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Section I. Methodology 

Computer-assisted centrifugal elutriation. 
II. Multiparametric statistical analysis 

Peter  M.A.  Sloot,  Emi le  H . M .  Van  der  D o n k  a n d  Car l  G.  F i g d o r  

Dioision of Biophysics, Netherlands Cancer Institute, Amsterdam, the Netherlands 

A combination of non-interactive statistical methods is discussed to analyze multiparametric light-scatter data obtained 
by means of computer-assisted centrifugal elutriation. 
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1. Introduction sis. In this paper  we describe the special-purpose 
off-line software developed to analyze and inter- 

Computer-assisted centrifugal elutriation (CACE) pret, by non- in t e rac t i ve  methods, the large amount  
is a new technique to monitor  the separation of of information present in the data obtained from 
large numbers of human peripheral blood cells. It  elutriation. 
facilitates tuning of the separation process by First, we introduce a modified ' l inear sep- 
means of on-line information on the number  and aration method'  to estimate the initial parameters 
type of cells that are elutriated. In addition it of each population, with no essential limitations 
allows the detailed study of light-scatter phenom- on the number  of distributions constituting the 
ena of well-defined (sub)populations of cells in histograms. Subsequently, a 2-parameter expecta- 
flow. In a previous report, we described the devel- t ion-maximization (EM) algorithm is applied to 
opment  of both the optical system and the stand- optimize the estimation of the statistical parame- 
alone computer constituting the C A C E  equipment ters describing the various (sub)populations. Pre- 
[1]. During the centrifugal elutriation process, three liminary results obtained with the complete CACE 
6-bit parameters (forward-scatter (FS), side-scatter system, including the off-line software, indicate 
(SS) and back-scatter (BS)), of each sampled cell, that CACE is well suited to monitor  and optimize 
are detected and accumulatively stored into a local the centrifugal elutriation process. In addition, the 
memory (512 kByte). The content of this memory off-line software allows rapid and reliable differ- 
is continuously displayed for on-line interpreta- entiation of the cells in the eluted fractions which 
tion and can be dumped, by means of a local closely resembles (time-consuming) histological 
network, to a host computer * for off-line analy- differentiation after May Griinwald Giemsa stain- 

ing. 
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sional data obtained from a CACE experiment, to the (symmetric-) Gaussian profile of the distri- 
Both nonparametric or parametric analysis may butions. From these considerations, parametric 
be used to unravel these multidimensional histo- analysis of the intrinsic multivariate normal distri- 
grams, butions is justified. 

Nonparametric analysis can be applied when Parametric analysis of one-dimensional (FCM) 
no presumption is allowed on the statistics of the histograms, including iterative procedures has been 
distributions [2,3]. For example, interactive proce- reported in the literature [12,15,20,21]. In the 
dures, which determine the clusters constituting sequel, we extend the parametric analysis in one- 
the histogram and which estimate the number of dimension to parametric analysis of multivariate 
cells within a selected area, are commonly used normal distributions by application of the expec- 
[4-6]. Several nonparametrical methods such as tation-maximization (EM) algorithm [22-26]. 
(simulated) randomization tests have been applied Estimation of the initial parameters and of the 
in the literature to study the contrasted groups number of distributions constituting the multi- 
within a multidimensional histogram. These meth- variate mixture, and approximation of the relevant 
ods allow characterization of statistically different area to which a subpopulation is confined, greatly 
subpopulations [3,7,8]. Furthermore, various stat- determines the reliability of the iteratively calcu- 
istical tests have been proposed to analyze differ- lated parameters. Furthermore, the time required 
ent sets of histograms [2,3,9-12]. However, a major for an iterative procedure to converge to an opti- 
disadvantage related to nonparametrical analysis, real estimation of the parameters is extremely 
in our application, is that it cannot detect hidden dependent on the quality of the initial guesses. 
distributions. As a consequence, the influence of Therefore, we developed a method, derived from 
small morphological changes on the light-scatter the 'fixed increment rule for linear separation' 
characteristics of the cell populations, cannot be [27,28], which facilitates rapid non-interactive 

studied in detail. Moreover, detailed investigation numerical calculation of the number of subpopu- 
on the influence of the elutriation parameters (fluid lations and of the initial estimates of the multi- 
flow and density, rotor speed, temperature and variate parameters. 
rotor chamber design) on the complete data-set, 
requires an even more accurate characterization of 
the subpopulations. 

A second approach to unravel the CACE data 3. Theory and computational methods 
is to apply parametric analyses [13,14]. Here it is 
assumed that the density function, which describes 
the biological spread within each individual cell In a CACE experiment, three parameters (FS, SS 
population, can be represented by a Gaussian and BS) of a detected cell are stored [1]. This 
distribution [15,16], and that small deviations from 4-dimensional (3-parameter) density problem can 
Gaussian properties of the intensity functions are be described by a mixture of multivariate normal 
due to alignment difficulties of the cells in flow distributions Pi(~lff), as was argued in the previ- 
[17], or errors in the beam-shaping optics [18,19]. ous section: 
Since the construction of the CACE equipment 

m - - 1  
facilitates compensation for possible variations in P(~ ] ~) '= ~] aiPi(~l~i); ? = (x, y, z) ~ R 3 
the hydro-focused sample flow, and a uniform 

i = 0  
laser-field is guaranteed by cylindrical lenses [1], 
no significant deviations from normal-distributed (1) 
light-scatter intensities are expected. Besides, the 
measurement of light-scatter signals instead of Where 0 < x, y, z < 64 represents the FS, SS and 
fluorescence signals (commonly used in flow cy- BS channels respectively. The number and frac- 
tometry (FCM)) and linear amplification in con- tion of the component populations is represented 
trast to logarithmic amplification, will contribute by m and a. The multivariate distribution is 
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parameterized by: and 

T _ 

• := (a0 ,  al . . . .  am-~; q'o, ¢P~ ... .  q'm-X) (2) E ( X - - # x ) ( y - - ~ y )  D(r) 
(6) 

where OxY := ~ D ( ? ) 
P 

,,..= (3) 
D(~) represents the_number of cells in channel 

The bar denotes a vector in R 3 and the double ~(~ .'= (x, y))  and IX i I is the determinant of the 
bar denotes a matrix in R 3 positive definite symmetric 2 × 2 matrix contain- 

Hence, @i completely describes the statistical ing the (co)variance terms. 
parameters of the subpopulations which must be It is assumed that the intrinsic Gaussian prop- 
calculated. _ erties of the distributions are conserved. Other 

~i is the vector of the mean and X, is the (nonlinear) dimension-reduction algorithms may 
(co)variance matrix of a single distribution i, de- be considered, e.g. quenching the off-diagonal ele- 
fined by: ments of Eq. 4. However, this type of dimension 

reduction is not applied, since the interactive pro- 
[Oxx °xy °xz] cedures involved are time consuming and lack 

~i : =  (lyx Oyy Oyz ] (4) clarity when mixed distributions are concerned 
Ozx Ozy Ozz [21,29]. 

Next, the clusters confining a single population 
Opq is the variance (p  = q) or the covariance ( p  * are estimated. Interpretation of the data, however, 
q) term of the distribution, is hampered by the presence of noise superim- 

posed on the light-scatter signal. Both instrumen- 
3.1. Estimation of the initial parameters tal and stochastic noise may contribute to the 

histograms. Instrumental noise is present as a 
Since it is convenient in a CACE experiment to consequence of (known) unavoidable nonsys- 
study two-parameter 'scatter-plots' [1], a linear tematic instrumentational errors [1,18,30], whereas 
dimension reduction is applied to the raw 3- stochastic noise may arise from a statistically in- 
parameter data: sufficient number of cells [31]. In a previous paper 

we described a special-purpose low-pass digital 
63 filter to reduce this predominantly high-frequency 

p~ v(x, y).'= ~ p (~ )  noise from the data [32]. After application of this 
~=0 filter procedure, the following clustering algorithm 

is applied for each Pp,q(i'ldp) (p, q~(x, y, z), p 
Px,y(X, y)  is defined by: :# q): 

1 ( / _1 /2 (~=_1~  T x \ X  )) First, a two-dimensional scan calculates the 
Px,y(X, y) := a exp zero's of the first-order derivatives of the density 

2~r I~l ~/2 distribution, with respect to the two principal axes. 
This set of zero's is modified according to the 

(5) following criteria: 
No local distribution is expected when: 

where (i) The corresponding density is less than a user- 
defined percentage of the highest density encoun- 

~ D ( ~ )  tered. 
(ii) The Euclidean distance to the surrounding ~ :=  

D ( ? )  zero's is less than a user-defined resolution value 
(this results in merging of the distributions). 
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(iii) The width of the distribution, defined by the techniques for estimating the parameters that de- 
distance to the nearest minimum, is less than a termine a mixture density [22,26]. ML procedures 
preset value, applied to univariate histograms were recently dis- 

These criteria are justified since a cellular sub- cussed in literature [20,25,35]. ML methods 
population has a certain homogeneous biological guarantee, in contrast to least-squares minimum- 
spread [30,32] and since the resolution which can distance methods, statistical consistency and ef- 
be obtained from optical-scatter methods is limited ficiency. Furthermore, invariance with respect to 
[18,33,34]. Next, a table is produced that contains one-to-one transformation of the parameters is in 
the overlap vectors. An overlap vector is defined general not fulfilled for least-squares techniques. 
by the percentage of overlap of the distribution In this section, we applied a special iterative 
under consideration with a surrounding local max- procedure, the expectation-maximization (EM) al- 
imum (i.e. the relative height of the minimum gorithm, to determine numerically the ML esti- 
between the distributions), and the relative orien- mates of multivariate mixture densities. The global 
tation of this maximum. The overlap table is used convergence of the procedure is discussed, and an 
to calculate the span and the 'purest' part of each empirically derived function is described which is 
distribution. Finally, the initial parameters of the helpful to predict the number of iterations (i.e. 
populations are calculated in accordance with Eq. computation time) to obtain a required accuracy. 
6, and extrapolated to describe the complete dis- From Eq. 1 we obtain the log-likelihood func- 
tribution, by using symmetry conditions for the tion [22,23,36] 
bivariate Gaussian density function (Eq. 5). The 
advantage of this local integration technique is m-1 
clear when the estimated parameters are used to in L ( ~ )  = ~]D(?)  In ~ a,P~(? ]~i) (7) 
calculate the bivariate fit of each detected distri- ~ i=0 
bution, since limitation of the integration area 
substantially reduces the computational require- where the bivariate normal density Pi(r]~,) is 
ments. To reduce possible errors in this initial defined by Eq. 5. 
parameter estimation, and to detect hidden distri- Next, by setting the partial derivatives of the 
butions, the procedure is repeated after subtrac- log-likelihood function to zero, the values of the 
tion of the fitted distributions from the complete parameters which maximize this function are 

calculated: data-set. It was concluded, from preliminary ex- 
periments, that the data of a CACE experiment 
never contained more than 20 distributions. If ~'(~,.~,,~,)L(~) .'=0 
more distributions are detected, the sensitivity of 
the clustering algorithm is automatically reduced 
by means of a more restricted definition of a Solving this equation for a~, ~ and ~2, results in 
(sub)population. In addition, the cut-off frequency the following iteration scheme: 
of the low-pass digital filter is diminished. Appli- 
cation of this clustering algorithm results in a set D(~) 
of ~ (Eq. 2) that parametrize the three mixed ]q~i) 

(r+l)  (r) (8a) bivariate normal density distributions (FS vs. SS, a, = a~ 
FS vs. BS and SS vs. BS). Optimization of the ~ D(~)p( r ) t ?  
initial parameters is established by means of a r -  f ( ? )  0 ~ I q~i) 
two-dimensional iteration procedure, as discussed 
below. y" 
3.2. The EM algorithm for bivariate data-sets "7"- f ( ? )  

~ + ' )  = ( 8 b )  
With the development of computing facilities, in- ~ D(~)P+(+)(? I qS) 
terest has grown in maximum-likelihood (ML) - f ( r )  
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= ( r + ~ ) [ ~  and 
D(I') fi(r)(~.l~,)(~ ._~r+l)) 

E = 
i m--I 

a o : = l -  Z "i (8d) 
X ( r - - ~ r + l ) ) T  ] i=] 

(r + 1) is a label that indicates the next iteration 
step. 

[ ~  ] - ]  Note that these estimators differ fundamentally 
× pi(r)(~lePi) (8c) from the one-parameter analogue recently re- 

ported in literature [20,25]: 

D(x) ei(r)(I, ld~i)(X-- g(r)) 2 where: ~ f(x) 
(~[ (r + 1) = 

m-, D(X) pi(,)(~. 
f ( ~ )  = E aiP'(Fl~b') x~-" f(x) IdP') 

i=0 

.70 a 34 b 
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Fig. 1. Various distribution parameters versus number of iterations. Initial distance between the two mixed distributions: d B = 2.0. d~ 
indicates the relative Euclidean distance between two successively iterated distributions. 
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Where a one-parameter modification of our 'n(~' 
notation is used. Here, Oi (r+l) results from calculi- 1.o 
tion of ,-x"(r), whereas in our application o/r+l) • . . . . . . .  ~ - ' " " ~  
results from u ~r+l) It is obvious that insertion of a o.o . . -  
previously calculated Lt (r+l) into the calculation of " " 
oi (r+l) results in a faster iteration process; there- -1.o ° ° * 
fore, Eq. 8c is applied. Deviation in the calcula- -2.0 ° 
tion of Eq. 8a from one-parameter analogues re- 

I I I I I ported in the literature [22,23,25] is due to the -a.o 1'o 2'0 ao 4'0 so 60 ro ao 9'0 
definition of the normalization equation of { a } in no. of iterations(I) 

Eq. 8d. Fig. 2. Logarithm of the inverse distance d B versus the number 

In the remaining part of this section, the char- of iterations between two mixed distributions: • = measured 
acteristics of the iteration procedure defined by values; . . . .  linear regression fit for I > 5. 

Eqs. 8a -d  are studied. We define a measure for proximately 6 iterations. Fig. ld,  in addition, shows 
Euclidean distance between two populations self-stabilization of d~. Since, d~ contains the 
PI(~ I q~) and P2(~ I,h2) by means of the  so-called weighted (statistical) parameters of the successive 
Bhattacharyya distance (dB)[37]: generated distributions, it can be applied as an 

f +  ~ unambiguous criterion for the termination of the 
d B := - I n  (P~(? I q~l)P2(? I q~2)) 1/2 d? (9) iteration process. Calculation for other values of 

- - O O  

dB, d F and d I gave comparable results (data not 
shown). 

Where again our notation is used. Calculation of The global convergence with respect to the 
dB from Eqs. 5 and 9 results in: number of iterations was calculated for different 

values of d B with a fixed d F (0.18) and a prede- 
fined stop-criterion d x = 2 × 10 -5. Calculation of 

1 [~  _1_~2/_1 the coefficient of correlation (p), for l n (a /da )  
d a = ~  (~2--~1) 1 1 ) (~2- -~1)  r versus the number of iterations ( I ) ,  resulted in 

2 0 = 0 . 9 6  (Fig. 2) (for I >  5, 10 observations). 
Therefore, the number of iterations necessary to 
obtain self-stabilization can be predicted, if the 

= -- distance d a is known. From pilot experiments, it 
became apparent that a typical minimum Bhat- 
tacharyya distance, of approximately d a = 2.0 can 

+½ In _- 1/2 = 1/2 be expected between two adjacent distributions. 
~1 ~2 Consequently, the corresponding number of itera- 

tions is approximately 20 (Fig. 2). Finally, the 
influence of the initial estimates on the iteration 

Fig. 1 shows the relative changes in the estimators process has been studied by calculating the num- 
determined from 9 successive iteration steps for a ber of iterations for a specific d B at various values 
particular separation of two simulated multi- of d F. No significant changes in the number of 
variate distributions with d B = 2.0. The Bhat- iterations for a relevant range of d F could be 
tacharyya distance between the simulated data detected. 
and the initial fit is denoted by d F ( =  0.06), 
whereas the Bhattacharyya distance between con- 
secutively iterated distributions is denoted by d=. 4. Results 
It is observed that the relat ive fraction ct, the 
vector of means (~) and the elements of the The methodology described in the preceding sec- 
(co)variance matrices (~)  converge after ap- tions is illustrated by the performance of a typical 
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CACE experiment [1]. A mononuclear cell suspen- 
a) ~ . sion was prepared from 500 ml of human periph- 

:~ ~ ~ eral blood by means of a blood-component sep- 
_ ~ .  s' arator, as described previously [38]. Mononuclear 

~ ~ f f , ~ , v ~ ,  ~ cells were suspended in phosphate-buffered saline 
z~ supplemented with 0.15% bovine serum albumin 

"~ (fraction V; Sigma, St. Louis, MO) penicillin (100 
5_~ IU/ml)  and streptomycin (50 /tg/ml), and in- 

troduced into the elutriator rotor. CE was per- 
3~ formed by means of two JE-6 elutriation rotors, 
~ l '  equipped with standard separation chambers, in 
tt ~ ~ series. Approximately 800 x 106 leukocytes and 

~ ~ ~ ~ ~ ~ ~ 4~ ~ ~ ss ~ 1200 X 10 6 erythrocytes were injected into a cooled 
sample introduction unit and loaded into the first 
rotor at a flow rate of 12 ml/min and at a rotor 
speed of 3800 rpm. After introduction of the cell 

b) ~r sample the flow rate was set at 18 ml/min. Frac- 
~ U tionation was obtained by stepwise decreasing the 

s~ rotor speed, whereas the speed of a second rotor 
was maintained at 4500 rpm to collect and con- 

za ~ centrate the cells elutriated from the first rotor. 

i t  / The fractionation resulted in a subsequent elation 
-~± I] ~ of erythrocytes, lymphocytes, monocytes and neu- 

' trophilic granulocytes. Details of the (CA)CE 
- ~ equipment, the cell separation procedure and the 
ee data aquisition, are described elsewhere [1,39]. 

To facilitate calculations, linear dimensions re- 
0~ _ _  _ 

~ t~ ~ ~6 a6 a~ ~ ~ ~ ~ & ~ duction is applied to the raw data, the result of 
which, for BS vs. SS, is shown in Fig. 3a. Two 
major populations and at least two minor clusters 
can be identified. The initial fit, after application 

~) ~ of the clustering algorithm, is shown in Fig. 3b. 
m ~////~ ~ - - ~  U ,  The algorithm discriminates between 5 different 
i ~///t/1t ~ ~  ~ distributions D[0]..D[4], where D[1] corresponds 

to the monocyte population and D[2] corresponds 
to the neutrophilic granulocyte population (Table 

i 1). After the clustering procedure, the ML-EM 
~ iterative algorithm is applied. Self-stabilization oc- 
t, curred after 16 iterations, as is shown in Fig. 3c. 
3~, The data clearly indicate the extreme improve- 

. . . .  ~̀~ ment of the iterated distributions in comparison 
with the initial fit (X z changes from 23342 to 5771 

~ ~ 6 ~ a6 ~ 36 46 ~ 6 & ~ (Table 1)). Distribution D[0] contains mainly 
erythrocytes, whereas the biological characteriza- 
tion of the small distributions D[3] and D[4] is 

Fig. 3. Bivariate histogram of a mixed monocyte/neutrophilic 
fraction. SS, side-scatter; BS, back-scatter. Number of cells in still under investigation. The abundance of the 
arbitrary units (AU): (a) initial histogram; (b) fitted distil- major populations corresponds qualitatively to  
bution after application of the clustering procedure; (c) fitted data obtained from differentiation according to  

distributions after 16 iterations, microscopical methods. 
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TABLE 1 

Statistics of the distributions detected in a monocyte/granulocyte fraction 

Initial parameters: Chi-square = 23 342; number of iterations = 0 

Distribution number D[0] D[1] D[2] D[3] D[4] 
Vector of mean channel 

number (SS, BS) (4,5) (7,30) (32,36) (54,54) (59,55) 
Covariance matrix 

(•Ss Zsb) 3 1 14 0 23 15 2 2 3 3 
(~bs ~bb) 1 2 0 29 15 19 2 4 3 5 

Relative proportion (a) 0.064 0.683 0.222 0.009 0.021 

After iteration termination: Chi-square = 5 771; number of iterations = 16 

Distribution number D[0] D[1] D[2] D[3] D[4] 
Vector of mean channel 

number (SS, BS) (4,6) (8,29) (35,37) (51,52) (57,51) 
Covariance matrix 

( ' ~  "~sb) 3 1 10 5 76 18 8 1 5 5 
(~bs ~bb) 1 4 5 33 18 34 1 9 5 17 

Relative proportion (a) 0.032 0.323 0.614 0.01 0.020 

TABLE 2 

Triangular part of symmetric Bhattacharyya-distance matrices 

Initial values After 16 iterations 

D[0] D[1] 0[2] D[3] D[0] D[1] D[2] D[3] 

D[1] 5.2 3.6 
D[2] 11.8 4.3 7.3 2.2 
D[3] 146.5 37.1 5.1 78.0 26.2 1.6 
D[4] 136.3 41.7 7.1 2.3 88.2 40.7 1.9 0.9 

The  inf luence  of  the i t e ra t ion  p rocedure  on  the c o m p u t a t i o n a l  t ime of  app rox ima te ly  15 seconds  
mu tua l  Bha t t acha ryya  d is tances  is shown in Tab le  pe r  i t e ra t ion  is required.  Since the  mean  n u m b e r  
2. The  mutua l  d i s tance  be tween  all e s t imated  dis-  of  i te ra t ions  is a pp rox ima te ly  10, mos t  mixed  bi-  
t r ibu t ions  is r educed  b y  the i te ra t ion  procedure ,  var ia te  d i s t r ibu t ions  can  be ca lcu la ted  wi thin  
This  is in l ine with observa t ions  of  o ther  exper i -  1 .5-3 .0  minutes .  The  p rog rams  were wri t ten  in the 
men t s  (da t a  not  shown).  Increas ing  the in tegra t ion  language  C on  di f ferent  compute r s  runn ing  the 
a rea  of  each d i s t r ibu t ion  dur ing  the cluster ing U N I X  opera t ing  system. The  sources and  a de- 
p rocedure  s l ight ly  reduces  this phenomenon .  The  ta i led  out l ine  of  the a lgor i thms are avai lable  upon  
c o m p u t a t i o n a l  t ime requi red  to  ob t a in  the same request  f rom the authors .  
accuracy,  however,  becomes  unaccep t ab ly  large. I t  
can  be  der ived  f rom Tab le  2 that  the c o m p u t a -  
t ional  t ime is ma in ly  de t e rmined  b y  the over lap  of  5. Conclusions 
d i s t r ibu t ion  D[4] wi th  its neares t  ne ighbour  dis t r i -  
bu t ions  ( d  B = 2 impl ies  a p p r o x i m a t e l y  20 i tera-  In  this pape r  we discussed mul t ipa ramet r i c  stat is-  
t ions;  see Fig.  2). To ob ta in  an  accuracy  def ined  t ical  analysis  of intr insic  Gauss i an  d i s t r ibu t ions  
b y  the i te ra t ion  cr i te r ion  d I = 2 x 10 -5,  a mean  b y  means  of  non-interactive methods .  
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It  is observed that application of a special-pur- characterization of the (sub)populations must be 
pose clustering algorithm resulted in a reliable established. 
first-order estimation of the initial parameters of (4) Improvement  of the computational speed may 
the bivariate normal distributions. A modified be accomplished by means of an extremely small 
max imum- l ike l i hood-expec t a t i on -max imiza t i on  integration area for each detected distribution. In 
algorithm ( M L - E M )  has been developed from addition, time-consuming modules will be con- 
statistical considerations. The convergence of this verted to (optimized) assembly code. 
iterative procedure was studied numerically by (5) The extension of the noninteractive procedures 
means of simulated bivariate data. We introduce a described in the preceding sections to three- 
new differential distance measure, that includes all parameter  analogues will be considered. 
significant statistical parameters of two successive 
distributions (di),  to define a criterion for self-sta- 
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