
An interaction framework for VR and AR applications

M. Scarpa R.G. Belleman

Section Computational Science
University of Amsterdam

{mscarpa|robbel}@science.uva.nl

Keywords: Virtual Reality, Augmented Reality, UIMS, human computer interaction

Abstract

The implementation of interaction techniques in
Virtual Reality (VR) and Augmented Reality (AR)
applications still poses a considerable challenge for
developers. There are few tools, conventions and
standards to rely on. This paper presents the design
of a framework aimed at the separation of interaction-
specific and domain-specific functionality of VR/AR
applications. The goal is to alleviate the develop-
ment of interaction techniques by providing generic,
re-usable components.

1 Introduction

Interaction paradigms for VR and AR have not un-
dergone a comparable process of standardization that
resulted in today’s common WIMP paradigm and the
standard user interface (UI) elements for the desktop
[1]. One explanation for this is the highly heteroge-
neous nature of VR and AR setups.

As a consequence, there is a high degree of in-
compatibility between the various setups. VR/AR ap-
plications are therefore designed and developed with
one particular setup in mind and are rarely ported to
another. This is sometimes due to the high costs of
adjusting the code to the differences between setups.
Additionally, different environments present some-
times radical differences in the interaction possibili-
ties offered to the end user, which introduces incom-
patibilities in the operation of the system next to in-
compatibilities in the application code.

This paper proposes a framework that aims at sep-
arating the domain-specific functionality of a VR/AR
application from the interaction-specific functionality.
It introduces an additional layer that handles all input
data from the user. The obtained data is processed in a
bipartite data-flow network made of components that
together implement the interaction.

2 Related Work

The separation of interaction-specific and domain-
specific functionality has been advocated in the
work related to User Interface Management Sys-
tems (UIMS) [2]. A UIMS mediates the interac-
tion between the user and an application by satisfy-
ing requests from both user and application. This
is achieved through a three-tiered model: the lowest
level isolates physical devices, which are then man-
aged in the middle layer as logical devices. On the
top level, an interaction management system contains
descriptions of the dialogue sequences that describe
the interaction between user and application [2].

Research on UIMS has been extensive. Among the
more closely related work is that of Jacob et al. [3], in
which state diagrams and Petri-nets are used to model
interaction in VR environments. In [4] the develop-
ment and adaptation of reality-based interfaces based
on the token and constraint paradigm [5] is discussed.
The author advocates dynamically changing execu-
tion environments and concurrent interaction across
various devices.

Another direction is explored in [6], in which users
of ubiquitous AR systems are allowed to adapt the
system to their preferences using a concept called “in-
teraction management”. Similarly, Jacob addresses
the runtime adjustment of the interface between UI
and application to improve accessibility [7].

In the Alpha UIMS the separation between
interaction-specific and domain-specific functionality
is supported but not enforced by a component-based
design, in which different “agents” communicate with
each other, implementing various parts of the applica-
tion [8]. These agents are organized through a “di-
alogue”, specified using a separate language called
“slang”.

Many models have been developed for the design,
prototyping and evaluation of user interfaces, both for
common desktop environments, as well as more com-
plex settings. In [9], the authors present an approach



wherein concrete interaction objects are abstracted
into counterparts that capture only generic features.
This approach allows no run-time adaptation and is
aimed at the evaluation of virtual user interfaces.

Navarre et al. developed a formal description for
interaction in virtual environments that addresses the
variety of available input devices [10].

2.1 Scope of this work

This paper addresses several issues where the re-
lated work falls short, as described next.

Meyers et al. identify two reasons for the lack of
success of UIMS [1]. First of all, the often strict
separation between interaction-specific and domain-
specific functionality has often been perceived as a
hindrance rather than an aid to the design and im-
plementation tasks. Secondly, UIMS were originally
aimed at resolving the issues of user interface design
for the emerging desktop systems, but through the
standardization of the user interface elements in that
environment, the need for UIMS disappeared. It is
unlikely that a similar standardization of user inter-
face elements will occur in VR/AR, which warrants
the renewed investigation into UIMS for VR/AR ap-
plications.

Many interaction techniques exist in VR/AR today,
both for generic as well as for very specific tasks [11].
Unfortunately, very little approaches exist that ab-
stract them into generic, re-usable components. Most
of the techniques available today are implemented as
part of more complex applications that are tied to par-
ticular hardware configurations. The abstraction of
interaction techniques into generic, re-usable compo-
nents not only allows the creation of a whole library of
interaction techniques [12, 13], but also a way to eas-
ily replace one technique with another. This makes it
possible to easily replace techniques unsuitable for a
given setup, as well as to compare and evaluate the
use of different techniques in a particular scenario.
Additionally, it allows the users to specify preferences
about which techniques they want to use.

Additionally, specific interaction techniques can
be tightly related to a particular domain, rendering
it much more difficult – and maybe even counter-
intuitive – to generalize them. Such interaction
techniques might take harm from a separation from
the domain-specific functionality instead of profiting
from it. The application developer should be able
to decide which functionality is domain-specific and
which is not, effectively allowing for the framework
to adjust to the developer instead of forcing the re-
verse.

Interaction in VR and AR applications comprises
both discrete and continuous, sequential and concur-
rent events [3]. Most approaches found in literature
cope with this difference by using two separate mod-

els, such as Petri-nets for the continuous aspects and
state diagrams for the discrete aspects [3]. The use of
two different models introduces additional complex-
ity in the description of interaction, which makes the
adoption of such systems difficult.

In [14] the authors point out that there are indi-
rectly related aspects that may be significant for the
performance of interaction techniques. Especially the
feedback of the system is important for the successful
use of interaction techniques. This stands in contrast
with the general concept of strictly separating input
and output functionality, as advocated by many UIMS
implementations.

3 Architecture

The proposed architecture consists of a framework
that allows the application developer to “request” in-
teraction capabilities for the end user, e.g. “the user
must be able to change the position of this object”.
When the application is deployed, the framework
must accommodate all the requests of the application.
To achieve this, a data-flow network is constructed,
such that the requested functionality can be obtained.
The data-flow network consists of various objects and
sub-nets that are taken (possibly automatically) from
a predefined library or provided by the application de-
veloper – or even the maintainer of the system.

The following sections describe the elements of the
proposed framework architecture in more detail.

3.1 Data Representation

All data processed by the components of the data-
flow network is represented by subclasses of the ab-
stract class Value. This class defines only the most
basic requirements for a Value object:

name A human-readable string describing this value.
The purpose is to add semantic information to
the value, such that a user can understand what
this value represents. For example, the object
representing the vertical position of a mouse
pointer would be called “vertical mouse posi-
tion”.

value The actual value. This is undefined in the ab-
stract class.

compatibility operator Verifies if two Value objects
are semantically compatible.

The compatibility of two Value objects is defined
as the expressive equivalence of the two beyond sim-
ple type-compatibility. For instance, a float value with
a range between 0.0 and 1.0 is not compatible with a
value with a range between -1.0 and 1.0, since it can-
not express values between -1.0 and 0.0. This same
value is though compatible with a value of range [0.0,



0.5]. Furthermore, two lists of Value objects are de-
fined as being compatible if every element with index
i of the first list is compatible with the corresponding
element at index i in the second list.

Concrete subclasses of the Value class are expected
to extend the abstract base class adding any attributes
necessary to properly characterize the value repre-
sented. This characterization is important to assert
the compatibility of the values generated by one com-
ponent and required by another component. The at-
tributes of a value are stored together with the actual
data in order to allow access to these attributes any-
time during the processing of the data.

3.2 Data-flow Network

The whole process of interaction is modeled using
a data-flow network that represents the flow of data
from (logical) input devices to either interaction tech-
nique components or call-back functions of the appli-
cation. This approach was chosen, because this con-
cept is widely used in many tool kits and is therefore
familiar to many developers. The data-flow is orga-
nized in a directed, bipartite graph consisting of two
classes of objects: processing objects and connection
objects.

Processing objects represent any kind of operation
that uses data as input and/or output. Every logical
input device or interaction component is represented
as a special processing object in the data-flow graph.
This class of objects is characterized by the following
features:

identifier The identifier describes the functionality
of the object. For components implementing
interaction techniques, this identifier specifies
what interaction is implemented. This is used
when the requirements of an application are
matched with the elements of the data-flow net-
work. For input devices, this identifier specifies
that the object is an input device.

input signature The input signature specifies a list
of inputs required by this object. Every item in
this list is semantically seen as one single input,
which can either be a Value object or a list of
Value objects. The order of the elements in the
input signature describes the order in which the
data has to be provided to the execute method
(described shortly).

output signature The output signature specifies
what outputs the technique provides. It is repre-
sented in the same fashion as the input signature.

execute method This method causes the execution
of the functionality of this object. It takes as ar-
gument a list as defined by the input signature
and computes a list consisting of the values as

specified by the output signature. These values
can then be accessed using the output retrieval
method.

output retrieval method This method returns either
a list of values matching the output signature
specification or NIL, if no output is available.
This distinction is crucial, because a connection
object will only transfer data from its sources
to its destinations if all the sources are able to
provide data. For convenience reasons, a second
output retrieval method could be added, that only
returns specified outputs instead of returning all
of them.

Connection objects manage the flow of data be-
tween processing objects. A connection object reads
data from one or more processing objects and for-
wards this data to the execution method of one or
more processing objects. The following attributes
characterize a connection object:

sources A list of processing objects from which the
connection object reads data using their output
retrieval method. The processing objects that
provide data to a connection object are called the
“sources” of the connection object.

destinations A list of processing objects to which
the connection object passes the read data call-
ing their execution methods. The processing ob-
jects that receive data from a connection object
are called the “destinations” of the connection
object.

mapping The mapping defines how the outputs of
the sources are mapped onto the inputs of the
destinations. Every output of all sources is re-
lated to zero or more inputs of all destinations.
A mapping is not required to be either injective
nor surjective: inputs from any source can be re-
layed to one or more destinations, or none at all.
This is useful e.g. for the conversion of discrete
to continuous events (see Section 3.6).

Please note that the data passed through by a con-
nection object is in no way modified by the connec-
tion object. Data is only processed by a processing
object. If the output of a processing object is not com-
patible with the required input of another processing
object, they cannot be connected directly through a
connection object. Also, a connection object does not
perform any kind of buffering. If such functionality is
required, special processing objects that implement it
must be used.

3.3 Logical Input Devices
There are various subclasses of processing objects,

derived from the abstract class PObject. Physical in-
put devices are abstracted into logical devices, which



are represented by subclasses of the Device class, an
abstract subclass of the PObject class. This approach
has been chosen to offer an easy means of extending
the range of supported devices. To add support for a
new device, it is sufficient to create a new subclass
of the Device class that implements the necessary
driver-calls. By creating implementations that sup-
port hardware-abstraction libraries like VRPN [15], a
wide range of devices can easily be added to the list
of supported hardware.

The abstract Device class does not extend the func-
tionality of the abstract PObject class. Its existence
is purely semantic, to group all logical device imple-
mentations in a separate branch of the class hierarchy.
The input signature of such objects is usually empty,
since instances of this class are supposed to provide
data from the actual hardware they represent. The out-
put signature, instead, provides the data. It is impor-
tant to note that the way a device presents its data is
ambiguous. A six degree of freedom tracking device
can present its data as a list of six separate values, as
only one tuple (consisting of six values), as two tuples
(e.g. each containing three value), etc. It is though
advisable to adopt a convention for the way devices
present their data to the framework. Such a conven-
tion can be used to enforce certain aspects onto the
networks created, allowing the quantitative distinc-
tion between analogous network configurations (see
discussion in Section 5).

3.4 Interaction Techniques

Another group of subclasses of the PObject class
are those implementing basic interaction techniques,
like selection and manipulation.

Using a data-flow network to represent the inter-
action allows to represent complex interaction tech-
niques as sub-nets of more basic techniques. In-
teraction techniques are often categorized using tax-
onomies, whereby tasks are divided into multiple sub-
tasks [14, 11]. This structure can be entirely repre-
sented in the data-flow network, enhancing the re-
usability of the sub-components of a complex interac-
tion technique and facilitating the design of new, com-
plex techniques. The composition of complex tech-
niques is discussed in more detail in Section 4.3.

3.5 Callback Functions

To give the application developer free choice about
how to implement specific functionality, the presented
framework offers the possibility to register callback
functions that are called by special processing objects
in the data-flow graph. In this case, the application
specifies a callback function and an input signature.
A special processing object is then instantiated, that
takes over the specified input signature and passes the
input data it receives to the given callback function.

3.6 Discrete and Continuous, Sequential
and Concurrent Events

In [3] the authors highlight that interaction in
VR/AR applications often comprises both discrete
and continuous events, sequential or concurrent. The
proposed model supports all these modalities through
the special characteristics of the connection objects.
Connection objects always pass their input data to
their destination processing objects – if the data is
available. This models continuous events, in the
case that all the sources of the connection object are
continuously providing data. Alternatively, discrete
events are achieved, if at least one of the sources only
provides data at discrete moments in time.

The modeling of interaction in a data-flow network
also supports the description of concurrent events, as
there is no limitation to how many separate paths the
network can contain. One instance can be made of an
arbitrary number of sub-graphs.

3.7 Feedback to the User

In order to ensure usability, interaction techniques
must provide sufficient feedback to the user. The ef-
fects of user interaction should be reflected in the state
of the application with as little delay as possible. To
allow this, the presented architecture offers process-
ing objects access to the application’s scene graph.
Special processing objects that provide lists of scene-
graph objects can be made available e.g. by the appli-
cation. This enables not only the complete implemen-
tation of an interaction technique outside the applica-
tion itself, but it also allows interaction techniques to
directly influence objects seen by the user, providing
immediate feedback.

3.8 Graph Representation

The composition of interaction techniques and the
arrangement of data-flow graphs can be expressed
both programmatically using the provided API, but it
can also be represented graphically as a directed, bi-
partite graph. This has the advantage that a developer
can define the interaction-specific functionality that is
not provided directly by the framework in the same
fashion as the rest of the application. Alternatively,
end users can adjust the interaction network easily to
match their preferences using a visual editor to edit
the data-flow graph.

The creation of a suitable data-flow network that
satisfies the requirements of a given application can
be done once for all users of the system by the
system maintainer, but it is possible that there are
multiple possible configurations. Therefore, a user
might be able to choose between equal alternatives.
These choices can consists of pre-defined configura-
tions for the less experienced users, but more experi-



enced users can also edit the data-flow graph directly,
using a visual editor.

3.9 Network Execution Model

For the execution of a given data-flow network, a
notification mechanism is introduced. A processing
object sends a notification to all connection objects
reading from it, signaling the availability of data. Ev-
ery connection object maintains a status array describ-
ing the availability of data for each of its sources.
Whenever a notification arrives, the connection ob-
ject marks the corresponding field in the status array
as true. Only if all fields are true, it resets the array
and passes on the data.

4 Implementing User Interaction

This section discusses the implementation of user
interaction techniques using the proposed framework.

4.1 Notation Conventions and Basic
Constructs

The easiest way to represent the described data-
flow networks is through diagrams. In the following
sections, the data-flow network examples discussed
will be represented graphically as bipartite, directed
graphs. Processing objects will be represented by
ovals, while connection objects will be represented
as thin rectangles. The text inside an oval describes
the type (between pointy brackets) and/or the name
of the object (between double quotes). An excep-
tion to this rule is made for “conditional filters” (see
Section 4.1.1). The text inside ovals depicting these
objects represents the condition under which the re-
ceived data is forwarded. A connection object’s map-
ping is represented graphically through the vertical
correspondence of inbound and outbound arrows.

The following sections discuss some basic con-
structs often used in data-flow networks as presented
here.

4.1.1 Conditional Connections

It can be useful to create connections between pro-
cessing objects such that they are only active under
certain conditions. To achieve this, special processing
objects called “conditional filters” are used in com-
bination with the particular characteristics of connec-
tion objects.

Conditional filters are special processing objects
that take a given input and test it on a given condition.
Only if the condition is met, the input is passed on
as output. Adding such an object to the sources of a
given connection object results in stalling the connec-
tion as long as the condition of the conditional filter is
not met – even if all other inputs are available.

4.1.2 State Transitions

Interaction techniques often distinguish different
states. Depending of the current state, the actions
of the user have different meanings. In terms of the
presented data-flow networks, states are used to ac-
tivate and deactivate certain connections. To model
this, another special processing object type is used:
“buffers”.

Buffers are special processing objects that remem-
ber the last received input and provide it continuously
as output. Using a buffer object as the state variable,
it is possible to implement state-persistence. Further-
more, connecting a buffer to a conditional filter can
be used to render connections active only for certain
states.

4.1.3 Event Conversion

Discrete events can easily be converted to continuous
events using a buffering objects to remember the last
data obtained and output it continuously. In similar
fashion, continuous events can be converted into dis-
crete events in two ways. The first option is to use
conditional filters to restrict the continuous output.
The second option is to use the characteristic of a con-
nection object to only forward data once all its sources
have data available. This way, the continuous output
is blocked until another, discrete output is available.

4.2 Examples

The following sections present some examples for
the implementation of common interaction techniques
using the proposed framework.

4.2.1 Pointing Selection with a Wand

A wand consists of a 6DoF tracker with some buttons
attached. One of the most popular class of selection
techniques used in conjunction with a wand is “point-
ing selection”: a virtual ray extends from the front tip
of the wand and objects intersecting with this ray are
selected when the user presses a button.

To model this behaviour in a data-flow network,
the wand is represented as a logical device from a
subclass of the Device class. This object must pro-
vide the position and orientation of the wand, as well
as the state of all the attached buttons.

Another component must implement the selection
mechanism itself. This component requires three in-
puts: a position from where the ray is cast, a direction
into which the ray is projected and a list of objects that
can be selected. Using this data, it is possible to com-
pute ray-intersection with all selectable objects and
thus produce a new list of selected objects.

In this example, the wand is a continuous source of
data, which means that it constantly emits the current



position and orientation of the tracker, as well as the
state of all the buttons. Yet, the actual “act” of select-
ing an object is a discrete event that happens when
the user presses a certain button. To model this, the
continuous status-report of the button are converted
into discrete events. This is achieved using a condi-
tional filter. In this case, the criterion is that the status
of the button must be “pressed”, syntactically defined
through a symbolic constant.

Finally, a selection should be persistent, until the
user changes the selection (e.g. selecting another ob-
ject, or “de-selecting” through a selection of “noth-
ing”). A buffering object is used to store the results
of the selection. Figure 1 displays the resulting data-
flow network.

<Buffer>
"Selected
Objects"

<Pointing Selection>

<Device>
"Wand"

<List>
"Selectable

Objects"

=="pressed"?

Di
re

ct
io

nPosition

Lis
t o

f o
bje

cts

Button 1

List of objects

Figure 1: Pointing selection with a wand.

4.2.2 Complex Example: Positioning using a
Data-glove

This example discusses a common interaction tech-
nique used in combination with a data-glove input de-
vice. The user selects a virtual object by “grabbing”
it. The selected object will remain selected as long
as the gesture is retained. As long as the object is
selected, its position relative to the data-glove is pre-
served: the user moves the object by moving the hand
wearing the glove. Please note that for the sake of
brevity, rotation is left out in this example, although it
could easily be added, as described at the end of this
section.

The described interaction can be decomposed into
three parts: first, the selection is determined; second,
the relative position of the object in respect to the
data-glove is calculated upon selection; finally, the
object is moved as long as the object is selected.

An object is selected if it is within a given thresh-
old from the glove’s position when the user performs
the gesture “grabbing”. It would be a mistake to sim-
ply couple the proximity calculation to this gesture
recognition, because the selection should only occur
once. As soon as an object is selected, the interaction

paradigms change: movement of the glove is reflected
in movement of the selected object, while approach-
ing another object must not result in the selection of
that object as well.

To achieve this, a state-transition is introduced.
When the gesture performed by the user changes
from “not grabbing” to “grabbing”, the state changes
from “nothing selected” to “selection made”. This re-
flects the conflictual nature of continuous and discrete
events: a gesture is a continuous characteristic of the
data-glove, while the transition from one particular
gesture to another is a discrete event.

In addition to the discrete event of selection, there
is another discrete event caused by the user “releas-
ing” the selected object. For the sake of argument
we shall say that the user signifies the end of the
operation with a particular “release” gesture. If and
only if the “release” gesture is performed after the
“grab” gesture, the state changes again from “selec-
tion made” to “nothing selected”. In this case, the
coupling between the object’s and the glove’s posi-
tion must be interrupted.

Since the state is described by the currently per-
formed gesture, it is sufficient to store the gesture in a
buffer object to maintain the current state of the inter-
action.

The selection is computed by a dedicated filtering
object that takes as inputs a list of selectable objects,
a position and a proximity threshold.

The second step is achieved using another filtering
object. This object takes a list of objects and a posi-
tion in space and returns a list containing the distance
vectors of each object to the given position. Note
that the implementation of the previously mentioned
proximity selection object can make use of another
instance of this same class to perform its calculations.
The details of this are left out for brevity.

The distance vectors are then added to the glove’s
position to determine the new position of each object.
This is then applied in the final part, using another
processing object that takes a list of objects and a list
of positions and moves the objects to the given posi-
tions.

Note the use of an object representing an empty
list in Figure 2. This object is needed to “reset” the
buffer containing the list of selected objects when the
user “releases” the selection. If this was omitted,
the processing object that performs the positioning
could receive the previous selection as input param-
eter while the proximity selection is still busy calcu-
lating a newly performed selection.

Support for orienting the selected object can be
added by supplying a processing object capable of ap-
plying a given orientation to a given object, as well as
means to calculate and store the relative orientation
of the selected object – in respect to the glove – upon



=="grab"?

<Device>
"Glove"

<Gesture
Recognition>

<List>
"Selectable

Objects"

<Variable>
"Proximity
Threshold"

<Positioning>

<Proximity
Selection>

<Calculate
Distance>

<Add>

<Buffer>
"Selection"

<Buffer>
"Distance"

<Buffer>
"Previous
Gesture"

!="grab"?

=="grab"?

Po
sit

io
n

Fingers

Gesture

Li
st

 o
f o

bj
ec

ts

Value

Ge
stu

reGesture

Gesture

List of
objects

List ofpositions

List of
distance vectors

List of objects

=="grab"?

=="release"?<List>
"Empty"

Figure 2: Object positioning using a data-glove.

selection. All these operations are analogous to those
performed for the relative positioning of the object.

4.3 Composite Interaction Techniques

The composition of interaction techniques to
achieve more complex functionality can be ap-
proached from two opposite directions. The applica-
tion developer can either create the complex function-
ality inside the application, requiring the underlying
framework to provide the simpler components used.
Alternatively, the application can request the complex
interaction functionality entirely from the framework.
In the latter case, appropriate data-flow networks must
be put in place to accommodate the requirements of
the application. A new processing object can imple-
ment the complex technique by relaying parts (or all)
of its inputs to the other objects, thereby encapsu-
lating a sub-graph. This allows to organize complex
data-flow graphs into smaller sub-graphs, facilitating
their maintenance.

For example, consider the scaling of an object. To
keep this example simple, we will only consider uni-
form scaling. This functionality can be implemented
by means of a widget: a simple sphere is drawn at
a certain position and distance relative to the cen-
ter of the object. By manipulating the position of
this sphere, the user determines the scaling factor: if

the distance between the sphere and the center is in-
creased, the object becomes bigger; if the distance is
decreased, the object becomes smaller. Obviously, the
movement of the sphere must be constrained to one
axis.

The implementation of this functionality can be
achieved through the application itself. The appli-
cation specifies the sphere as an object that can be
moved (constrained to a certain axis relative to the ob-
ject). It further needs to register a callback function to
be notified whenever the user moves the sphere. This
callback function then queries the new position of the
sphere and calculates the distance to the object’s cen-
ter and consequently the scaling factor, finally apply-
ing the scaling.

Alternatively, the application can simply require
the functionality for an object to be scaled. In this
case, the framework mimics the same functionality as
described above: a scaling component scales a given
object by a given factor. One component calculates
the distance between the default position of the sphere
and the current one, in order to determine the scal-
ing factor. Another component transforms the posi-
tion of the sphere from world-coordinates into coor-
dinates relative to the object to be scaled. Finally, a
constrained positioning component allows the sphere
to be moved along a given axis. The sphere object
is part of the functionality and is therefore defined
and created in the framework, relieving the applica-
tion programmer of this task.

5 Conclusions and Future Work

The presented work is aimed at solving the issues
described in Section 2.1. The abstraction of interac-
tion techniques into a network of components allows
for re-usability of these components to implement
new techniques. The separation between interaction-
specific and domain-specific functionality is left open,
allowing the application developer to choose how to
implement which functionality. Continuous and dis-
crete events are described using the same concept of a
bipartite data-flow graph. Concurrent event handling
is possible through parallel paths in the graph. Sys-
tem feedback is achieved directly through the data-
flow graph, allowing for shorter delays and more com-
plete implementation of interaction-specific function-
ality within the concept of the graph. An additional,
graphical language is provided next to an API, allow-
ing for both a programmatic as well as a graphical
interface to the description of user interaction.

A first prototype of the presented framework has
been implemented. Various hardware setups are in
place to test the adaptability of the framework to vary-
ing configurations. A number of test cases are being
developed to verify the applicability of the presented
abstraction to various application scenarios.



Furthermore, the performance of the architecture
must comply with the requirements of typical VR/AR
applications. Existing interaction techniques will be
implemented using these paradigms to both assess the
feasibility of the presented approach, as well as to cre-
ate a library of components to aid the development of
new applications and interaction techniques.

The possibility to objectively compare different
data-flow networks using defined criteria will be re-
searched. A measure to qualitatively distinguish mul-
tiple solutions for the accommodation of the requests
of an application with a given set of input devices rep-
resents the first step towards the automatic generation
of such data-flow networks.

6 Acknowledgments

This work was carried out in the context of the Vir-
tual Laboratory for e-Science (VL-e) project1. This
project is supported by a BSIK grant from the Dutch
Ministry of Education, Culture and Science (OC&W)
and is part of the ICT Innovation program of the Min-
istry of Economic Affairs (EZ).

References

[1] Brad Myers, Scott E. Hudson, and Randy
Pausch. Past, present, and future of user inter-
face software tools. ACM Trans. Comput.-Hum.
Interact., 7(1):3–28, 2000.

[2] James J. Thomas and Griffith Hamlin. Graphical
input interaction technique (GIIT). SIGGRAPH
Comput. Graph., 17(1):5–30, 1983.

[3] Robert J. K. Jacob, Leonidas Deligiannidis, and
Stephen Morrison. A software model and speci-
fication language for non-WIMP user interfaces.
ACM Trans. Comput.-Hum. Interact., 6(1):1–46,
1999.

[4] Orit Shaer. A framework for building reality-
based interfaces for wireless-grid applications.
In CHI ’05: CHI ’05 extended abstracts on Hu-
man factors in computing systems, pages 1128–
1129, New York, NY, USA, 2005. ACM Press.

[5] Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Ja-
cob. Token+constraint systems for tangible in-
teraction with digital information. ACM Trans.
Comput.-Hum. Interact., 12(1):81–118, 2005.

[6] Otmar Hilliges, Christian Sandor, and Gudrun
Klinker. Interactive prototyping for ubiquitous
augmented reality user interfaces. In IUI ’06:
Proceedings of the 11th international confer-
ence on Intelligent user interfaces, pages 285–
287, New York, NY, USA, 2006. ACM Press.

1http://www.vl-e.nl/

[7] Robert J. K. Jacob. Open syntax: improving ac-
cess for all users. In WUAUC’01: Proceedings
of the 2001 EC/NSF workshop on Universal ac-
cessibility of ubiquitous computing, pages 84–
89, New York, NY, USA, 2001. ACM Press.

[8] Daniel Klein. Developing applications with the
Alpha UIMS. interactions, 2(4):48–65, 1995.

[9] Jean Vanderdonckt, Chow Kwok Chieu, Lau-
rent Bouillon, and Daniela Trevisan. Model-
based design, generation, and evaluation of vir-
tual user interfaces. In Web3D ’04: Proceedings
of the ninth international conference on 3D Web
technology, pages 51–60, New York, NY, USA,
2004. ACM Press.

[10] David Navarre, Philippe Palanque, Rèmi
Bastide, Amèlie Schyn, Marco Winckler, Lu-
ciana Porcher Nedel, and Carla Maria Dal Sasso
Freitas. A formal description of multimodal in-
teraction techniques for immersive virtual re-
ality applications. In Human-Computer Inter-
action - INTERACT 2005: IFIP TC13 Inter-
national Conference, pages 170–183. Springer-
Verlag GmbH, 2005.

[11] Doug A. Bowman, Ernst Kruijff, Joseph J.
LaViola, and Ivan Poupyrev. 3D User Inter-
faces: Theory and Practice. Addison Wesley
Longman Publishing Co., Inc., Redwood City,
CA, USA, 2004.

[12] Mark Green and Joe Lo. The Grappl 3D in-
teraction technique library. In VRST ’04: Pro-
ceedings of the ACM symposium on Virtual real-
ity software and technology, pages 16–23, New
York, NY, USA, 2004. ACM Press.

[13] Wai Leng Lee and Mark Green. Automatic lay-
out for 3D user interfaces construction. In VR-
CIA ’06: Proceedings of the 2006 ACM interna-
tional conference on Virtual reality continuum
and its applications, pages 113–120, New York,
NY, USA, 2006. ACM Press.

[14] Doug A. Bowman and Larry F. Hodges. For-
malizing the design, evaluation, and application
of interaction techniques for immersive virtual
environments. Journal of Visual Languages and
Computing, 10:37–53, 1999.

[15] Russell M. Taylor II, Thomas C. Hudson,
Adam Seeger, Hans Weber, Jeffrey Juliano, and
Aron T. Helser. VRPN: a device-independent,
network-transparent VR peripheral system. In
VRST ’01: Proceedings of the ACM sympo-
sium on Virtual reality software and technology,
pages 55–61, New York, NY, USA, 2001. ACM
Press.


