the functions given above.

loc = FixedPointA
Ó1 + 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<@@Random@Integer, 81, 4<DDD &,
HRound@rad 8Cos@Ó1D, Sin@Ó1D<D &L@Random@Real, 80, N@2 πD<DD,
SameTest → IPlus @@ Ó22 > Hrad + sL2 »» occupiedSites ›

HFunction@y, y + Ó2D ê@ 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<L ≠ 8< &ME

Note: The notation #2  (rather than #) is used with the SameTest  option in loc  because in SameTest,
#2 refers to the last element in a list.

Step 3. loc is checked to see if the walk ended because it was too far from the cluster and if not, it is
appended to occupiedSites.

IfAPlus @@ loc2 ≤ Hrad + sL2, AppendTo@occupiedSites, locDE

Step 4. The repeated application of the sequence of steps 2 through 3 until the length of occupiedSites
equals n is performed with a conditional function.

WhileALength@occupiedSitesD < n, rad = Max@Abs@occupiedSitesDD + s; loc =

FixedPointAÓ1 + 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<PRandom@Integer, 81, 4<DT &,

HRound@rad 8Cos@Ó1D, Sin@Ó1D<D &L@Random@Real, 80, N@2 πD<DD,
SameTest → IPlus @@ Ó22 > Hrad + sL2 »» occupiedSites ›

HFunction@y, y + Ó2D ê@ 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<L ≠ 8< &ME;
IfAPlus @@ loc2 ≤ Hrad + sL2, AppendTo@occupiedSites, locDEE
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We can now assemble these code fragments to create a program.

à 6.2.3 The Program
DLA@s_Integer, n_IntegerD := ModuleA8loc, rad,

particleCount = 0, stepChoices = 881, 0<, 80, 1<, 8−1, 0<, 80, −1<<<,
occupiedSites = 880, 0<<; WhileALength@occupiedSitesD < n,

++particleCount; rad = Max@Abs@occupiedSitesDD + s;
loc = FixedPointAÓ1 + stepChoicesPRandom@Integer, 81, 4<DT &,

HRound@rad 8Cos@Ó1D, Sin@Ó1D<D &L@Random@Real, 80, N@2 πD<DD,
SameTest → IPlus @@ Ó22 > Hrad + sL2 »»

occupiedSites › HFunction@y, y + Ó2D ê@ stepChoicesL ≠ 8< &ME;
IfAPlus @@ loc2 < rad2, occupiedSites = Join@occupiedSites, 8loc<DEE;

Print@"The number of particles released was ", particleCountD;
occupiedSitesE

Note:  We have included  a  counter,  particleCount,  to  keep track  of  how many particles  are  released
during the growth process and the final tally is printed out. 

à 6.2.4 Visualizing Diffusion-Limited  Aggregation
The   graphics  of  the   DLA  structure  can  be  created  using  the  Graphics  primitive,  Rectangle,  to
represent each particle in the cluster.  The history of the accretion process can be seen by  numbering
and shading the rectangles in the order in which they were added to the cluster, with earlier rectangles
being darker in color and lower in number.  

ShowDLA@sites_, ptsize_: 0.1, opts___RuleD :=

ModuleB8len = Length@sitesD, points, colors<,

points = Point ê@ sites; colors = Hue ê@
Range@lenD

len
;

Show@Graphics@8PointSize@ptsizeD, Transpose@8colors, points<D<,
Axes → None, AspectRatio → Automatic, PlotRange → All, optsDDF

ShowDLA@sites_, opts___RuleD := ShowDLA@sites, 0.1, optsD

Some typical output from running the dLA program are shown below.
agg = DLA@10, 30D;
The number of particles released was  109
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ShowDLA@aggD;
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2 3
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26 27
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For  large  DLAs,  it  is  quicker  to  render  each  particle  as  a  single  point,  as  opposed  to  the  above
rectangles. Here is a program that accomplishes this and colors each point according to its history.

ShowDLA2@sites_, opts___RuleD := ModuleB8len = Length@sitesD, points, colors<,

points = Point ê@ sites; colors = Hue ê@
Range@lenD

len
;

ShowBGraphicsB:PointSizeB
1

len
F, Transpose@8colors, points<D>,

opts, Axes → None, AspectRatio → Automatic, PlotRange → AllFFF

This function allows you to specify any number of additional graphics options to the plot. In addition,
it computes a pointsize that scales with the size of the DLA. So, for example, you could display a DLA
agg  on   a  black  background  and  connect  the  points  with  lines  by  using  ShowDLA2[agg,  Epilog-
>Line[agg], Background->GrayLevel[0]].

Here then is a much larger DLA.
agg = DLA@2, 1000D;
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ShowDLA2@agg, Background → GrayLevel@0DD;

6.3 The Fractal Dimension of a DLA

As  DLA  growth  proceeds,  the  shape  of  the  aggregate  or  cluster  becomes  increasingly  irregular  and
tenuous.  This  occurs  as  the  result  of   a  "screening"  effect  which  increases  the  likelihood  that  a
meandering  particle  will  contact  an  exposed  exterior  portion  of  the  DLA  before  it  penetrates  into  a
more shielded interior portion (this effect can be seen by looking at the locations of sites in the cluster
as a function of when they joined the cluster, in the DLA graphics above).

We  can  get  a  feel  for  the  compactness  of  a  DLA   (i.e.,  how  it  fills  space)  by  measuring  its  fractal
dimension. There are a number of fractal dimensions that can be measured (e.g., the dependence of the
radius of gyration of the cluster on the size of the cluster) and while the various fractal measures give
different  quantitative  results,  they  display  a  universal  trend,  namely  that  the  fractal  dimension  of  a
DLA decreases with increasing size to a limiting value at large sizes. Here we will follow the density
of space occupied by the cluster as a function of size. 

Note:  The  overall  DLA  process  is  stochastic,  and  it  is  therefore  necessary  take  an  average  of  the
fractal  dimension (or any other quantity)  over a number of randomly generated DLA's. However, for
illustrative purposes, we will only consider a single DLA .
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6.3.1 Computing The Fractal Dimension
The following steps are used to compute the fractal dimension of the DLA:

(1) A fractalDataList  of ordered pairs is constructed. 
fractalDataList = Table@82 r, occSiteDensity@rD<, 8r, Max@occupiedSitesD<D

where  occupiedSites  is  a  list  of  the  sites  in  the  cluster  and  occSiteDensity  is  the  number  of  sites  in
occupiedSites that lie within a square running between -r and r in each direction, divided by the total
number of sites in the square. 

The value of occSiteDensity is calculated for a given square size, using 
occSiteDensity@t_IntegerD :=

1

H2 t + 1L2
 HN@Count@occupiedSites, 8x_?HAbs@Ó1D ≤ t &L, y_?HAbs@Ó1D ≤ t &L<DDL

(2) The fractal dimension of the DLA structure is determined using
fractaldim = Fit@N@Log ê@ fractalDataListD, 81, x<, xD

These computations can be put together in a program.

à 6.3.2 The Fractal Dimension Program
FractalDimension@occupiedSites_ListD :=

ModuleB8occSiteDensity, fractalDataList, fractaldim<, occSiteDensity@t_IntegerD :=
1

H2 t+1L2  HN@Count@occupiedSites, 8x_? HAbs@Ò1D § t &L, y_? HAbs@Ò1D § t &L<DDL;
fractalDataList = Table@82 s, occSiteDensity@sD<, 8s, Max@occupiedSitesD<D;
fractaldim = Fit@N@Log êü fractalDataListD, 81, x<, xD;
Print@The fractal dimension of the DLA is , Coefficient@fractaldim, xDD;F

The fractal dimension of a small DLA is calculated below.
FractalDimension@DLA@3, 12DD
The number of particles released was 49
The fractal dimension of the DLA is − 0.0588937
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6.4 The Ballistic Deposition Model

The  ballistic  deposition  model  is  easily  described  in  physical  terms.  The  surface  is  initially  smooth,
consisting of  a  single  row of particles.  A particle  is  released at  a randomly chosen location a certain
distance  above  the  surface.  It  falls  straight  downwards  towards  the  surface  until  it  is  reaches  the
surface or is adjacent to another particle where it remains.

à 6.4.1 The Algorithm
The model employs a two-dimensional  rectangular lattice.

(1)  Create a 2 by n matrix in which the top row consists entirely of 0's and the bottom row consists
entirely of 1s.

The following sequence of steps 2 through 3 will be executed a number of times (this is described in
step 4)

(2a) Randomly select a site, depositColumn, in the first row of the matrix (this value indicates which
lattice column the particle will travel down). 

(2b)  Using  the  value  of  depositColumn,  create  the  list,  nnColumns,  of  the  selected  matrix  column
and its nearest-neighbor columns to the right and left .

Note: When the selected column is the rightmost (leftmost) column, the nn column on the right (left) is
taken to be the leftmost (rightmost) column (this is known as a periodic boundary condition).

 (2c)  Find  the  positions  of  the  first  occupied  site  in  each  of  the  three  columns  in  nnColumns  and
determine which one occurs first. Calculate the position, depositRow, in the selected column which is
adjacent to the position which occurs earliest  (this value is the lattice row where the particle stops).

(2d)  Place the particle in the lattice in the position given by {depositRow, depositColumn}.

(3) Determine if the first row of the matrix is all 0s (it will be unless the particle was placed there in
the previous step)  and if it is not, then add a row of zero's to the top of the matrix.

(4) Execute the sequence of steps 2 through 3 until the number of occupied sites is t.

à 6.4.2 Implementation
Step 1. The initial lattice is written as

init = Transpose@Table@80, 1<, 8n<DD
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In the following steps 2a-d, the # symbol represents the lattice configuration at a given time step.

Step 2a. The location of the column in the lattice in which the particle falls is given by
depositColumn = Random@Integer, 81, n<D

Step 2b. The selected column and its two nearest-neighbour columns are determined using
nnColumns = Transpose@Ó1DP

8depositColumn − 1 ê .0 → n, depositColumn, depositColumn + 1 ê. n + 1 → 1<T &

Step 2c. The row position in the lattice where the falling particle stops is determined. 
depositRow =

Min@Flatten@Function@y, First@Position@y, 1DDD ê@ nnColumns@Ó1DD − 80, 1, 0<D &

Step 2d. The  particle is placed into its final resting place in the lattice using 
ReplacePart@Ó1, 1, 8depositRow@Ó1D, depositColumn<D &

We can combine steps 2a-d in an anonymous function, which we'll call newLat
newLat = HdepositColumn = Random@Integer, 81, n<D;

nnColumns = Transpose@Ó1DP8depositColumn − 1 ê .0 → n,
depositColumn, depositColumn + 1 ê. n + 1 → 1<T &; depositRow =

Min@Flatten@Function@y, First@Position@y, 1DDD ê@ nnColumns@Ó1DD −

80, 1, 0<D &; ReplacePart@Ó1, 1, 8depositRow@Ó1D, depositColumn<DL &

where # represents the lattice. 

Step  3.  A  row of  0s  is  added  to  the  top  of  the  lattice  resulting  from applying  newLat  to  the  lattice,
unless the topmost row is already empty, using

emitLayer = If@Ó1P1T ≠ Table@0, 8n<D, Prepend@Ó1, Table@0, 8n<DD, Ó1D &

where # represents the result of applying newLat to the lattice.

Step 4. The sequence of steps 2-3 is repeated t times, using
deposition = Nest@emitLayer@newLat@Ó1DD &, init, tD

The program for ballistic deposition is given by combining the code fragments.
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à 6.4.3 The Program
MolecularDeposition@n_, t_D := Module@8<, init = Transpose@Table@80, 1<, 8n<DD;
newLat = HdepositColumn = Random@Integer, 81, n<D;

nnColumns = Transpose@Ó1DP8depositColumn − 1 ê .0 → n, depositColumn,
depositColumn + 1 ê. n + 1 → 1<T &; depositRow = Min@Flatten@
Function@y, First@Position@y, 1DDD ê@ nnColumns@Ó1DD − 80, 1, 0<D &;

ReplacePart@Ó1, 1, 8depositRow@Ó1D, depositColumn<DL &;
emitLayer = If@Ó1P1T ≠ Table@0, 8n<D, Prepend@Ó1, Table@0, 8n<DD, Ó1D &;
Nest@emitLayer@newLat@Ó1DD &, init, tDD

à 6.4.4 Visualizing Ballistic Deposition
A simple graphics display of the final state of a ballistic deposition process can be created using

ShowDeposition@sites_, opts___D :=

ListDensityPlot@Reverse@sites ê. 80 → 1, 1 → 0<D, opts,
AspectRatio → Automatic, FrameTicks → None, Frame → None, Mesh → FalseD

A typical graphical output of running the ballistic deposition program is shown below.
ShowDeposition@MolecularDeposition@200, 10 000DD;

ShowDeposition@MolecularDeposition@500, 20 000DD;
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Appendix A: Elements of Probability and Random 
Variables
In  this  appendix  we  refresh  your  memory  on  the  following  concepts:  Discrete  and  continuous
probabilistic  distributions,  expectation,  variance,  covariance,  conditional  probabilities,  central  limit
theorem  and  the  strong  law  of  large  numbers.  Furthermore  we  will  give  an  introduction  in  the
generation  of  random  variables  that  are  distributed  according  to  discrete  and  continuous  probability
distributions.

A.1 Elements of Probability

If  we do an experiment  of which the outcome is  not  determined in advance,  for example throwing a
die or flipping of a coin, we may try to use stochastics to describe the system in question. If we do a
simulation experiment where we try to mimic a specific  stochastic system we need random variables
in order to be able to do so.

à A.1.1 Distributions: Discrete and Continuous
We speak of discrete random variables if the outcome X of an experiment can take a finite or at most
countable number of possible values. For example you may think of flipping one coin. The outcome X
of this experiment is restricted to heads or tails. In this case we say that such a system can be described
by a probability mass function p(x) : 

(1.1)pHxL = P@X = xD,

which denotes the probability that the outcome of the experiment X is equal to x. 

For example in case of the coin flipping experiment: 

(1.2)pHheadsL = P@X = headsD =
1
2

.

In  general  X  is  a  discrete  random variable  if  it  can take  on only a  finite  or  countable  set  of possible
values x1, x2, …, xn, … . Since X must take on one of these values we have: 

(1.3)‚
i=1

¶

pHxiL = 1.

This  means  that  the  probability  that  the  outcome  of  the  experiment  lies  in  the  set  of  outcomes
{x1, x2, …, xn} is equal to unity. 
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On the other hand if the random variable X can take on a continuous range of values we will have to
describe  it  by  means  of  a  cumulative  distribution  function.  From  this  function  one  can  derive  the
probability that X will lie in a specific continuous range of values. The function 

FHxL = P @X § xD ,

then describes the probability that X takes on a value that is less than or equal to x. Analogous to the
probability mass function in the discrete case we define in the continuous case the probability density
function f(x):

(1.4)f HxL =
d

d x
 FHxL .

This density function has to be normalised to unity. This means that

(1.5)‡
-¶

¶

f HxL d x = 1,

which  says  that  the  outcome of  the  experiment  X  lies  in  the  total  range  of  possible  values  of  x  with
probability 1. 

à A.1.2 Conditional probabilities
Say we perform an experiment where we flip a coin twice. The sample space of possible outcomes is
given by: S = {(H, H), (H, T), (T, H), (T, T)} where H denotes heads and T denotes tails. Each of the
possible  outcomes  is  equally  likely  to  occur  and  thus  has  probability  1/4.  We denote  the  probability
that  the  second  coin  flip  gives  heads  given  the  fact  that  the  first  flip  gives  tails  by  the  conditional
probability P(H|T). We can easily see that this probability is equal to 1/2. If the first flip has given T
only two possible outcomes are left (T, H) and (T, T) which have equal probability. 

In general we denote the probability that an outcome (e.g. first tails, then heads) of an experiment is in
some  set  of  possible  outcomes  A  under  the  condition  that  the  outcome  is  also  in  another  set of
outcomes B (e.g. first tails) by the following:

(1.6)PHA BL =
PH A › BL

PHBL .

For example in the case of the coin flipping experiment: 

(1.7)PHH TL =
PH 8T , H< › 8T , *<L

PH8T , *<L =
1 ê4
1 ê2

=
1
2

,

where * denotes the wild-card. If P(A |B) = P(A) we say that P(A) and P(B) are independent. 

à A.1.3 Expectation: Discrete and Continuous
The expected  value  or  expectation  of  X,  also  called  the  mean of  X  is  denoted  by  E[X]  or  XX\.  For  a
discrete random variable it is defined by: 
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(1.8)XX \ = ‚
i

xi pHxiL.

As an example you may think of the coin flipping experiment. Say that we denote heads by 0 and tails
by 1. Both events occur with probability 1/2. Therefore the expectation value of this experiment: 

(1.9)XX \ = 0 P@X = 0D
1ê2

+ 1 P@X = 1D
1ê2

=
1
2

.

Analogously for a continuous random variable we can calculate the expectation using the probability
density function for X. 

(1.10)XX \ = ‡
-¶

¶

x f HxL d x .

As an example we take the expectation of a random variable that behaves according to the probability
density function 

(1.11)f HxL =
e-x x > 0
0 x < 0

,

then the expectation value of X is given by: 

(1.12)XX \ = ‡
0

¶

x e-x d x = I@-x e-xDM0

¶

0

- ‡
0

¶

e-x d x = - I@ e-xDM0

¶
= 1.

If we are interested in the random variable g(X), where g is some given function we simply write

(1.13)XgHX L\ = ‚
i

gHxiL pHxiL

for the discrete case and

(1.14)XgHX L\ = ‡
-¶

¶

gHxL f HxL d x

for the continuous case. 

The expectation is a linear operation in the sense that for any two random variables X1 and X2:
(1.15)XX1 + X2\ = XX1\ + XX2\,

which generalises to: 

(1.16)[‚
i

Xi_ = ‚
i

XXi\.

Equation (A.16) holds for the continuous as well as the discrete case.
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A.1.4 Variance and Covariance: Discrete and Continuous
The expectation value XX\ of the random variable X, is a weighted average of the possible values of X.
However  it  doesn't  yield  any information about  the  variation  of these values.  One way of measuring
this variation is to consider the average value of the square of the difference between X and XX\. 
If X is a random variable with mean XX\, then the variance of X, denoted by Var(X) is defined by: 

(1.17)VarHX L = X H X - XX \ L2\.

It can simply be derived that : 

(1.18)VarHX L = XX 2\ - XX\2
.

The covariance of two random variables X and Y, denoted Cov(X, Y) is defined by: 
(1.19)CovHX , Y L = X H X - XX \ L H Y - XY \L\ .

It can be derived that 
(1.20)CovHX , Y L = XX Y\ - XX\ XY\

The  covariance  gives  an  idea  of  the  correlation  between  two  variables  X  and  Y.  What  can  be
understood  by  "correlation"  between  two  variables  can  be  see  as  follows.  For  example  in  the  coin
flipping  experiment.  Assume you flip  n  times the  same coin.  Set  X  to  be the  stochastic  variable  that
describes the number of heads that will come out. Simultaneously let Y be the variable that describes
the  number  of  times  that  tails  will  come  out.  It  is  clear  that  the  outcomes  of  the  simultaneous
experiments X and Y depend on each other. Let n = 1, heads = 0 and tails = 1. Then XX\=XY\=1/2 and
XXY\=0,  thus  Cov(X,Y)=-1/4.  This  is  an  example  of  anti-correlation.  In  other  words:  if  X  has  a  high
value consequently Y must have a low value. If X and Y are independent Cov(X,Y)=0.

Given formulas (A.18) and (A.20) we can derive furthermore that 
(1.21)VarHX + Y L = VarHX L + VarHY L + 2 CovHX , Y L.

If now X and Y are independent random variables then Cov(X,Y)=0, and thus
(1.22)VarHX + Y L = VarHX L + VarHY L.

The  formulas  given  above  hold  for  the  discrete  as  well  as  the  continuous  case.  For  a  more  detailed
discussion of this section the reader is referred to the book by Ross [18].

à A.1.5 Some Important Theorems
Strong law of large numbers

The so called strong law of large numbers :

(1.23)lim
nö¶

X1 + X2 + … + Xn

n
= XX\.
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This  law says  that  with  certainty,  the  long run average  of  a  sequence of  independent  and identically
distributed random variables will converge to its mean. 

Central Limit Theorem 

A random variable X is said to be normally distributed with mean m and variance s2  if its probability
density function is given by  

(1.24)f HxL =
1

s 2 p
 e-

Ix-mM2

2 s2

If  m=0  and  s2=  1  then  X  is  said  to  have  a  unit  normal  distribution.  We  denote  the  cumulative
distribution function of a unit normal random variable by the function f, that is:  

(1.25)fHxL =
1

2 p
 ‡

-¶

x
e-

y2

2  d y

Now the Central Limit Theorem states: 

Let  X1, X2, …  be  a  sequence  of  independently  and  identically  distributed  random  variables  having
mean m and finite variance s2 then

(1.26)lim
nö¶

P B X1 + … + Xn - n m

s n
< xF = fHxL.

So  in  the  limit  of  an  infinite  sequence  of  independently  and identically  distributed  random variables
the "random variable"

(1.27)Y =
X1 + … + Xn - n m

s n
,

behaves  as  a  variable  that  is  distributed  according  to  the  unit  normal  distribution.  The  wide
applicability of normal random variables results from this theorem. We can summarise this important
theorem as follows.

The  sum  of  a  large  number  of  independent  random  variables  approximately  behaves  as  a  normal
distribution. 
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à A.1.6 Some frequently encountered discrete probability laws

Probability law and
parameter values

probability mass
function pHkL

Mean XX \ Variance VarHX L

Binomial n = 1, 2, …
0 § p § 1

n
k  pkH1 - pLn-k for k = 0, 1, …, n

0 otherwise

n p n p H1 - pL

Poisson l > 0 e-l lk

k!
for k = 0, 1, …

0 otherwise

l l

Geometric
0 § p § 1

pH1 - pLk-1 for k = 1, 2, …
0 otherwise

1
p

q
p2

 

Table A.1: Discrete probability laws.

à A.1.7 Some frequently encountered continuous probability laws

Probabilty law and
parameter values

probability mass
function f HxL

Mean XX \ Variance VarHX L

Uniform over @a, bD 1
b-a for a < x < b

0 otherwise

a+b
2

Hb-aL2

12

Normal or NIm, s2M 1

s 2 p
 e

-
Ix-mM2

2 s2 m s2

Exponential l > 0 l e-l x 1
l

1
l2

 

Table A.2: Continuous probability laws.

A.2 Generation of Random Numbers and Random Variables

The building block of a simulation study is the ability to generate random numbers, where a random
number  represents  the  value  of  a  random  variable  uniformly  distributed  on  the  interval  [0,1].
Nowadays the approach to generate random numbers is to use a computer to generate pseudo-random
numbers.  These  pseudo-random  numbers  constitute  a  sequence  of  values,  which  although  they  are
deterministically  generated,  have  all  the  appearances  of  being  independent  uniform  [0,1]  random
variables. There are several methods to generate pseudo-random numbers.

Very often the random number generator included with many programming languages is based on the
ongruential method. In this method each term in the sequence can be found from the preceding one by
the relation
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xn+1 = Ha xn + cL mod m,

where  x0 is  the  "seed"  and  a,  c  and  m  are  non  negative  integers.  The  random  numbers  on  the  unit
interval [0,1] are given by rn = xn/m.

We  will  assume  that  we  have  a  "good"  random  number  generator  to  our  disposal.  For  more
information  on  random  number  generation,  see  for  example  [16]  and  [18].  Here  we  mention  some
bugs/features of generic random number generators: 

æ Random number generators require a "seed" to start with. For two different seeds two different 
sequences of random numbers are generated, otherwise two identical sequences are generated.

æ Random number generators will have a periodic behaviour. At some point in the sequence the 
initial value will be reached again. After this the whole sequence is repeated identically as the 
first sequence. A good random number generator has a "very" long period.

à A.2.1 The Inverse Transform methods
Suppose that we want to simulate a discrete random variable X, which has probability mass function 

(1.28)
P@X = x j D = p j for j = 0, 1, …

‚
j

p j = 1.

To accomplish this, we generate a random number U that is uniform on the interval [0,1] and set 

(1.29)X =  

x0 if p0 < U < p1

x1 if p0 < U < p1

ª

x j if ⁄i=1
j-1 pi < U < ⁄i=1

j pi

ª

For example if we wish to simulate the coin flipping: 

1] Generate U
2] if U < 0.5 set X = heads
   if U ≥ 0.5 set X = tails

For  the  continuous  case:  Let  U  be  a  uniform [0,1]  random variable.  For  any  continuous  distribution
function F the random variable X defined by

(1.30)X = F-1HU L

has distribution F. 
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0

1

x

FHxL

u=FHxL

F−1HuL=x
a

Figure A.1: Example of a cumulative distribution function F(x), where x is in [0,a]

For example if X is an exponential random variable with rate 1, then its distribution function is given
by: 

(1.31)FHxL = 1 - e-x

if we let F-1HuL = x then 
(1.32)u = 1 - e-x ñ 1 - u = e-x ñ x = lnH1 - uL.

Hence we can generate an exponential random variable with rate 1 by generating a random number U
and setting X = -ln(1-U). A small savings in computer time can be obtained by noting that 1-U is also
uniform on [0,1]. Thus -ln(1-U) has the same distribution as -ln(U). That is the negative logarithm of a
random number is exponentially distributed with rate 1. 

à A.2.2 The Rejection method
Suppose  we  have  an  efficient  method  for  simulating  a  random  variable  having  probability  mass
function  {q j,  j¥0}.  We can  use  this  as  the  basis  for  simulating  another  distribution  which  has  mass
function {p j, j¥0}. 

First we simulate a random variable Y having mass function {q j, j¥0}. Then we accept this simulated
value with probability proportional to pY êqY . Specifically, let C be a constant such that p j êq j§ C for
all  j  and  p j∫  0.  The  following  technique,  called  the  rejection  method  generates  random variables  X
having mass function p j=P[X=x j].

Rejection          Method        for    discrete          random        variables

1] Simulate the value of Y, having probability mass function 
2] Generate a random number U
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3] If U<pY ê C qY set X=Y
   Else          return to 1

The rejection method for continuous random variables can be formulated analogously: 

Suppose we have a method for generating a random variable having density function g(x). We can use
this  as  the  basis  for  generating  random  variables  from  the  continuous  distribution  having  density
function  f(x)  by  generating  Y  from  g  and  then  accepting  this  generated  value  with  a  probability
proportional to

(1.33)f HY L ê gHY L.

Specifically, let C be a constant such that
(1.34)f HY L ê gHY L § C

for all y, then we have the following technique for generating a random variable X having density f.:

Rejection          Method        for    continuous            random        variables

1] Generate Y having density g
2] Generate a random number U
3] If U<pY ê C gY set X = Y
   Else          return to 1

This method is very useful for example when it is not possible to calculate F-1 analytically. 

Lets use the rejection method to generate a random variable having density function
(1.35)f HxL = 20 x H1 - xL3 0 § x § 1

Since  this  random  variable  is  concentrated  in  the  interval  [0,1]  let  us  consider  the  rejection  method
with 

(1.36)gHxL = 1 0 § x § 1

Then

(1.37)
f HxL
gHxL = 20 x H1 - xL3

This function has a maximum value at x = 1/4. So

(1.38)
f I 1

4 M
gI 1

4 M
= 20 μ

1
4

 1 -
1
4

3

=
135
64

= C

And thus 

(1.39)
f HxL

C gHxL =
256
27

x H1 - xL3
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The rejection procedure

1] Generate random numbers U1and U2

2] If U2≤ 256
27  U1H1 − U1L3 set X = U1

   Else                   return to 1
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Appendix B: Generating Normally distributed Random 
Variables

B.1 Box-Müller Method

Let X and Y be independent unit normal random variables and let R and q denote the polar coordinates
of the vector (X, Y). So 

(2.1)
R2 = X 2 + Y 2 ,

tan q =
Y
X

.

Since X and Y are independent, their joint density is the product of their individual densities and thus
is given by:

(2.2)

f Hx, yL =
1

2 p
 e- x2

2  
1

2 p
 e-

y2

2

=
1

2 p
 e-

Ix2+y2M
2 .

To determine the joint density of R2 and q we make the change of variables

(2.3)
d = x2 + y2,

q = tan-1K y
x
O.

The  Jacobian  of  this  transformation-that  is,  the  determinant  of  partial  derivatives  of  d  and  q  with
respect to x and y-is easily shown to equal 2. Therefore the joint density function of R2  and q is given
by

(2.4)fR 2, q Hd, qL =
1
2

1
2 p

 e-dê2 0 < d < ¶, 0 < q < 2 p.

However,  as  this  is  equal  to  the  product  of  an  exponential  density  having  mean  2  and  the  uniform
density on [0,2p], it follows that R2 and q are independent with R2 being exponential with mean 2 and
q being uniformly distributed over [0, 2p]. We can now generate a pair of independent normal random
variables X and Y by using (B.4) to first generate their polar coordinates and then transforming back to
rectangular coordinates. This is accomplished as follows:

1. Generate random numbers U1 and U2 .
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2. R2=-2 ln U1 and thus R2 is exponential with mean 2. 

3. Set q =2 p U2 and thus q is uniform between 0 and 2p. 

4. Now let

X = R cos q = -2 ln U1 cos(2 p U2)

Y = R cos q = -2 ln U1 sin(2 p U2)

This method is generally know as the Box-Müller method.

B.2 Random Walk using Metropolis

The next piece of Mathematica TM  code generates a random walk based on the Metropolis algorithm,
with  a  probability  distribution  Exp[-0.5(x2  +  y2)]   (a  2-dimensional  normal  distribution  with  mean
{x,y}={0,0}, sxy = syx = 0, and sxx = syy =1) :

(For an introduction to Mathematica TM see[23]).

Mathematica TM code for generating a Random Walk

ProbDist[point_] := Exp[-0.5 * (point[[1]] * point[[1]]
 + point[[2]] * point[[2]])]

MetropolisStep[oldpoint_] :=
Module[{newpoint,Prob},

newpoint=oldpoint+With[{dir = Random[Real, range]},
{Cos[dir], Sin[dir]}];

Prob = ProbDist[newpoint] / ProbDist[oldpoint];
If[Prob>=1,Return[newpoint],

If[Prob>Random[Real,{0,1}],Return[newpoint],
Return[oldpoint]]

]
]

MetropolisWalk[n_Integer] :=
Module[{points},

points = NestList[ MetropolisStep[#]&, {0.0, 0.0}, n];
Show[ Graphics[{Point[{0,0}], Line[points]}],

AspectRatio->1.0, Frame->True,
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FrameTicks->None]
]

The  result  of  the  execution  of  this  code  for  10000  Metropolis  steps  with  p(x,y)  =  1  and  p(x,y)  =
Exp[-0.5(x2 + y2)] respectively, is shown in the next figures:

Figure B.1: MetropolisWalk[10000], with p(x,y) = 1 and with p(x,y) = Exp[-0.5(x2 
+ y2)].

From  these  figures  we  observe  that  for  p(x,y)  =  1  we  obtain  a  more  or  less  random  distribution,
whereas  the  Z-normal  distribution  shows  a  normal  distributed  walk  around  the  mean  value  (0,0).
Closer  inspection  for  different  numbers  of  Metropolis  steps  nicely  shows  the  dependency  of  the
density  of  the  walk  relative  to  the  values  of  the  co-variance  matrix  used  (data  not  shown).  The
underlying  simulation  mechanism  used  here  is  the  so-called  Markov  Chain  simulation,  see  Chapter
2.1. 
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Appendix C: A Bayesian approach to simulation of a 
stochastic model 

C.1 Introduction to the Method

Let P(x) be the probability that event "x" has occurred, and P(y |  x) the (conditional)  probability that
"y"  has  occurred  given  the  fact  that  event  "x"  has  taken  place.  Then with  the  joint  probability    (the
probability that both occur) we have:

(3.1)PHx yL =
PH x › yL

PHyL .

If the occurrence of event "x" is independent of the occurrence of event "y" (and the other way around)
then P(x | y) = P(x). Therefore the previous equation transforms into:

(3.2)PHx yL =
PHy » xL PHxL

PHyL .

This  is  the  well  known Bayes theorem (reference [1] is  worthwhile  reading!).  A simple formula that
has  had  a  enormous  impact  on  a  large  variety  of  sciences.  Interpreting  this  theorem  in  terms of
simulation we see that if the user is able to express his beliefs about the values of the parameters under
investigation in the form of a prior distribution function P(x), then experimental information based on
the likelihood function P(y | x) (outcome of the simulation) can be used to convert these initial beliefs
into  a  posterior  distribution  P(x  |  y).  In  other  words  given  some  ideas  about  the  model  we  want  to
study, we can generate via simulation information that can be used to update our initial guesses. This
can  for  instance  be  applied  to  complicated  markov chain  simulations,  fuzzy  logic  models  and image
recovery [5, 12].

To get a feeling of the use(fullness) of this theorem consider the following head-or-tail experiment.

N-times a coin is tossed with as result  d  times head. What is the probability P(x),  that the result  of a
toss  gives  a  head?  Without  a  priori  knowledge,  P(x)ºd/N.  If  however  preceding  head-or-tail
experiments were carried out, we could give a probability distribution for the random variable X:

(3.3)pHxL = P 8X = x<.

With Bayes theorem the best estimate for P(x) is such that:

(3.4)PHx dL =
PHd » xL PHxL

PHdL = max.

Where  the  formula  maximises  the  possibility  that  hypothesis  X  is  the  correct  information  given
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experimental  data  d.  This  is  clearly  an  experimentalist's  interpretation  of  this  theorem.  In  the
experiment we use:

(3.5)PHx dL ~ PHd » xL PHxL

since P(d) can be considered constant. Consequently a simulation experiment consists of the following
components:

1. P(x): a priori knowledge (hypothesis before experiment);

2. P(d | x): experimental model (how data appears given X; the likelihood function);

3. P(x | d): a posteriori knowledge (= a priori knowledge + knowledge from experiment).

The P(x) and P(d|x) are established by "common sense" or by means of "educated guesses."

Let's investigate these concepts by the following example. Suppose that:

è P(x): normal distribution with m = 0.2;

è P(d | x): N trials with d/N = 0.8.

We are interested in the influence of N and s on the a posteriori distribution. The a priori knowledge
P(x) is normally distributed; notation N(m,s2). In formula:

(3.6)

PHxL =
1

Norm
 

1

s 2 p
 e- 1

2
 I x-m

s M2

,

Norm = ‡
0

1
PHxL d x.

The experimental model P(d |  x) is the probability distribution that the hypothesis about X  is correct,
given the data "d" from the N trials. P(d | x) has a binomial probability distribution, notation bin(N,x) .
In formula:

(3.7)PHd » xL = KN
d O xdH1 - xLN-d .

Remark:  The  binomial  is  not  calculated  as  function  of  the  number  of  successes,  d,  but  rather  as
function of success per trial P(X = x). The next figures show the results of some of these experiments
for different values of the parameters that model the system:
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Figure C.1: The results of three experiments with m=0.2 and various s.

From these experiments we observe that if the prior information is accurate (s is small), the estimate
for x is dominated by the value of m (prior knowledge). We see that when the data set is large (Nö¶
)  the  prior  information  gets  "washed  out."  Furthermore  we  observe  that  if  no  prior  information  is
present,  the  estimate  for  x  is  data-driven.  This  should  give  us  some  ideas  as  how  to  design  and
evaluate simulation experiments. The problem of course is that Bayes theorem does not prescribe how
to find P(x). This information must be abstracted from the physical model and the system knowledge
we  have.  This  inspires  us  to  use  the  predictive  capacity  of  Bayes  theorem  wherever  possible.
Especially in computationally intractable problems where tedious simulation is the only way out.
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C.2 Examples of Bayes method in simulation

à C.2.1 The wildcatter's Problem
In this section we will describe the problem of a wildcatter who must decide whether to drill or not at
a  particular  site  [11].  The  decision  will  be  based  on  the  profitability  of  the  drilling.  This  particular
problem can be solved using Bayes' theorem. There is some information that the wildcatter can use in
making  his  judgement,  about  past  experience  in  the  drilling  area.  This  past  information  can  be
summed up as follows:

If we would drill 8 wells:

è 70% of the time: all 8 wells will break or be profitable.

è 20% of the time: 1 well will be dry, hence not profitable.

è 10% of the time: 2 wells will be dry.

Assume that in order for the wildcatter to break even in the long run, at least 6 out of 8 wells will have
to  be  profitable.  For  the  wildcatter  to  make  money,  7  out  of  8  wells  will  have  to  be  profitable.  The
current situation is that the wildcatter has drilled 3 wells of which one has been unprofitable, i.e. dry.
Obviously the wildcatter wants to make money, so the question to be asked is: "What is the probability
that  the  second  well  will  turn  out  to  be  dry?".  The  historic  information,  combined  with  the  current
situation should deliver the answer to the wildcatter's problem.

Let's  try  to  formalise  this  question.  If  the  frequency F  of  dry  wells  is  known,  and  di  is  the  event of
drilling a well, then the probability of any particular well being dry is P(di  | F). If F is known we can
use the binomial distribution to calculate the occurrence of 1 dry well out of three. These probabilities
for all three possible frequencies and the probabilities for the frequencies themselves are summarised
in Table C.1.

FrequencyHFL Prob. 1 dry well PHFL
0 0 0.7
0.125 0.287 0.2
0.25 0.422 0.1

Table C.1: Probability of 1 dry well and Probability of occurrence.

Using  this  information  how  should  we  calculate  the  probability  that  the  F  =  0.25  given  the  current
drilling pattern, i.e P(F=0.25 |  d),  where d  are all patterns with 1 dry well out of three. Using Bayes,
we arrive at the following equation:
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(3.8)PHF = 0.25 dL =
PHd » F = 0.25L PHF = 0.25L

PHdL .

We  only  need  to  calculate  the  probability  P(d)  in  order  to  find  the  solution  to  (C.8).  P(d)  is  the
probability  that  the  wildcatter  drills  1  dry  well  out  of  3.  Using  the  numbers  in  Table  C.1,  we  can
calculate this quantity by:

(3.9)PHdL º 0.7 μ 0.0 + 0.2 μ 0.287 + 0.1 μ 0.422 º 0.0996.

Substituting this calculated number in (C.8) we obtain the probability of drilling a second dry well:

(3.10)PHF = 0.25 dL º
0.422 μ 0.1

0.0996
º 0.423.

Therefor  we  arrive  at  the  final  conclusion  that  the  wildcatter  has  a  better  than  57%  change  that  the
drilling will be profitable.

à C.2.2 Inductive Physics and the law of Diffusion
In this section we will describe the application of Bayes' theorem to the seemingly phenomenological
1D  Fick's  law  of  diffusion  [15].  The  flow  of  particles  in  a  dilute  solution  from  high  to  lower
concentrations is described by the following conservation law:

(3.11)
∑cHx, tL

∑ t
+ “2 HJ L = 0,

where c(x,t) is the concentration of particles at position x at a time t. Fick's law relates the flow of low
concentrations to the density gradient:

(3.12)J = -D “ HJ L.

How do we find the correct diffusion coefficient D? Logically, given where a particle is now, we can
sum the velocities of all particles in a small region, from which we can derive the local flux J(x,t). We
calculate the average velocity of a particle over a time interval 2t:

(3.13)n =
xHt + tL - xHt - tL

2 t
.

The probability that a particle will move from x(t) to y(t) = x(t + t), is given by a distribution P(y | x,
t). The motion of the particle is caused by a very large number of small increments, which is the result
of  encounters  with  individual  water  molecules.  According  to  the  Central  Limit  Theorem (A.26),  this
large number of fluctuating  increments  will  result  in  a  Gaussian form for the P(y |  x,  t)  distribution.
This distribution will have a zero mean, because of the inherent symmetry:

(3.14)PHy » x, IL = A e- 1
2

 I y-x
sHtL M

2

,

where I  stands for the stated prior information. The spreading function equals the expected square of
the displacement, i.e. s2 = (dxL2. The particle is equally likely found on the left site as on the right site
of the distribution,  i.e.  the expectation of y  is  X  y \  = x(t).  We know that the equations of motion are
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time reversal invariant, hence the past motion z = x(t-t) will also have distribution (C.14). This implies
that X z \ = x(t), and therefore, according to Equation (C.13), the estimated velocity is zero.

According to the reasoning stated above, we do not get the correct density gradient. We could suggest
that it is not possible to calculate the diffusion coefficient directly from first principles. In other words
how do we know that  it  is  the density gradient  that  matters,  and not  some other  function of density.
The answer to this  question is  not  to solve the problem of prediction,  given the dynamics, but rather
state it is an inference problem. We do not want to ask the question: How do the equations of motion
require the particles to move about on the average? But rather state the inference question:

What  is  the  best  estimate  we  can  make  about  how  the  particles  are  in  fact  moving  in  the  present
instance, based on all the information we have?

It  is  crucial  to  note  that  the  equations  of  motion  are  symmetric  in  past  and  future,  but  that  our
information  about  the  particles  is  not.  Equation  (C.14)  expresses  an  average  over  the  class  of  all
possible  motions  compatible  with  the  dynamics;  from  which  symmetry  in  movements  naturally
follows. For a real situation, it is only one of all these possible motions that is in fact executed, and we
ought  to  use  as  prior  information  a  small  class  of  possibilities  out  of  the  large  class,  in  which  the
particle is most likely to be: We need to calculate the inverse probability P(z | x, I), which requires the
use of Bayes' theorem: 

(3.15)PHz » x, IL = A PHz » IL PHx » z, IL.

The prior probability P(z | I) is proportional to c(z), i.e. the concentration at the past position z. Using
Equation (C.14) for P(x | z, I), we get:

(3.16)ln PHz » x, IL = lnHcHzLL -
Hx - zL2

2 s2HtL
+ Constant.

We  derive  the  most  probable  value  (i.e.  the  maximum)  of  z  by  differentiating  this  equation  with
respect to x and setting result equal to zero:

(3.17)z = x + s2 “ lnHcHzL L ª x + Hd xL2 “ lnHcHzL L.

If we substitute (C.17) in Equation (C.13) for x(t-t), using x as the expectation for y, we estimate the
velocity to be:

(3.18)n =
x - Ix + HdxL2 “ Hln cL M

2 t
= -

Hd xL2

2 t
 “ Hln cL,

from which we can calculate the average diffusion flux over the time interval 2t:

(3.19)J Hx, tL = c n = -
Hd xL2

2 t
 “c.

By  comparing  Equation  (C.19)  with  (C.12)  we  have  obtained  the  Einstein  diffusion  coefficient
D= Hd xL2

2 t using Bayes' theorem. In addition the phenomenological “c is derived automatically.
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Appendix D: Fractals and Fractal Dimension

D.1 Introduction

Many objects in nature are so complicated and irregular that they cannot be modelled well using conic
sections,  polygons,  spheres  and  the  other  familiar  objects  of  classical  geometry.  For  example,
circulatory  systems,  clouds,  trees,  mountains,  and  coastlines  cannot  be  reduced  to  combinations of
simple  shapes  from  classical  geometry.  Where  classical  geometry  ends  as  a  tool  for  analyzing  the
complexity of natural objects, fractal geometry begins. Today, fractals are used to model a wide range
of  biological  and  topographical  entities  and  to  produce  ultra-realistic  special  effects  for  movies  and
video games.

The  question  "How  long  is  the  coastline  of  Britain?"  posed  by  Benoit  Mandelbrot,  the  father of
modern fractal theory, in his book The Fractal Geometry of Nature is not as simple as it appears. The
problem  is  that  one's  answer  to  this  question  depends  on  the  length  of  the  ruler  one  uses.   Unlike
circles  and  the  other  shapes  from  classical  geometry,  coastlines  are  very  irregular.  They're  full of
inlets,  bays,  and  rocky  shores.  A  shorter  measuring  stick  will  fit  more  snugly  in  these  nooks  and
crannies  and  increase  the  estimated  length  of  the  coastline.  Hence,  if  we  measure  the  length of
Britain's  coastline  using  a  mile-long  ruler,  we  will  get  one  value.  If  we  use  a  shorter  ruler,  say  a
yardstick,  we  will  get  a  larger  value  because  a  yardstick  can  more  closely  approximate  Britain's
convoluted  boundary.  In  fact,  as  the  scale  of  measurement  decreases,  the  estimated  length  increases
without  limit.  Thus,  as the length of  the  ruler approaches  zero,  the  estimated length of  the  coastline
approaches infinity.  This difficulty in measuring due to the irregularity of the object being measured
is characteristic of fractal curves and surfaces.

Fractal theory is grounded in geometry and dimension theory.  Geometrically, fractals are independent
of  scale  and  appear  equally  detailed  at  any  level  of  magnification.   This  property,  called  self-
similarity,  means that  any portion of a self-similar  fractal   curve,  if  blown up in scale,  would appear
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identical  to the whole curve.  In other words, if  we shrink or enlarge a fractal pattern, its appearence
remains  unchanged.   This  repetition  of  a  pattern  at  all  scales,  no  matter  how  small,  is  exhibited  by
many natural objects.  For example, imagine that you are in space looking at the coastline of Britain.
As you approach the Earth, the coastline still  looks like a coastline.  No matter how close you get to
Britain's  shore,  the  coastline  appears  equally  complex.   Even  after  you  land  your  spacecraft  and  get
down on your hands and knees with a microscope at the water's edge, the coastline still looks jagged
and irregular.

The  term  fractal,  introduced  in  1975  by  Benoit  Mandelbrot,  is  an  abbreviation  for  "fractional
dimension".  We  all  learned  in  high  school  that  in  classical  geometry  a  line  is  an  one  dimensional
object and a plane is two dimensional. Strangely, if we put enough kinks in a line, the resulting fractal
curve will  have a dimension somewhere between one and two, so that it  is neither a line nor a plane
but something in between. Similarly, an extremely convoluted surface will have a dimension between
two and  three.  Such  a  figure  is  called  a  fractal.  The  concept  of  fractal  dimension  provides  a  way to
measure how rough fractal curves are. The more jagged and irregular a curve is, the higher its fractal
dimension.  Fractional  dimension is  related  to self-similarity  in that  the easiest  way to create  a figure
that has fractional dimension is through self-similarity.         

D.2 Regular non-random fractals

Fractals fall into two categories, random and non-random (regular). It is instructive to discuss a much
studied  regular  fractal,  the  Koch  snowflake.  The  construction  of  this  curve  starts  with  a  triangle.  In
each  construction  step  an  edge  is  replaced  by  a  set  of  8  equal-sized  new edges.The  boundary  of  the
Koch Snowflake constructed by Helge Von Koch in 1904 is the union of three congruent self-similar
fractals.  Each third of the snowflake is constructed by starting with one side of an equilateral triangle
and  performing  an  iterative  process.   The  following  cell  defines  a  function  called  Snowflake  that
illustrates the stages in this iterative process (just execute the code).

à D.2.1 Koch Snowflake Construction
The Koch code
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Clear@n, Snowflake, start, finish, dolineD
Snowflake@n_Integer?NonNegativeD :=

Show@Graphics@
Nest@ HÓ1 ê. Line@8start_, finish_<D :> doline@start, finishDL &,

8Line@880, 0<, 81 ê 2, Sqrt@3D ê 2<<D,
Line@881 ê 2, Sqrt@3D ê 2<, 81, 0<<D,
Line@881, 0<, 80, 0<<D<,
nDD,

AspectRatio −> Automatic, PlotRange −> AllD

doline@start_, finish_D :=

Module@8vec, normal<,
vec = finish − start;
normal = Reverse@vecD 8−1, 1< Sqrt@3D ê 6;
8Line@8start, start + vec ê 3<D,
Line@8start + vec ê 3, start + vec ê 2 + normal<D,
Line@8start + vec ê 2 + normal, start + 2 vec ê 3<D,
Line@8start + 2 vec ê 3, finish<D
<
D;

The following cells show examples of different iterations of the Koch code
Snowflake@0D

At the next stage of the snowflake's construction, we remove the middle one-third of each side and add
two new segments having the same length as the part that was removed.   (See the picture generated by
the cell below.)  

Snowflake@1D
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At  each  stage,  we  replace  the  middle-third  of  every  segment  in  the  previous  stage  by  two  new
segments, creating a "bump" on the original segment.  Evaluate the following cells to see the next four
stages in the construction of the Koch Snowflake. 

Snowflake@2D

Snowflake@3D

Snowflake@4D
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D.3 The Fractal Dimension

Consider a line segment divided into N  equal pieces.  Each of these N  pieces can be thought of as a
scaled  version  of  the  whole  segment,  with  scaling  ratio  r = 1

N .   The  relation  between  N  and  r  is

clearly N r = 1.  For example, if N = 3, then r = 1
3  and N r = 3 ä 1

3 = 1, see below.

N=3, r=1ê3, Nr=1

1ê3 1ê3 1ê3

Now suppose the sides of a square are  scaled by a factor r to produce N  identical subsquares, each of
which is a scaled version of the whole square.  The relation between N  and r in this case is N r2 = 1.
For example, if r = 1

3 , then N = 9 and N r2 = 9 ä 1
9 = 1.  See the figure below.

N=9, r=1ê3, Nr^2=1

1ê3

1ê3

1ê3

1ê3 1ê3 1ê3

Finally, if a cube is scaled in the x, y, and z directions by a factor r to produce N  equal subcubes, then
the  relation  is  N r3 = 1.   For  example,  if  r = 1

3 ,  then  N = 27  and  N r3 = 27 ä 1
27 = 1.   (See  the

figure generated by the cell below.)
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N=27, r=1ê3, Nr^3=1

1ê3
1ê3

1ê3 1ê3

1ê3

1ê31ê3

1ê3

1ê3

The line, square, and cube above have integer dimensions of one, two, and three respectively.  Notice
that the dimensions of these objects show up as the exponent d  in the relation N rd = 1, where N  is
the  number  of  equal  subunits  and  r  is  the  scaling  ratio.  In  general,  if  a  given  set  is  the  union  of  N
essentially disjoint copies of the original that are scaled by a constant factor r, then the value of d  that
satisfies  the  equation  N rd = 1  is  called  the  fractal  dimension  or  similarity  dimension  of  the  set.  It
turns  out  that  there  are  configurations  for  which  the  value  of  d  in  N rd = 1  is  not  an  integer.  Such
configurations are called self-similar fractals!

The explicit formula for d in terms or N  and r is given by the cell below.
Solve[n r^d==1,d]

::d →
LogA 1

n
E

Log@rD
>>

The logarithm in  the  formula above  can  be  taken  with  respect  to  any positive  base  different  from 1.
The following cell  defines a  function called dimension  that  takes  the values  of N  and r  as  input  and
returns the value of d.  This function will be used later in this notebook, so execute it now.

Clear@dimension, dD
dimension@n_Integer?Positive, r_?PositiveD :=

Module@8d<,
d = Log@1 ê nD ê Log@rD êê ND

à D.3.1 The Fractal dimension of the Koch Curve
Each third of the Koch Snowflake converges to a limiting curve K  that is a self-similar fractal.  If K  is
scaled by a factor of r = 1

3 , then there are N = 4 copies of the scaled version making up the entire set
K.  Hence,  the fractal dimension of K is given by the following cell.    

100 CurrentValue[FileName]



dimension@4, 1 ê 3D

Since the dimension of the snowflake (1.26186) is greater than the dimension of the lines making up
the curve (1), the Koch Snowflake is a fractal.

à D.3.2 Boundary length of the Koch Curve
An  important  property  of  the  Koch  Snowflake  is  that  its  boundary  has  infinite  length.   This  is
especially surprising in light of the fact that the snowflake encloses only a finite area (after all, it can
be  completely  covered  with  a  square  of  paper).   To  show  that  the  boundary  of  the  snowflake  has
infinite  length,  it  suffices  to  show that  each of the  three congruent  fractals  making up the  snowflake
has  infinite  length.  Suppose  that  the  initial  segment  (call  it  K0)  has  length  1.  Then  K1,  the  curve
produced  by  removing  the  middle  one-third  of  K0  and  adding  two  new  segments  having  the  same
length,  has length 4 ê 3.   The curve K2  at  the end of the second stage has length 42 ë 32.    Repeating
this  process,  the  curve  Kn  produced  after  n  stages  has  length  4n ê 3n.   Hence,  the  length  of  the  limit
curve K is given by the following cell.

Limit@H4 ê 3L^n, n −> InfinityD

à D.3.3 Fractal dimension of non-regular  fractals
For  the  fractals  discussed  above,  the  regular  fractals,  we  can  calculate  the  fractal  dimension.  For
irregular  fractals  such  as  fractal  structures  from nature  or  from random processes  (see  Simuleren  en
Modelleren notebook 5) we need an alternative approach.

One  approach  is  to  overlay  the  object  with  a  grid  with  gridspacing  ¶  and  count  the  number of
intersected cells. By decreasing ¶ we can infer the fractal dimension. Explain in pseudo-code how this
process can be used to determine the fractal dimension. (In the lectures this method was referred to as
the Feder Box-counting method.)
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Exercises

Introduction

In the programs you will have to make several subroutines that can be used more than once. So, before
you start  programming look through the  assignments and try  to make your subroutines  as  general  as
possible.

We  strongly  advise  you  to  write  the  algorithms  in  pseudo-code  before  implementing.  In  principle,
coding  can  be  done  in  the  language  of  your  choice.  However,  implementation  of  the  recursive
algorithm  in  the  percolation  problem  needs  recursive  constructs.  Therefore  Fortran  is  not  suited  for
that specific algorithm. If you're eager to use Fortran then you'll have to rewrite the algorithm yourself.

The following subjects are covered in the exercises of Stochastic Simulations:

 

 1. Monte Carlo Integration 

 2. Diffusion 

 3. Ising Model

 4. Lattice Gas

 5. Percolation

Each problem section starts with a reference to the theory in your syllabus:

Theory: section X
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à Monte Carlo  (MC ) Integration and Variance Reduction
Theory: Section  1 ; Appendix A1, A2

Question A

Use MC integration to estimate 

             Ÿ0
1
e−x Åx                                  (1)

             

 1. Estimate the integral for  3600 trials.

 2.Compute the standard deviation s at n = 3600.

 3. Does s change significantly if n > 3600 ?

 4. Determine the error in your estimate. 

 5. How does the error compare to the error estimate  s/ n  

  

Divide your measurements into s = 20 subsets of 180 trials each. 

1. Compute the mean and standard deviation of the collection of s measurements. 

2. Is σs ë s  consistent with your previous error estimates? 

3.What are the implications of this observation?

Question B

Choose the importance sampling functions p(x) = C1  and p(x) = C2e−x.   The constants   Ci  must be
chosen  such  that  the  importance  sampling  functions  are  unity  when  integrated  over  the  interval  in
question.

 1. Evaluate by simulation 

                F =Ÿ0
10 1

1+x3
 Åx                      (2)

 2. List Fn (approximate value after n trials). 

 3. List σ and s/ n  .

 4. Do you have benefit from applying importance sampling?
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Question C

Choose the importance sampling function p(x) = C λe−λ x and estimate

               F =Ÿ0
π 1

1+x2+cos2 x
 Åx                   (3)

1. Determine the value of λ that minimizes the standard deviation s.

2. What is remarkable about the optimal importance sampling function when compared to the function
that is integrated?

à Diffusion  
Part I: Random Walk 

Theory: Section 4.2  

A random walk consists of N steps (see section 4.2) of equal length in random directions, starting from
an  arbitrary  position.  You  will  study  a  random  walk  on  a  two-dimensional  lattice.  On  a  square  and
triangular lattice there are 4 and 6 possible moves respectively.

Figure 1: A square and a triangular lattice with possible directions

The  quantity  that  is  measured  during  the  simulation  is  the   net  mean  square  displacement  <  ∆RN2>
given by (Eq. 4).  Hence,< ∆RN2>  is determined by averaging over a reasonable number of trials for
the same N. From this the  root mean square displacement (Eq. 5) is calculated, which can be used to
determine the critical exponent ν defined in (Eq. 6) for large N.
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< ∆RN2> = < xN2> + < yN2> - < xN>< xN> - < yN>< yN> (4)

Furthermore we define:

RN = < ∆RN2 > H5L

The critical exponent of a random walk is a constant that indicates the following relationship between
RN and the number of steps N in the random walk (see section 4.2 and references therein):

RN = a Nν H6L

Question I.A

1. Write a program (see psuedo code below) that simulates a random walk, i.e. a particle is somewhere
on the lattice and at each time step it is moved at random to one of the neighboring sites. You'll have
to use periodic boundary conditions, i.e. if a particle leaves the lattices at the top, it will reappear at the
bottom.

REPEAT a number of times
Clear displacements of walker
DO N time steps

Move walker in random direction
Monitor displacement : dx = dx + x and dy = dy + y
Accumulate displacements : x = x + dx, y = y + dy,
x2 = x2 + dx ∗ dx and, y2 = y2 + dy ∗ dy

Calculate < ∆RN2 > Hsee Eq .4L

2.  What  will  happen  to  the  distance  that  a  particle  has  moved away from its  starting  position  if  that
particle croses a border? Solve this problem!

Question I.B

1. Enumerate (on paper) all random walks on a square lattice for N = 4 random steps and determine <
xN>, < yN>  and  < ∆RN2>.

2.  Verify  that  your  program gives  the  same results  as  the  enumeration above.  Note  that  you have to
average over multiple trials in order to determine the statistical quantities for a specific value of N.

Question I.C

1. Do a Monte Carlo simulation to determine RN for N = 8, 16, 32 and 64.

2.  For  each  N  you  have  to  do  a   reasonable  number  of  independent  experiments.  What  do  you  call
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reasonable?

3. What is the influence of putting < xN> and < yN> to zero in your calculation of formula (4) ?

4. Estimate the exponent n from a log-log plot of RN versus N.  That is, the slope of the line equals n.

5.  Calculate  the  magnitude  of  the  self-diffusion  constant  D  as  defined  by  [4.3]  with  the  "time"  t
replaced by N. Peform this experiment for different values of N.

 

The measure of "time" in this context is arbitrary. The usual definition which we will often encounter
is  that  one unit  of  time corresponds  to  one Monte Carlo step  per  particle.  During one Monte  Carlo
step per particle, each particle attempts one jump on the average. The diffusion constant D is obtained
as the limit t  of D(t), where D(t) is given by [4.3].

Question I.D

1. Do a Monte Carlo simulation of RN on the triangular lattice and estimate n.

2. Can you conclude that n is independent of the symmetry of the lattice ?

3. Does D depend on the symmetry of the lattice?

à Part II: Lattice Gas
Theory: Section  4.3.1

Next consider a nonzero concentration c of random walkers (particles) on a square lattice (n × n sites).
Each  particle  moves  at  random  to   empty  nearest-neighbor  sites  but  double  occupancy  of  sites  is
excluded; otherwise the particles are noninteracting. Such a model is an example of a lattice gas. Note
that  the  motion  of  an  individual  particle  is  correlated  with  the  motion  of  the  other  particles.  The
physical  motivation  of  this  model  arises  from  metal  physics  where  diffusion  is  caused  by  thermal
vacancies  whose concentration depends on the temperature. The main physical  quantity of interest  is
the self-diffusion constant D of k tracer particles. The algorithm for a Monte Carlo simulation of < D >
for a given value of N, can be stated as follows:
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REPEAT a number of times
Init Lattice

REPEAT a number of trials ê ∗ to calculate  ∆RN2 > . ∗ ê
Clear displacements of particles
DO N time steps

Move particles
Accumulate x, y, x2 and y2 for k tracers

Calculate < ∆RN2 > for all k tracers
Calculate D from individual tracer contributions
Accumulate D
Calculate < D >

Question  II.A

1. Write a program that simulates a lattice gas with a concentration of c random walkers on a square
lattice. You'll have to use periodic boundary conditions, i.e. if a particle leaves the lattices at the top, it
will reappear at the bottom.

2. If the initial positions are recorded in an array, what will happen to the distance that a particle has
moved away from its starting position if that particle crosses a border? Solve this problem!

Question  II.B

1. Simulate a number of random walkers (take a fixed concentration c, take one tracer particle among
the random walkers. Calculate the self-diffusion constant and its variation using only this single tracer
particle. Note that the calculation resembles that of a simple random walk.

2. Observe that the variation will not decrease if longer simulation times are used (larger N). Explain
this.  (You can prove this  theoretically  using the Gaussian distribution and a calculation analogous to
the calculation of the Maxwell velocity distribution for gasses).

Question  II.C

Now use more than one tracer particle to calculate the self-diffusion constant. Explain the dependence
of the deviation of the self-diffusion constant on the number of tracer particles.

Question  II.D

1. Do a series of simulations to determine D for c = 0.1, 0.2, 0.3, 0.5 and 0.7.

2. Why is D a monotonically decreasing function of the concentration ? 

3.  Calculate  theoretically  the chance that  a  particle  will  jump back at  time step t+1 to the position it
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had at time step t. 

4. Calculate theoretically the dependence D = D(c)

Question  II.E

1.  Consider  a  one-dimensional  lattice  model  for  which  the  particles  move  at  random  but  double
occupancy of sites is excluded. The latter restriction implies that particles cannot pass each other.

2. Calculate < D x2 > as a function of t. 

3. Do the particles diffuse, i.e. is < D x2 >  proportional to t? If so, explain why,and, if not, what is the
t-dependence of < D x2 > ?

à Ising Model
Theory: section  3.2

In this assignment the 2D Ising model is examined. For details see chapter 3 in the reader.  Use kB=1
and J =1. Take a lattice of size L x L spins.

Question  A

1. Write a program that can simulate a 2D Ising model.

2. Calculate, with the aid of section 3.2.2 in the reader the theoretical temperature dependence of E, M,
C and c on a 2x2 lattice.

3. Check your computer results with the exact results.

Question  B

If the computer simulation is started, the configuration is in general not yet in an equilibrium situation.
Look at the equilibration times for interesting values of the lattice size L and temperature T.

Question  C

1.  Compute C and  c  for T = 1.5 to 3.0 in small steps for different values of L. Estimate the critical
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temperature Tc(L) from the maximum of C and c.

2. Does Tc determined from C(T) has a stronger L-dependence than Tc(L) determined from c(T)?

3. Estimate the critical temperature for an infinite lattice.

Question  D

1.  Calculate  the  correlation  times  of  the  magnetization  at  various  temperatures.  The  correlation
functions are defined by 

              C(k) = < fi fi+k > − < f >2

< f2 > − < f >2
           (7)

The average  < fi fi+k > is an average over many different situations where two states are separated
by k steps.  The correlation time is t = Σk C HkL.

2. What happens around the critical temperature ?

Question  E

1.  Change  the  spin-flip  dynamics  and  examine  the  correlation  times  around  the  critical  temperature.
An example is flipping two randomly chosen spins at the same time, try some others!

2. What spin-flip dynamics gives the lattice gas simulation model?

Question  F

Since t diverges near Tc  for an infinite lattice, it is possible to define a "dynamic critical exponent" D
by the relation t ~ (T −TcL−∆. On a finite lattice we have the relation t~ Lz at T = Tc. Use finite-size
scaling  arguments  to  obtain  the  relation  of  z  to  D.  Compute  t  for  different  values  of  L  on  a  square
lattice at T = Tc and estimate z.

Question  G

Repeat  Question  C  but  now  use  a  triangular  lattice  and  compare  the  found  value  for  the  critical
temperature with Tc = 3.641 .

à Percolation
Theory: sections 5.1 - 5.4

In the reader the algorithm of Hoshen-Kopelman is shown. This is an efficient method to use for large
lattices.  Since  we're  not  trying  to  write  an  article  about  percolation  but  just  examining  some  of  its
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properties  we  will  not  use  very  large  lattices.  Therefore  you  can  use  a  less  efficient  but  simpler
algorithm instead. The algorithm works as follows :

put a cluster counter to 1.
walk through the lattice, if you find a cite that is a hole that has not yet been examined then enter a recursive subroutine. If the
program returns from this recursive subroutine the cluster counter is incremented.
The  recursive  subroutine  first  labels  the  unexamined  hole  as  examined  and  puts  the  value  of  the  corresponding  place  in  the
array "labels" to the value of  the cluster counter.  Then it  looks at the neighbors of  the (previously) unexamined hole.  If  one of
these neighbors is itself an unexamined hole the subroutine is called again.
 

 In pseudo code it looks like this 

cluster_number = 1
For all lattice sites :
If the current site is an unexamined hole
call walk_through Hcluster _number, current siteL
cluster_number = cluster_number + 1

The subroutine walk_through looks like this :

mark current site as examined
label Hcurrent siteL = cluster \_ number
if Hleft neighbor = unexaminedL

walk_through Hcluster_number, left neighborL
if Hright neighbor = unexaminedL

walk_through Hcluster_number, right neighborL
if Hupper neighbor = unexaminedL

walk_through Hcluster_number, upper neighborL
if Hlower neighbor = unexaminedL

walk_through Hcluster_number, lower neighborL
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Figure2:  An  example  of  a  cluster  labeling  (represented  by   grey  values),
Pc = 0.57.

Question  A

Calculate  the  radius  of  gyration  [6.1]  for  the  largest  non-spanning  cluster  as  a  function  of  the
occupation probability p. The critical value for p is pc = 0.59 (approximately). If p < pc and a random
lattice is generated with a spanning cluster, that lattice is discarded. If p > pc and a lattice is generated
without  a  spanning  cluster,  that  lattice  is  also  discarded.  Below pc,  only  lattices  without  a  spanning
cluster are used and above Pc only lattices with a spanning cluster are used.

Question  B

p c  is  the  critical  value  for  p.  At  this  value  the  largest  non-spanning  cluster  has  a  fractal  shape.  The
fractal dimension can be calculated with the aid of the radius of gyration. This can be done by making
a log-log plot of

the radius of gyration (Use Rs2  and not Rs) versus the mass of the cluster for many different clusters.
The mass  is  the  number  of  sites  belonging  to  the  cluster.  The slope  of  this  line  is  the  inverse  of  the
fractal dimension: 

slope = 1 ê Df, where Df is the fractal dimension. Determine Df.
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Question  C

Since  we  are  dealing  with  finite  lattices,  we  can  also  use  another  scaling  relation  to  determine  the
fractal dimension.

1.  For p > pc,  the mass of the largest  cluster  scales with L2.  Check this.  Why? In order to determine
this  scaling  relation,  you don't  discard  the  spanning  cluster,  because  you are  interested  in  the largest
cluster.

2.  For p = pc  the mass of the largest  cluster  scales  with LDf ,  determine Df.  Is  it  comparable with the
answer found in question B?
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