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Abstract. Genetic Algorithms have been applied to several combina-
torial optimisation problems, including the well known task allocation
problem, originating from parallel computing. We introduce random task
graphs as a model of applications which display irregular global commu-
nication patterns. Uniform crossover is the standard genetic recombina-
tion operator, that is applied to solution encoded chromosomes. How-
~ ever, application of a uniform crossover may heavily disrupt low cost
sub-solutions, or building blocks, of a chromosome. Therefore, we define
‘alocality preserving recombination operator, exploiting the connectivity
~ ofthe task graph. Experiments show that this new operator increases the
ﬂ “convergence rate of the Genetic Algorithm applied to the task allocation

problem.

Introduction

ntial problem in the field of parallel computing is the so called Task Al-
Problem(TAP). Given a set of parallel communicating tasks (a parallel
on) and a parallel distributed memory machine, find the optimal allo-
of tasks onto the parallel system. It is well known that the TAP is an
d optimisation problem [2]. The class of NP-hard problems is known to
ble in a sub optimal way using non deterministic or heuristic algorithms
tic Algorithms (GA) [8] or Simulated Annealing (SA) [10].

jous work we have described in detail, a tool which implements an op-
0 kernel embedding both a Genetic Algorithm and Simulated Anneal-
e have also introduced the method of Redundant Decomposition [3][4],
to first apply a domain decomposition prior to the actual allocation or
procedure. In extension to the sequential Genetic Algorithm, a parallel
Genetic Algorithm has been studied in [12]. The application domain of
s work was limited to computational meshes, used in parallel finite
applications. Furthermore, a standard genetic recombination operator,
I cross-over, has been applied in constructing successive generations.

ig of an arbitrary task graph as a one dimensional chromosome, can
‘shown to heavily disrupt the exploitation of low cost sub allocations.
we have defined a new crossover operator, cluster crossover, which
to optimally allocated allocations of parts of the task graph. In this
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work, we consider a more generic application model than that of finite &
meshes, namely random task graphs with adjustable connectivity [6]. Wil
purpose of studying the convergence behavior of uniform cross-over comj
to this new, structured, recombination operator.

This paper is structured as follows. In section 2 both the static paralé
plication as well as the machine models, used in this work, are presented. 4
the objective function, quantifying the costs of an allocation is formulated
section 3, a general framework for evolutionary strategies, an Abstract (6
Genetic Algorithm (ACGA), is given. A Parallel Cellular Genetic Algoritia
presented as an instance of this ACGA. At the end of this section, the cie
crossover operator is defined. Section 4 presents some experimental resulis
resentative of the performance of this new structured recombination ops
for a variety of random task graphs. Finally, we will summarise and discuss
findings in sections 5 and 6.

2 The Task Allocation Problem

In order to facilitate a study on abstract parallel applications a random
representation as a model of static communicating parallel tasks is mird
Each task is assigned a workload and every pair of tasks (vertices) in
graph is connected with a probability y. A message size is assigned to
between two communicating tasks. Work loads and message sizes are
to be constant. Furthermore the target processor topology is assumed#
a static parallel machine that is fully connected and homogeneous.
communication channels between all processor pairs are bi-directional a8
equal bandwidths. Moreover, the processors are homogeneous, ie
identical constant performance.

The metric for deciding on the quality of a task allocation is the
or execution time. A variety of cost models that are based on a gra
sentation can be found in literature. For example, the following cost |
equation (1) [9], is known to model the actual execution time for a
allocation with reasonable accuracy. Of course it is a simplification offl
situation, i.e. message latencies and network congestion are neglected.

e r;':zﬂ.é{ (ugﬂ oy /Sq 4 uaEH&?éA(m) i1 uj/sm) ‘
where

— wu; is a task in the parallel task graph

— @: the set of processors

— A(u;): the set of tasks connected to task u;

— UY: set of tasks u; residing on processor ¢

— W,,: Work associated with task u; (e.g. in terms of flop)

— S,: is the processor speed for processor ¢ (e.g. in flop/s)

~ Wy,u;: Number of bytes to be sent, due to nodal connectivity, heties
processor of task u; and task u;.
Spq: is the bandwidth of the route between processor p and ¢ (in by
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- A property of this specific function is that it assumes that the execution time
s determined by the “slowest” processor in the parallel machine.
 Because the value of H (equation (1)) can only change in task transfers that
e the slowest processor, it is not very sensitive to task rearrangements. The
onding search space is highly discontinuous and consists of many plateaus,
makes it difficult for many local search methods to explore. A cost function
ich still captures the essential characteristics of optimal allocations, but which
s a smoother search space, is equation (2) (see e.g., [11]).

H=BS W2+(1-8)Y Cp, (2)
P

r>q

= A,[S,, with Ap: 3. cur Wa,, total work on processor p in terms of

Mpq/Spq, with Mpq: Zuiep,l‘jeq Waiu, -
is a control parameter, corresponding to the communication/calculation
(.Tcam/ Tcnic) [7]
ion (2) has the locality property, which means that incremental changes
allocation can be propagated into the cost without having to recalculate
e cost function, which is the case for equation (1) [11]. This is specifi-
if an optimisation algorithm is applied that is based on incremental
(e.g. SA), which can exploit the calculation of cost differences. A dis-
ge of using equation (2) is the fact that it is a not a correct model for
cost. The objective is to minimise the variance in the workload
n simultaneous with the communication volume of the whole system,
to optimisation of the execution time of the slowest processor in

().

lel Cellular Genetic Algorithm
eric algorithm, the so-called Abstract Genetic Algorithm (AGA), .
‘and GA was introduced. However, the AGA was not designed to
allelisation. To avoid the use of global information which is necessary
A, we introduce a local spatial neighbourhood structure. The main idea
proposed ACGA is to make an analogy between the chromosome (or

) and a cell in Cellular Automata. Each chromosome is assigned to
) explicitly defines its neighbourhood structure. All communication
cells can only interact with direct neighbours. Consequently we can

ACGA:

{ cell in the population

. Choose a parent list (choice)
. Recombine parent list (production)
~ Mutate the offspring



Evaluate offspring
IF offspring meets some criterion (selection)

THEN
accept offspring €]
ELSE .
leave the current chromosome in its place
ENDIF &
ENDFOR ;

UNTIL maximum number of generations (iterations)

From the ACGA pseudo-code above a parallel CGA with local selection @
derived straightforwardly. We only have to select the various genetic ope

First the selection operator. A conventional GA uses a global method 0
the parents. One example is roulette wheel selection. With a CGA the

are selected from a neighbourhood of size (2r+1)%, where r is the radius, i
fitness function F. A cell is chosen as a parent by picking a uniformly distr
random number £ € [0, 1) which satisfies the following rule:

F(zm)
Z:,EAH,.] F(Ii]’

where Ay is the neighbourhood with radius = of cell z, including &
T e 4“,.)
We call this selection mechanism Local Roulette Wheel (LRW).

Another possibility is tournament selection, which we identify by Local]
nament Selection (LTS) in the case of CGA. There is an advantage in usi§
over LRW in small neighbourhoods, because LRW suffers from sampling®
when used on small populations [8].

As a recombination operator we can take the unchanged GA-crosso
ator, because it is already a local operation. Also the GA-mutation o
be used. Crossover between two cells is done by taking a uniformly di
random number ¥ € [0, length (chromosome)] as the splitting location
is realised e.g. by “bit-flipping” every bit of a chromosome with a
Pm. Where a bit is an n-ary number (n > 2). Evaluation means cal
fitness of the new chromosome. Because only one child out of the two
can be accepted, a child selection criterion must be applied. In the expe
we only accepted the fittest child. Note that a maximum radius for the (1
identical to a GA with global selection. In previous work we studied the i
of the radius size on the selection pressure [12]. It was shown that LI§
deviate from global selection tournament selection for r > 1.

Another instance of the ACGA is a special variant of Simulated Au
Cellular Simulated Annealing (CSA). To introduce locality in the S4 Iy
we use an alternative approach where several configurations exist 10
2-dimensional (2D) grid. These configurations only know of the existe:
configurations in their direct neighbourhood. This neighbourhood is
localised spatial structure on the grid. If a new configuration has to bt
for acceptance, not only the previous configuration is taken into Accol

&=
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%0 its neighbourhood set. Rejection of a new configuration can cause any of
Mt configurations in a neighbourhood set to take over the current spatial grid
Wation. Experiments with CSA for the Travelling Salesperson Problem were
morted elsewhere [13)].

UNIFORM

8. 1. Schematic representation of the structured crossover vs. the uniform op-
Two task allocations, C1 and C2, are selected as children for a recombi-
operation. The left hand side of the figure depicts the cluster crossover:
cluster (dotted line) is chosen in C1, which is recombined with the com-
y cluster in C2. The right hand side of the figure depicts the uniform
s an arbitrary crossover point (dotted line) is chosen and the two sec-
0f C1 and C2 are combined. The grey-values in the chromosomes represent
sor to which a task is allocated.

important aspect of Genetic Algorithms is the exploitation of so called
ing blocks or schemata [8]. Building blocks represent partially known gene
which are most significant for the associated cost of a complete allocation.
ation operators are applied to mix optimal building blocks from chro-
i the current population. An important property, for efficient sampling
al building blocks, is their compactness. This means that the defining
i the chromosome must be short enough, such that destruction of build-

by uniform crossover is minimised. For graph problems, the defining
i of the schemata can often be very long, because the inherent locality
 graph can not be represented by a one dimensional encoding. However,
uption process can be avoided if the internal structure of the problem
i is used as additional knowledge. Two approaches can be taken in order
ach this goal. Either the coding of solutions must somehow represent the
ucture of the problem domain or the genetic operators must be able
this. In this work we take the latter approach for reasons of general-
same coding must be used for different optimisation methods. The
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internal structure in a random task graph is obvious, namely the connectiviy
between the vertices. In order to use this information, we propose a recombis
tion method, which exploits connected sub graphs instead of sub chromosome
The procedure is as follows: First choose a random vertex v and a random s
S € [0,n], where n corresponds to the number of vertices. Subsequently, a cus
ter of S connected vertices is chosen. The cluster is constructed taking verter
v as the center and first choosing all 1-connected neighbours, followed by all
connected neighbours. This process continues until a cluster of size S is reachel
We toss the name cluster crossover for this structured recombination operator
The process is illustrated in Fig. 1, where cluster crossover and 1 point uniform
crossover are both depicted.

4 Experimental results

In this section some experimental results are presented, which are representative
for other choices of the parameter values. In order to represent a broad spectrim
of application/machine parameters, both 3 and ~ (see section 2) are varied be
tween 0 and 1 for several values. The plots contain the average convergence rate
of the fittest chromosome in the population. The convergence rates of both the
cluster- and the uniform crossover are displayed in one figure. All experiments
have been performed with a PCGA with r = 2, a crossover probability of 0.9,
and a mutation probability of 1/n, where n is the number of tasks. A populs
tion is considered converged whenever the cost value of the best individual has
not changed over 100 generations. For each parameter instance, the experiments
have been averaged over 25 CGA runs. All comparisons where done on the same
instance of a specific random task graph (parametrised by n and 7). The initial
populations of the different runs were generated randomly, which cause for et
discrepancies in the first generation. The CGAs have been executed on a 16-node
partition of a Parsytec CC-40 machine.
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Fig. 3.

n=64P = 8+ =028 =1

Fig.2.n =64,P=8,7=0.2,8=0.0 The horizontal dotted line indicales
the lowest average cost of the unifom
crossover.
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An experiment has been performed in which only the communication term
s enabled (see Fig. 2). The optimum of this specific case is known, and corre-
gonds to a sequential allocation with cost value zero. For two higher values of
layed in Figs. 3 and 4. In Fig. 3 a horizontal line

:, experimental data are disp
§s displayed, indicating the lowest average cost value in the uniform crossover

wnvergence plot.

Wie.4.n = 64, P =8,7=0.2,4=0.30 Fig.5.n= 64,P = 8,7y = 08,5 =030

In Fig. 5, the convergence behaviour on a highly connected task graph (y =

08) is shown, with the same f as in the previous figure ( 4). Next we consider

convergence on larger task graphs. The number of tasks is taken to be 128,

using a 8-node fully connected target topology. Fig. 6 displays the results
a moderately connected graph (y = 0.1) with n = 128 and P = 8. For an
n larger task graph (n = 200), more processors (P = 16), 25(y = 0.25) and
(.17, the average convergence is depicted in Fig. 7. Note that we have only
layed the data up to 1000 generations.

Fig. 7.
P=8,=01,3=006 n = 200, P = 16,y = 0.25,8 = 0.17
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5 Discussion

Genetic Algorithms have gained increased attention over the last few years s
an optimisation method for so called hard combinatorial problems. The strength
of this evolutionary technique is twofold. On the one hand, the selection schem
in combination with heuristic search induces a search mechanism which is les
sensitive for getting stuck in local minima than deterministic methods, On te
other hand, a crossover mechanism exploits low cost solutions of sub problems
in order to enhance the search. In order to obtain good performance from thi
recombination of partial solutions, it is important to use methods which are
focussed on locating such building blocks. Often GA implementations rely o
the canonical uniform crossover operator applied to bitstrings. For function op:
timisation, where the goal is to find optimal coordinates to minimise a specific
analytic function, this often results in desirable convergence behaviour. This cal
be explained from the fact that the vector coding of solutions, causes a one g
one mapping between the actual search space and the encoded search spac.
However, in many other problems, e.g. graph problems, the actual search space
is usually of higher dimensionality, which is often difficult to represent as a fla
or vectorised bit string. Recombination of chromosomes will often result in the
mixing of two completely incompatible solutions. If instead the knowledge of the
connectivity in the graph is added to a graph specific recombination operator,
it is possible to use optimal building blocks in the mixing process. Due to the
fact that the communication term in the TAP cost function enforces locality of

neighbouring tasks, optimal partial solutions can be located by a connectivity

sensitive operator. In this paper, we have proposed exactly such a structured op
erator: cluster crossover. For reasons of generality, random task graphs have been
used as problem instances. Although random task graphs aim on applications
with a global communication pattern and as such are not entirely general, they
still cover a broad range of scientific applications where long range interactions
are present (e.g. in n-body simulations with Coulomb interactions).

The experimental results presented in section 4 indicate that the cluster
crossover operator performes structurally better than uniform CrOSSOver over
wide range of task graph parameters. The results are indicative for a larger series
of experiments which have been performed (data not shown). Some parameter
settings can not be used to discriminate between cluster- and uniform CrosSover,
for example if there are no connections at all (y = 0.0) or if the communica
tion term is neglected (8 = 1.0) (data not shown). In previous work we have
shown that it is possible to identify, for a given fixed Y or 3, a corresponding
value of either v or B, where the calculation and communication terms of the
cost function are of comparable magnitude. The location of this special region of
random task %raph instances can be roughly obtained by the following expres-
sions: v, = fizp) and 83, = (-7—1—]? [6]. The convergence data in Fig. 3 correspond
to such a specific B8 value for v = 0.2, Compared to 3 values outside this region,
the difference between cluster and uniform crossover is most pronounced and
therefore most difficult to optimize. The ratio of the convergence steps to reach
the same cost value between uniform and cluster crossover js approximately 3.3
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for this specific instance. Though less dramatic, outside this special region, the
werage convergence behaviour of the cluster crossover is also superior compared
isits uniform variant. For Figs. 6 and 7, the J parameters have been chosen
wch that they are near this special region. Also for large task graphs (n = 128
ad n = 200) and more processors (P = 16) the cluster crossover increases the
mnvergence of the average cost of the best individual.

Besides the algorithmical convergence aspects, it is of course important to
wnsider the additional overhead associated with the cluster crossover. One would
epect severe computational costs for constructing sub clusters from the task
gaphs. However, the extra overhead is only manifest in additional memory re-

qurements. Only an extra data structure of size n%, which contains for each
task a list of task numbers associated with cluster sizes up till n — 1, is needed.
The cluster crossover operates on this data structure to construct clusters of
arhitrary sizes.

§ Conclusions and Future Work

I this work we have presented a new structured crossover operator for GA that
wan be applied to the Task Allocation Problem. It has been shown that this
tovel genetic operator outperforms the standard uniform crossover convergence
nte in a broad spectrum of task graphs. The initial convergence rate of the
duster crossover is faster than that of the uniform crossover operator. Given
the fact that the computational overhead of the cluster crossover is negligible, it
¢an be applied as a fast method for obtaining sub-optimal solutions to the task
llocation problem. In the future we intend to loosen restrictions on the TAP in-
sances, which are still present in this current study. The target parallel machine
topology, for example, has been constrained to fully connected communication
getworks. Also, the task graphs are defined to model parallel applications with
gobal communication patterns. Hence, we will study the effect on both arbitrary
machine topologies and task graphs with communication ranges varying from
maximally local to maximally global. It would be interesting to know whether
the same structured recombination could also be applied to other graph related
optimization problems.
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