
Using HLA and Grid for Distributed Multiscale

Simulations

Katarzyna Rycerz1, Marian Bubak1,2, Peter M.A. Sloot 2

1Institute of Computer Science, AGH, al. Mickiewicza 30,30-059 Kraków, Poland
2Faculty of Sciences, Section of Computational Science, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{kzajac | bubak }@agh.edu.pl, sloot@science.uva.nl

phone: (+48 12) 617 39 64, fax: (+48 12) 633 80 54

Abstract. Combining simulations of different scale in one application
is non-trivial issue. This paper proposes solution that supports complex
time interactions that can appear between elements of such applications.
We show that High Level Architecture, especially its time management
service can be efficiently used to distribute and communicate multiscale
components. Grid HLA Management System (which was presented in
our previous work [10]) is used to run HLA–based distributed simula-
tion system on the Grid. The example application is build from simula-
tion modules taken from Multiscale Multiphysics Scientific Environment
(MUSE)[8], which is sequential simulation system designed for calculat-
ing behaviour of dense stellar systems like globular clusters and galactic
nuclei.

Keywords: multiscale simulation, Grid computing, HLA, distributed
simulation

1 Introduction

Multiscale simulations is a very important and interesting field of research. Ex-
amples include approach to create multiphysics model of capillary growth [11]
or modeling colloidal dynamics [3]. Another example is Multiscale Multiphysics
Scientific Environment (MUSE)[8] for simulating dense stellar systems like glob-
ular clusters and galactic nuclei. The MUSE currently consists of the Python
scheduler and three simulation modules of different time scale: stellar evolution
(in macro scale), stellar dynamics (nbody simulation - in meso scale) and hydro
dynamics (simulation of collisions - in micro scale).

Combining simulations of different scale in one application is a complex and
non-trivial issue [4, 5]. In particular, it requires advanced and flexible time man-
agement techniques (e.g. ability of joining together simulations of different inter-
nal time management). From that point of view, it would be useful to adapt one
of the existing solutions suited for distributed interactive simulations that can
fulfill this requirement. One of the important standards is High Level Architec-
ture (HLA) [6] that provides various services needed for this kind of applications

such as time management with the ability to connect time-driven and event-
driven as well as optimistic and conservative simulations together. It also takes
care of data distribution management and allows all application components to
see the entire application data space in an efficient way. There are many imple-
mentations of open source HLA standard as well as its closed source [12]. In this
paper we show, how multiscale simulation can benefit from HLA time manage-
ment services. As example, we use simulation modules from MUSE environment.

Another important aspect worth to be addressed is the ability of flexible and
transparent creation of distributed multiscale simulation system according to
user needs. This issue include requirement of interoperability, composability and
reusability of exiting models created by other researchers. For this purpose we
propose to use Grid technology as it is oriented towards joining geographically
distributed communities of scientists working on similar problems - this will
allow users working on multiscale simulations to more easily exchange the models
already created. Therefore, the attempt to integrate HLA with new possibilities
given by Grid is a promising approach useful for multiscale simulations with time
management supported by HLA. As there is already much work on improvements
of HLA functionality regarding conditions in Grid environment (a good example
is the implementation based on Grid Services [9]), we are not planning to develop
our own implementation. Instead, we would like to show, how using HLA on the
Grid can be beneficial for multiscale simulations. To run the simulation we are
using Grid HLA Management System (G-HLAM) described in [10], where you
can also find detailed analysis of challenges of integrating HLA with the Grid.
In the future, we also plan to use component approach to extend support for
composability of simulation models.

This paper is organized as follows: in Section 2 we briefly describe HLA
time management, in Section 3 we analyze the typical time interactions between
multiscale components basing on MUSE modules [8]. In Section 4 we describe
our first attempts of running HLA–based distributed multiscale simulation on
the Grid and the performance results. In Section 5 we describe conclusions and
plans for future work.

2 Overview of time management in HLA

The High Level Architecture (HLA) standard [6] defines an infrastructure for
developing distributed interactive simulations. In HLA terminology each com-
ponent of a distributed simulation is called a federate and can form federation
with other federates. In HLA, time management is concerned with the mecha-
nisms for controlling the advancement of each federate along the federation time
axis. The perception of the current time may differ among participating feder-
ates. So called regulating federates regulate the progress in time of federates that
are designated as constrained. A federation may be comprised of federates with
any combination of time management models. Regulating federates are able to
send events or data objects with time stamps and constrained federates are able
to receive such objects in time stamp order. The maximal point in time which

the constrained federate can reach at certain moment is calculated dynamically
according to the position of regulating federate on the time axis.

The constrained federate can ask HLA runtime infrastructure to proceed to
to the next point in time calculated by adding time step to the current time (for
time–driven simulations) or calculated as the time of the next event received
(for event driven simulations). Additionally, optimistic federates can also ask to
receive all of the events that have been sent in the federation execution regardless
of the time-stamp ordering. The messages that are received with a time-stamp
less than messages already sent may invalidate the previous messages. In this
case, HLA provides retraction mechanism that can be used.

3 HLA support for types of time interactions in

multiscale simulations

We have adapted three simulation modules of different time scale taken from
MUSE [8]: stellar evolution (in macro scale), stellar dynamics (nbody simula-
tion - in meso scale) and hydro dynamics (simulation of collisions - in micro
scale).

1

2

trigger

data

1

2

3

4

data

data

data

evolution dynamics

collision

.

Fig. 1. Multiscale sim-
ulation elements and
their interactions

The main multiscale simulation elements are shown
in the Fig 1. It shows two steps of evolution and four
steps of dynamics (the number of steps is chosen for
simplicity - actually there are more steps of dynamics
within time of one evolution step). Simulation of col-
lisions is seen by evolution and dynamics as a point in
time. Collision is triggered by dynamics and data are
sent from collision to both dynamics and evolution.
Apart from that, evolution sends data to dynamics.
We identified three needed types of time interactions
between multiscale elements.
Meso scale triggers micro scale and waits for

the results. In simplest case (shown in the Fig.2)
simulation of stellar dynamics (meso scale) can detect
the situation when two stars become close. Then, the
collision simulation (micro scale) should be performed
(triggered). As the collision takes time in smaller scale then dynamics and the
computed data is sent from micro scale to meso scale, the dynamics should wait
as the collision finishes.
Macro scale and meso scale running concurrently - conservative simu-

lation. In this case (shown in the Fig.3), evolution (macro scale) and dynamics
(meso scale) can run concurrently. The data are sent from macro scale to meso
scale as star evolution data (change of star mass) is needed by dynamics. No
data is needed from dynamics to evolution . Single step of dynamics simulation
is shorter in terms of simulation time units than that in evolution, so it needs to
take more steps to reach the same point of time. Also, complexity of the single

collision

3

4

dynamics

trigger

data

4

3

2

1

dynamics

collision dynamics1

2

wallclock time

simulation time

.

Fig. 2. Interaction between dynamics and collision

step of dynamics (and related execution time) is greater then this of evolution.
Therefore, there is less probable that dynamics simulation will frequently wait
for its data until evolution reaches next step. As shown in Fig.3, point A1 is
earlier on wallclock time axis than point B1 (for simplicity in the Fig.3 steps
of both simulations are equal. In real experiment, which is described later in
Section 4, dynamics part have to calculate above 1000 simulation steps to get
to point B1, what can take even 25 seconds of wallclock time, while evolution
performs one step to get to point A1 in 1.1 milisecond.) Therefore, we propose
the conservative type of interaction between these two simulations as it allows
to run two simulations concurrently and should not generate frequent delays
idle time of waiting simulation. Also, in optimistic solution the whole state of
dynamics would have to be rolled back in case the evolution was late as data
sent by evolution impact the whole dynamics simulation.
The simulation system has to make sure that dynamics will get update from

1

2

wallclock time

simulation time

1

2

3

4

1

2

A1 B1

evolution dynamics

A1 − point in time, when evolution sends data to dynamics
dynamicsevolution

1

2

3

4

data

data

B1 −maximum time, when dynamics should receive data
 (if not, it should wait for data)

calculation time (wallclock time)
for simplicity, single both simulations steps have equal

.

Fig. 3. Interaction between evolution and dynamics

1

2

data

collision

wallclock time

simulation time

1

2

A2
B2

rollback

evolution

collision

A2 − point in time, when collision sends data to evolution
B2 −maximum time, when evolution should receive data

C2

evolution

B2’

 (if not, it should rollback from C2 to B2’) .

Fig. 4. Interaction between evolution and collision

evolution before it actually passes the appropriate point in time. The time man-
agement mechanism of regulating federate (evolution) that controls time flow in
constrained federate (dynamics) could be there very useful. The maximal point
in time which the constrained federate can reach at certain moment is calculated
dynamically according to the position of regulating federate on the time axis.
Macro scale and micro scale running concurrently - optimistic simu-

lation. In this case (Fig.4), the collisions simulation (micro scale) impact part
of evolution data (macro scale). The start time of collision is independent on
evolution. Collision means that the set of simulated stars changes (two stars
disappear, and one star of different mass appears in their place). In the case the
evolution already passed the point of time of collision (e.g. in the Fig.4 point A2
is later then B2 on the simulation time axis), it has to rollback (in the Fig.4 the
evolution has to rollback from point C2 to B2’)
As the data from micro scale impacts only part of macro scale simulation (the
evolution of each star is calculated independently of other stars), the optimistic
simulation can be a reasonable solution. HLA time management [6] offers also
support for this kind of simulations - e.g. ability to check messages with future
time stamps and retract messages that were sent basing on the future data.
Interaction summary. All presented types of time interactions have different
features. In the first and second interaction, the data flow effects whole receiving
simulation, while in third case only a part (evolution calculates every star sepa-
rately, so data from collision does not have effect on calculations of not colliding
stars). The first type of interaction is sequential (dynamics triggers new colli-
sions and waits for the results), while the other two are parallel: second one is
conservative and third one is optimistic. In HLA all forms of time management
may be linked together and conservative simulations can interact with optimistic
simulations. Therefore, it allows to link three scenarios of time interaction de-
scribed above in the natural way and is a good choice for this kind of complex
simulation system.

4 HLA–based distributed MUSE on the Grid

G-HLAM. In our previous work, we developed G-HLAM system that allows
for efficient execution of HLA–based applications on the Grid [10]. One of the
main goals was to support HLA legacy applications, so the actual communication
between simulation elements (federates) are done through HLA communication
bus. However, management of the application (performance monitoring and mi-
gration) is done on the Grid Services level. The group of main G-HLAM services
consists of a Broker Service which coordinates management of the simulation, a
Performance Decision Service which decides when the performance of any of the
federates is not satisfactory and therefore migration is required, and a Registry

Service which stores information about the location of local services. On each
Grid site supporting HLA there are local services for performing migration com-
mands on behalf of the Broker Service as well as for monitoring of federates and
benchmarking. The HLA–Speaking Service is one of the local services interfacing
federates running on its site to the G-HLAM system.
Performance results. We have used G-HLAM for running HLA–based dis-
tributed multiscale application on the Grid. For this experiment we have cho-
sen two modules dynamics and evolution to show second type of time interac-
tion described in Section 3 (macro scale and meso scale running concurrently -
conservative simulation). This experiment is good example of using HLA time
management features, when one simulation controls time of the other. In our ex-
periment, we compared performance of this modules when running them firstly
in legacy MUSE environment and secondly as HLA–based distributed simula-
tion on the Grid. The experiments were performed on DAS2: legacy MUSE and

action average, sec σ, sec

Actions independent on simulation steps number
(HLA–based distributed multiscale on the Grid)

job submission (GRAM and local job manager) 15.2 1

HLA initial actions 7.3 1.1

HLA quit actions 0.07 1.1

Actions dependent on simulation steps number
(Legacy MUSE)

dynamics 45.8 0.1

evolution 0.001 0.00005

update from evolution to dynamics 0.061 0.001

total loop time 45.9 0.2

Actions dependent of simulation steps number
(HLA–based distributed multiscale)

dynamics 49 3

synchronization with evolution 0.016 0.001

total loop time 49 3
Table 1. Comparison of time of actions for legacy MUSE and for HLA–based multiscale
simulation on the Grid (sum of 10 steps)

dynamics part of HLA application was run at grid node at Leiden, evolution
part of HLA application was run at Delft and RTIexec HLA control process
was run at Amsterdam. All grid nodes have the same architecture (clusters of
two 1-GHz Pentium-IIIs nodes connected with internal Myrinet-2000 network).
Fast ethernet (10Gbps) is used as the external network between Grid nodes.
The application setup and actual submission of HLA components was done by
G-HLAM (with Globus Toolkit 3.2 and HLA RTI-1.3NGv5). We have calculated
average values from 10 runs. The actions independent of number of simulation
steps (time of submission, HLA setup and finalizing functions) are shown in the
upper part of Tab.1. The rest of Tab.1 shows execution time of actual simula-
tion loops. The experiments were done on 100 star system (first 10 simulation
steps). The middle part of Tab.1 shows performance results of legacy MUSE
environment. It is sequential execution consisting of: running dynamics, run-
ning evolution and updating dynamics from evolution in each step. The lower
part of Tab.1 shows the experiment results with the same modules, but running
concurrently on the Grid and using HLA time management. As we observed,
execution time of evolution is much shorter then dynamics, so it does not de-
lay its execution (although dynamics is controlled by evolution as described in
Subsection 3). As both modules were running concurrently and evolution part
finished quicker, we have shown results of the longer part (dynamics). The re-
sults include actual calculation time (which are similar to legacy execution) and
synchronization time (receiving data from evolution, getting permission to ad-
vance simulation time). It should be noted that synchronization (which in fact
is the most important overhead of HLA distribution as it is repeated in the
loop) does not take much time, because evolution is quicker and sends data in
advance, so dynamics has only to process what was delivered before. However,
as the evolution execution time is much shorter then dynamics, the results of
legacy and distributed simulations are comparable as the dynamics time totally
dominates sequential execution. We can draw a conclusion that the distributed
solution would be beneficial for modules that are both significant for sequential
execution time, but with regulating module (in our case evolution) quicker then
constrained module (in our case dynamics).

5 Conclusions and future work

In this paper we have shown how multiscale simulations can benefit from HLA,
especially its time management facility. We have described and analyzed the
typical the time interactions between multiscale components basing on modules
taken from MUSE [8], which originally is sequential simulation environment
designed for dense stellar systems. For the experiment we have chosen one of
the described types of time interaction as it is the most typical example of
using HLA time management features, when one simulation controls time of the
other. However, we plan to add also other interaction types in the near future.
We have shown how the multiscale components can be distributed using HLA
and benefit from it. G-HLAM system was used to run the simulation on the Grid

which allows for better usage of available resources needed by such applications.
The performance results have shown that overhead of HLA–based distribution
(especially its repeating part of synchronization between multiscale elements) on
the Grid is small and can be beneficial for multiscale simulations.

The results presented in this paper are a good starting point for building Grid
component framework for HLA–based simulations that will support a user in
dynamic set up of multiscale simulation system comprised of chosen components.
Acknowledgments The authors wish to thank Simon Portegies Zwart for valu-
able discussions on MUSE and Maciej Malawski for discussions on component
models. The support from Polish Foundation for Science (FNP) is acknowledged.
This research was also partly funded EU IST Project CoreGRID and the Polish
State Committee for Scientific Research SPUB-M.

References

1. R. Armstrong et al. The CCA component model for high-performance scientific
computing. Concurr. Comput. : Pract. Exper., 18(2):215–229, 2006

2. X. Chen, W. Cai, S. J. Turner, Y. Wang: SOAr-DSGrid: Service-Oriented Ar-
chitecture for Distributed Simulation on the Grid. Principles of Advanced and
Distributed Simulation (PADS) 2006: 65-73

3. W. Dzwinel, D.A. Yuen, K. Boryczko, Bridging diverse physical scales with the
discrete-particle paradigm in modeling colloidal dynamics with mesoscopic fea-
tures, Chemical Engineering Sci., 61, 2169-2185, 2006

4. A. G. Hoekstra, E. Lorenz, J-L. Falcone, B. Chopard, Towards a Complex Au-
tomata Framework for Multi-Scale Modeling: Formalism and the Scale Separation
Map, in Y. Shi et al. (Eds.): ICCS 2007, Part I, Lecture Notes in Computer Science
4487 (Springer), pp. 922-930, 2007.

5. A.G. Hoekstra, S. Portegies Zwart, M. Bubak, and P.M.A. Sloot, Towards Dis-
tributed Petascale Computing, in D. Bader (Ed.) Petascale, Computing: Algo-
rithms and Applications, Chapman & Hall / CRC Press, Taylor and Francis Group
(expected publication december 2007)

6. High Level Architecture specification - IEEE 1516
7. M. Malawski, M. Bubak, M. Placek, D. Kurzyniec and V. Sunderam: Experiments

with distributed component computing across grid boundaries. In Proceedings of
the HPC-GECO/CompFrame workshop in conjunction with HPDC 2006, Paris,
France, 2006

8. MUSE Web page http://muse.li/
9. K. Pan, S. J, Turner, W. Cai and Z. Li: A Service Oriented HLA RTI on the Grid

accepted by Principles of Advanced and Distributed Simulation (PADS) 2007
10. K. Rycerz, Grid-based HLA Simulation Support. PhD thesis, University of Ams-

terdam, June 2006, promoter P.M.A. Sloot, copromoter: M.Bubak.
11. D. Szczerba, G. Székely, H. Kurz: A Multiphysics Model of Capillary Growth and

Remodeling. in: in: V. N. Alexandrow, G. D. van Albada, P. M. A. Sloot, J. Don-
garra (Eds.), Proceedings of Computational Science - ICCS 2006, 6th International
Conference Reading, UK, May 2006, volume II, LNCS 3992, Springer, 2006, pp.
86-93

12. Wikipedia - list of HLA implementations
http://pl.wikipedia.org/wiki/High Level Architecture

