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1 Introduction

An important issue in parallel computing is the efficient distribution of a set of tasks (i.e.
data and instructions) over a set of processors. An optimal solution would be that each of
the processors is kept busy doing useful work as much as possible, while at the sametime
the communication between the processorsis minimized. Thisisequivalent to minimizing
theoverall executiontime of the set of tasks on aset of processors. The problem of mapping
a set of tasks onto a set of processors is known to be NP complete. Thisimplies that in
general itisnot possibleto find the optimal solutionwithin polynomial time by deterministic
methods such as recursive bisection.

For an efficient distribution of a collection of tasks over a collection of processors two
requirements are to be met. On the one hand a situation is desired in which the workload
is equally divided over the processors. When for a distribution only a few processors are
activewhiletherest isidle, the capabilities of a parallel computer are not fully utilized. On
the other hand the communication between the processors should be minimal. When alot
of communication has to take place between processors this will sow down the execution
of an application. Situations in which processors are frequently waiting for results from
other processors should be avoided.

For many parallel applicationsthe above mentioned requirements are conflicting goals.
Distributing tasks over alot of processors automatically involves communication between
the processors.

An extreme example of minimizing the communication is to map all tasksto a single
processor. Inthiscasethereisnocommunicationat all, but no parallelismisexploited either.
It istherefore necessary to find agood trade-off between the amount of communication and
calculation within the task mapping.

In general aprogram is a set of processes that have a partial ordering. The precedence
between these processes can be represented by an acyclic directed graph that connects the
processes (precedence or temporal processgraph). Theload balancing problemin general is
the following optimization problem: schedule the processes of the temporal process graph
on the processors of the parallel machine so asto minimize the overall execution time.

A data parallel algorithm is based on distributing the problem’s data items among the
processors. The algorithm consists of a sequence of cal culations, each of which is executed
by every processor on the data assigned to it. The values of variables that have been
modified in cal culations have to be communicated to the processorsthat need them asinput
tothe next calculation phase. For thissituation one can definethe load balancing problemin
asimpler manner: distributethe processes (or the corresponding data) among the processors
in order to minimize the execution time for one calculation phase. Thisis referred to as



the restricted load balancing problem. This means that the more general load balancing
definition is replaced by a series of smpler load balancing problems. This formulation
is essential in adaptive problems (where the data decomposition changes throughout the
program execution) where the precedence graph is not known in advance.

The SPMD (single program multiple data) programming paradigm is the framework
in which we consider the implementation of data parallel programs. This paradigm has
enough generality to be able to express homogeneous as well as heterogeneous problems
init.

It must be noted that the overall execution time that is obtained using a restricted load
balancing technique can only be equal to or larger than the minimal time for the general
load balancing problem since the space of feasible solutionsis restricted.

In the CAMAS project we are essentially interested in the restricted load balancing
problem, i.e. the mapping problem for data parallel programs. The DDT(see [1]) subtask
in CAMAS deals with the problem of decomposition of an irregular mesh into a set of
partitions that correspond to equal workload size. The MAP subtask will be concerned
with the problem of mapping partitions on a processor topology in an optimal manner. The
output that is generated by the DDT tool may serve asinput to MAP.

For an excellent overview of the mapping problem see for examplethe overview article
of Norman et al. [2].

2 Dataparallel computations modelled

When one wants to apply or test a mapping technique one needs two abstract models,
namely, a model of the target multicomputer and a model of the parallel computation.
Obviously an abstraction is not able to emphasize every feature within the multicomputer
or application. Consequently quantitative results obtained using the modelsstrictly apply if
the actual multicomputer and the actual computation correspond to the models. In general
it needs to be validated if one is allowed to apply results that have been obtained using
models to redlistic problems. PARASOL and SAD respectively serve as the abstractions
for machine and application within the CAMAS workbench.

The load balancing problem for data parallel applications can be approached in the
following manner. A given data structure can be subdivided into units. These units are
considered to be atomic during the parallel execution. The correspondence of an abstract
“unit” and some set of data elements within areal application is defined by the user. For
example in grid oriented applications units can correspond to grid partitions (of arbitrary
size). The datadependenciesbetween the units can be represented by aunit interconnection
graph. Given aprocessthat isresponsiblefor performing the calculations corresponding to
aunit. It must have access to the information associated with the calculations in this unit.
Therefore, the execution of this process must be preceded by the receipt of the boundary
information from neighbouring units.

Any data parallel program can be written as a sequence of calculation and communica-
tion steps. In terms of a pseudo description:

start data parallel program
for every calculation step
for all units send neighbour information
for all unitsreceive neigbour information
for all units calculate
end for
end program



It should be noted that only boundary information is exchanged between neighbouring
units that reside on separate processors.

3 Mapping algorithms and decomposition

Therestricted |oad bal ancing problem that must be solved in each phase consists of finding a
good distribution of the problem data. Thisdistribution procedure can be seen as consisting
of two separate phases. The first phase is concerned with the decomposition of the data
domaininaset of unitsthat each represent aspecific workload and which have connectivities
with respect to necessary information exchange. The second phase can be seen as the
procedure of assigning unitsto processors. Thisis referred to as the mapping procedure.

Many heuristic approaches to partitioning exist. A well-known strategy is based on
recursive 2-way partitioning of the data set. The application must provide one primitive:
the split-operation or partitioner, which splits a unit in several new ones. Suppose that the
data decomposition is given. A good load balancing distribution is found by minimizing
the estimated parallel execution time of a phase. This can be done by explicitly modelling
the program execution time with an (approximate) cost function (like SAD) [5]. A graph
that represents the units in one phase and their mutual dependencies can be represented
by an interconnection matrix. The diagonal elements in this matrix are equivalent to the
workload associated with individual units. The off diagonal elements represent message
sizes that have to be exchanged between neighbouring units due to data dependencies.

An equivalent connectivity matrix can be created for a processor interconnection graph.
Now, the off diagonal elementsrepresent the average cost of sending astandard size message
from one processor to another. Thisinformation can be obtained using PARASOL [6]. A
cost function can then be derived that estimates the execution time given a specific data
distribution. Inthe MAP task the procedure sketched above will be investigated explicitly
dedicated to irregular mesh systems (Finite Element grids).

4 MAPiIn CAMAS

4.1 Grid partioning

In the above section the mapping problemin general and restricted to dataparallel problems
has been described. Inthe MAP task in CAMAS research is planned on a specific subject,
namely, Finite Element grids. A Finite Element grid that consists of shells generaly
consists of quadrilaterals and trilaterals. The workloadsthat are associated to calculations
concerning one element can be expressed in terms of aset of high level language statements
(Fortran generally).

The most obvious manner to establish a data decomposition for Finite Element calcu-
lationsis to partition the grid along element boundaries (figure 1). This has as aresult that
only infromation at the boundaries of subdomains would have to be exchanged after each
calculation phase for unitsthat reside on separate processors (since the element calcul ations
are of local nature).



- ) N\
v@ decomposition _ Qﬂ <®A

Figure 1: the process of decomposition and mapping for a mesh.

To keep consistent with theterminology introduced abovewith respect to Finite Element
grids we define the following:

¢ A mesh can be subdivided into several units (asin figure 1). The minimum size of a
unit is one element. The maximum size is the whole data structure.

e Thesizes of messages (e.g. for nodal point datain Finite Element grids) that haveto
be sent between elements on separate units are directly proportional to the size of the
boundaries between them. (Obviously only in the case that separate units are stored
on different processors actual messageswill have to be sent.)

4.2 Workload graph

From aFinite Element grid (given element connectivities) one can derive aworkload graph
in which every vertex correspondsto the workload stuck to a specific element whereasthe
edges point out the amount of knowledge that neighbouring elements have to exchangein
a communication phase.

In a decomposition procedure one divides up such a graph in a number of units (see
figure 3).

The connectivity graphscan be stored in connectivity matrices. Onthediagonal of these
matrices the work that will be done on specific elements or unitsis stored. Thisworkload
can be stated in terms of actual costs on a real machine when the time complexities of
the calculations are known (derived with help from SAD and PARASOL). The figure 2
shown below explainsthis pictorially for asimple situation. There are 3 tasks of equal |oad
W . Between some tasks equal messages have to be exchanged of size M. From this the
connectivity matrix next to the graph can be derived.



1 123

1/ wmm
2 mwoO

d

@ @ 3 \mO0 w

2 3
Figure 2: a simple workload graph with corresponding connectivity matrix

The edges in the graphs are stored on the off diagonal elements of the connectivity
matrix. They correspond to actual message sizes that have to be sent between elements
or units and can for real problems be specified in number of bytes. For example for an
explicit Finite Element code like PAM-CRASH in one message phase per nodal point on
the boundaries the velocity in three cartesian directions has to be sent. For a boundary of
size 10 (10 nodal points) thiswould mean that a message of size 10 * sizeof(rea) * 3 bytes
has to be exchanged between units that share this boundary.

An edge in a connectivity graph generally has to be handled as uni-directional. There-
fore actually two edges exist between neighbouring elements or units. One edge weight
correspondsto the message size in one direction the other edge correspondsto the message
sizein the opposite direction. Very often the weight of the edgesin both directionsis equal
and can therefore be represented as single value. The corresponding connectivity matrix
then is symmetric.

Figure 3. Connectivity graph for original grid vs. connectivity graph for units.

4.3 Processor graph

For a multiprocessor system a same type of connectivity graph can be drawn in which
the vertices denote the relative performance of corresponding processors and the edges
represent a cost for sending a standard amount of information (e.g. abyte) acrossthe link
between processors. The way that message size influences the cost of sending a message
over aprocessor to processor link is highly dependent on things such as network contention,



routing (random or deterministic) and network type.

In afirst approximation the costs associated to sending a message grows linearly with
message size. PARASOL can give a more detailed description of the parallel machine of
our interest. Using thisthe processor connectivity matrix can befilled with realistic values.

5 Mapping Algorithms

Finding a good mapping of elements of a FE grid isadifficult task. One may e.g. consider
the problem of mapping individual elements to processors using stochastic optimization
algorithms such as Simulated Annealing or Genetic Algorithms.

Alternatively, one may use a recursive method to obtain a decomposition in a set of
units. Then an stochastic optimization algorithm can be applied to the graph of units.

The assigment of N units to P processors is a discrete optimization problem. The
solution space contains in the order of PV solutions. It is clear that such a solution space
very soon grows out of proportion for exact solution techniques (e.g. branch and bound
algorithms).

In MAP the applicability of deterministic and nondeterministic mapping algorithmsfor
Finite Element grid to processor mappings described by connectivity matrices expressed in
SAD and PARASOL will be investigated.

5.1 Costfunctions

Given two matrices W;; (representing workloads and connectivities) and Py; (representing
processor performances and processor to procesor links). It isimportant to define suitable
costfunctions that as accurately as possible model the total execution time of the parallel
computation on the multicomputer.

Examples of such costfunctionsare (see for example[4]:

C = max Wi
q€EQ wiella
where Q isthe set of processorsand /7 is the set of units«; residing on processor q.
This costfunction only takes workloads into account. Thus basically it represents a
model of afully connected machine with infinite communication bandwidth.
A more realistic costfunction might be:

C = max ( Z Wi + max )PijWij>

qeQ wiel u; €U uj; € A(u;

where A(u;) isthe set of neighbouring units for unit «;.

In this case the costfunction takes into account the connectivitiesin the workload graph
as well as the processor topology viathe factor P;;. Thiswill force the maximum distance
between the processors onto which connected units are mapped to be minimal while at the
same time for optimizing the workload distribution.

It should be noted that the multiprocessors in the above two models are assumed to
consist of processorsthat haveidentical performancerate. That’swhy the factor describing
thisrate P;; can be omitted in the costfunctions.

The form of the costfunctions can be made as complex as desired. But it is necessary
to find amodel that on the one hand has an appropriate accuracy for the mapping purpose
aswell asthat it's evaluation isrelatively cheap.



6 Timeschedulefor MAP

The central issuein MAP isthe development of optimization techniques for mapping work
associated with irregular finite element grids on a processor topology in a near optimal
way. For this purpose non deterministic optimization algorithms will be investigated.
Furthermoreinvestigation on parallelization strategies for the such optimization techniques
and an implementation of a parallel optimization agorithm for the mapping problem is
intended. The parallelization becomes specifically important when systems are concerned
that need adaptive remeshing and thus redistribution of dataelementsduring execution. For
such problems an efficient mapping algorithm has to be embedded in the application itself.

The optimization techniques will be applied to purely finite element grids where the
connectivities are element-element based as well as to unit connectivity graphs. Such
graphs can be obtained by applying an initial decomposition algorithm to a finite element
grid which splits up the grid in units. Such an algorithm may be based on a deterministic
method such as recursive bisection.

A study isplanned that looksat the differencesin efficiency behaviour for combination of
deterministic and indeterministic methods (decompostion and mapping). Furthermore the
quality of results obtained from combination methods can be compared to direct application
of non deterministic methods.

e Months 18 - 24 Development of an optimization algorithm (either SA or GA) for the
mapping problem of finite element graphs on processor graphs. Firstly mechanisms
have to be developed that allow for the generation of mappings. The agorithm
will be implemented as a black box module that accepts connectivity graphsin a
certain format and provides as output a near optimal mapping for the specific system.
Examples of candidate finite element grids can be supplied by the industria partners
inthe CAMAS project.

e Months 24 - 30 Interfacing MAP with FAM, PAM, DDT and PARASOL-SAD.
Parallelization of the selected non deterministic solver for the mapping problem.
Furthermore the applicability of combination of deterministic and non deterministic
methods will be investigated. When useful a specific combination of such methods
will be implemented.

¢ Months 30 - 33 are dedicated to the rel ease of amodul e that takes asinput (according
to a specified format) afinite element mesh and a processor topology (specified with
the workbench tools) and provides a near optimal mapping.
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