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Abstract. In this paper the design and validation of a high performance simu-
lation is discussed that is of critical value to the feasibility study of the GRAIL
project, the aim of which is to build a gravitational radiation antenna. Two rela-
tively simple simulation models of this antenna are shown to be too restrictive for
our purposes, necessitating the development of a simulation program that utilizes
an explicit finite element kernel. The computational complexity of this simulation
kernel requires the power that is offered by high performance computing method-
ology. Therefore it is tailored for execution on parallel systems. Since it is devel-
oped from scratch, we can circumvent notorious parallel programming pitfalls that
usually are present in code migration. The simulation program is validated for its
physical correctness as well as its performance gain. Performance results are pre-
sented for two distributed memory parallel systems: A Parsytec PowerXplorer (32
PowerPC’s) and Parsytec CC (40 PowerPC+'s).
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Introduction

General Background

Although the existence of gravitational radiation (GR), being predicted by Einstein's
theory of General Relativity, is unquestioned, the detection is a long-standing problemin
experimental physics. The aim of the GRAIL? project is to realize a spherical resonani-
mass detector with a sensitivity that is a few orders of magnitude higher than the presen
generation of detectors, thus offering the possibility to validate the existence of GR tha
is emitted by astrophysical sources. These sources include supernovae, stellar collapses
to black hole states and coalescence of binary neutron star systems.

The quadrupole moment of a mass distribution p(x) is given by

1 2
b= /d‘[r"p(x)(:r:,-.-rj- — 5(5,-3)(‘) Y (1)

According to general relativity, an oscillation of the quadrupole moment is the simplest
mode of vibration generating gravitational waves. The counter statement for absorption
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of gravitational waves is, that in the simplest case it also takes place via the excitation
ofthe quadrupole modes of vibration of a massive object. This principle is the main ar-
gument for constructing a GR antenna which essentially is a large resonant mass, that is
forced in oscillation by impinging gravitational radiation.

InGRAIL, the antenna will consist of a spherical resonant mass of a copper alloy, pos-
sibly CuAl, with a mass of about 100 000 kg and a diameter of 3 m. It will be suspended
imvacuum inside a large cryostat, in a way that the external vibrations at its resonant fre-
uency (%700 Hz) are attenuated by at least a factor of 10'°, Furthermore the sphere will
becooled to a temperature in the range of 10-20 millikelvin, in order to cancel out ther-
mal noise as well as possible. Transducers will be attached to the surface of the sphere to
detect the vibrations induced by gravitational radiation. An analysis of the electric sig-
als from these transducers must give information (like source type and direction of inci-
dence) about the radiation which impinged on the sphere. The gravitational waves have
edremely weak interaction with matter, the typical strains induced on a copper sphere of
3mwill be of the order of 10~2° m, which explains why the detection is such a difficult
lask and has not been realized yet.

Since the estimated cost (=~ 45 million Dutch guilders) of the project is quite high, a
phase O study has been funded by NWO?, to study the technological feasibility of GRAIL.
A variety of critical aspects concerning the design of the antenna was to be addressed
in this study. Our task consisted of building detailed models of the antenna, which can
give insight into its vibrational properties. A schematic design of the GRAIL antenna is
shown in Fig, 1.

Fig. 1. A drawing of the GRAIL sphere in a heat-isolating vacuum chamber. On top the concrete
ams o which it is suspended are visible.

* Dutch Organization for Scientific Research
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Critical Design Issues for GRAIL
The following subjects were to be investigated by means of simulation.

1. How does the suspension affect the eigen-modes and eigen-frequency for the fundamentl
quadrupole modes of a sphere?

2. How will material inhomogeneities affect these eigen-modes and eigen-frequencies?

Given a perfect sphere, how will it deform (into a droplet shape) under its own weight?

4. Does the coupling between the suspension-rod and the sphere induce additional modes, thi
will cause interference with the modes we are looking for?

5. What is the effect of mounting energy transducers on the antenna on the frequency spectrum
of the system?

6. How will seismic noise, entering the sphere via the suspension, be visible at the antenna’
surface? That is, how will the transducers “see it"?

7. Can energy, that has been deposited by cosmic rays or particles like muons, induce system
eigen-modes that are not distinguishable from those induced by impinging gravitational waye

8. How will the finger-print of typical gravitational wave sources (Like ““chirps™ and continuous
waves) be seen by the sphere?

w

We can identify in principle two types of questions in this enumeration. Firstly, we hav
the design questions that have to be answered in order to tune the read-out of the system.
like the effects of the suspension-hole and suspension-rod or material inhomogeneities
Secondly, we have the questions that also are important after the system has been built
How can we discriminate if the vibration that we observe is the result of a gravitationd
wave or something else? Clearly, a simulation that can help us in answering the ques
tions above can be of great value to the design and development phase of the GRAIL
project. Eventually, when the system is operational, a (well defined) simulation system
can even be used to analyze the transducer output, by means of reverse engineering of
the transducer signal, towards the original source.

This paper is structured as follows. Section 1 introduces two models that can be used
to answer a few basic questions but are too restrictive for any of the above questions
For this purpose we have to resort to the development of an explicit finite element (FE)
simulation tool, that is tailored for our purposes. The accuracy that we aim for requires
a very high resolution FE model, which is the reason for optimizing the FE solver, by
exploiting the models’ parallelism, which is the topic of section 2. Since the tool is de
veloped from scratch, we can circumvent several pitfalls that are known to hamper the
migration of existing simulation codes [7][2][6]. In section 3 we validate the tool’s cor
rectness and show that indeed we have a significant benefit from exploiting parallelism.
Section 4 is reserved for a brief summary of the foregoing, followed by a discussion
of the experimental results. We conclude with the observation that HPC technology en-
abled us to realize a simulation tool that runs efficiently, allowing us to perform accurate
simulations within the restricted time-frame (1 year) of the GRAIL phase 0 study.

1 Simulation Methods

1.1 Analytical Solution

The equation of motion for elastic objects, also known as the Navier equation (Eq.(2)
can be solved analytically for a freely vibrating spherical object. It describes the vari-
ation in time of the displacement field (u) in the object. The material of the object is
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parameterized by the two Lame parameters (A, y1) and the material density (p).

pAu+ (A + p)VVua = pii . (2)

The general solution consists of two different contributions, that correspond to diver-
gence free (V - u = 0) and rotation free (V x u = 0) waves that propagate through the
material, with unique velocities. For both types of vibration a frequency equation can be
derived. which can be solved numerically [4]. The rotation free vibrations are known as
spheroidal eigen-modes. A general spheroidal eigen-mode ¥°, is given by Eq.(3), which
is the superposition of all particular rotation free solutions of Eq.(2) with traction free
boundary conditions, note that we use polar coordinates.

lpﬁ = Z Z [(I"(F')l‘-’-;- 47 bn(r}Rv]):lm(”-‘.‘"’} ) )

n=0m=-—

with R the sphere radius, a, (r) and b, (r) are dimension-less radial eigen-functions de-
ermined by the boundary conditions and Y., are spherical harmonics. For each value
of n the frequency equation contains infinitely many solutions. The lowest frequency for
n = 2. is the one that is most important for the GRAIL detector. A general quadrupole
mode of the sphere can be described as the superposition of the five modes withn = 2
(m=-2 ...2). Since (according to GR) these modes interact with gravitational radiation,
they are the primary subject of our investigations. The applicability of this analytical
model fails as soon as we perturb the sphere in any way, although it provides us with a
useful gauge for a simulation program. Let’s take a look at an elegant numerical model
which is less restrictive.

12 An Elegant Numerical Method for Eigen-mode Analysis
If we write down the Lagrangian (Eq.(4)) for a freely vibrating elastic object (follow-
ing (8])*

l 9 1 . |
L= ‘[r'(éfw"mﬁ,' = 5(:!',;'“”-1(,_;'14‘1)fﬂ. ) s

with ¢;;1 the elastic tensor (dependenton A and ), and w the eigen (angular) frequency,
and apply the principle of least action, setting 6L = 0, we get

ahi= / (pwui + cijrittej)0u; AV — -/(rzjr‘,j;..mk‘;)(Su,- dS =0 . (5)
JV =

Eq.(5) expresses exactly the elastic wave equation (Eq.(2)), with traction free boundary
conditions, that we solved in the previous section. If we expand the displacement vector
ina set of basis functions according to Eq.(6),

u= Z a!’:r}.nrﬁlmn ' [(1‘}

Imn

with @y, = 2'y™ 2" and truncate the expansion to a certain order of accuracy, Eq.(5)
can be rewritten in terms of a generalized eigen value problem (Eq.(7)).

¥ the summation convention is used where appropriate
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w?Ea=Ta . M

The matrices E and I can be computed by integrating Eq.(5) properly. Solving fors
provides us with estimates of the eigen frequencies of the system in question.

VALIDATION
Table 1 shows several eigen-mode frequencies that are found using the numerical metho!
as well as the corresponding values that can be found analytically, for a copper sphere.
N denotes the truncation order of the basis function expansion, and R x R is the matrit
size of the corresponding eigen value problem. We have used a LAPACK [1] routine®
solve the system.

nlanalyticall N =5 | N =6 N=T ] N=8|N=9|N=10
solution |R = 168|R = 252|R = 360|R = 495 R = 660|R = 858
31654.0828] 654.090] 654.090 | 654.085 654,085 | 654.085 | 654.085 )
11891.7504| 893.488 | 891.796 | 891.796 801.78% | 891.788 | 891.788
3]975.4565| 988.374 | 975.550| 975.550 075.464|975.464 | 975.464
411251997 - 128198 1252.35 | 1252.35| 1252.01 1252.01
311263.632| 1270.78 | 1270.78 | 1263.78 1263.78 | 1263.68 | 1263.68
0
5
%
6
1

1395.698] 1396.06 | 1396.06 | 1396.06 1396.06 | 1396.06 | 1396.06
1510.716 = - - 1511.6 | 1511.65[1510.83
1661.032 - 1681.20] 1681.20| 1661.6 |1661.63 1661.04
1760.268 - - - - 1762.42|1762.42
1793.638 - 1843.70| 1843.70( 1795.91 | 1795.81 1793.67

Table 1. The analytical and “numerical” frequencies in Hz for a few modes of a copper sphere

SPHEROIDAL PERTURBATIONS
An ellipsoid is described by its three semi-axes d, dy, and d:

For a sphere these axes have equal length. When we make one semi-axis longer#
keep the other two constant the object is called a prolate spheroid. If we make oné
axis shorter than the other two we have an oblate spheroid. In Fig. 2 the deper den
of the lowest quadrupole frequency on d, is depicted (varied in the range [0.1,50]8
while the other two axes are kept at 1.5 m, again for a copper sphere. We can 0
three lines that intersect at d. = 1.5. Since the spherical symmetry is broken in (e
direction the five-fold degeneracy is only partially removed. It splits into two doubs
and one singlet. Additional perturbations in x and y directions would break the symn
completely leaving us with 5 different frequencies.
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Fig.2. The dependence of the quadrupole fre- pension hole. The five modes split into two dou-

quencies under variation of d.. blets and a singlet.

13 A Finite Element Model
The numerical method also has been applied for a sphere with a suspension hole. Again,
it ean be observed that the five frequencies are split up, see Fig. 3. However, it leaves
with an uncomfortable feeling, since the sharp edges of the suspension hole possibly
pt the numerical process, therefore we don’t know if the splitting is an artifact or
sically correct. Furthermore, we are stuck with a variety of questions that can sim-
ot be answered by the analytical and numerical approaches, above. Therefore, we
1o the well known Finite Element (FE) method.
discretize our antenna model in first order tetrahedral elements (each element has
nodal points). As an example, Fig. 4 shows the hull of a sphere with hole and sus-
bar, consisting of 39684 tetrahedral elements. Now we can choose to approach
roblem by means of modal analysis, that is, we have to solve the following eigen-

problem.
K —w?’M]d=0 , 9

_‘thtsystem‘s stiffness matrix, M the mass matrix, d an eigen-mode and w again
frequency of the system. Although it is theoretically possible to investigate a
em, such as ours, on the basis of modal analysis, the practical realization is a
. First of all the model resolutions that we aim for are very high, necessi-
ution of huge eigen value problems. These may be solvable using state of
rical solvers. If we succeed in doing that, we have to cope with a storage
since for each nodal point a superposition of over 100 eigen modes at least is
to characterize a general low frequency solution of the system. Furthermore,
to characterize the effects that are due to coupling to external forces that are
¢, like seismic noise entering via the suspension and stochastic sources. Finally,
on model is likely to be extended such that it can incorporate non-linear ef-
 can not be realized in a modal analysis. Therefore, we choose for explicit
tion of the equation of motion ((Eq.(10)). Although it has some drawbacks,
modal-analysis, since we have to solve our system in the time domain and
a spectral analysis, it is much more flexible for our purposes, and is
by the restrictions that apply to modal analysis.

i




206

Antenna—Mode

e e
A e
ISSS
il v AY
AATA
|

Fig. 4. The hull of a sphere with suspension-rod discretized into 3 9684 tetrahedral elemenis

Ma+Cv+Kd+F=0. (10

The matrices M, C and K are constructed by assembling the local mass, viscosity #l
stiffness matrices of all individual finite elements in which the antenna model is dividd
and F is an external force vector. In order to integrate this system explicitly in time ¥
adopt the following Newmark [9] scheme (11).

't:
dnil = d, + v, At +a-\(—A—2’)—

a4 =M K(dat1)
Vatl = Vn +(an + &n+-1)'? )

with a,,. V. and d,, vectors that respectively describe the acceleration, velocity 8
displacement fields in the FE system at time n. Viscous damping (C) and externl
(F) can easily be added to this algorithm. The mass matrix is diagonal, since the ma
are considered to be “lumped” at the nodal points. Therefore M1 can be cale
fast. For numerical stability At has to be taken to be less than the Courant value, sin¢
the time integration scheme is conditionally stable. The choice of algorithm on the
hand is motivated by the fact that it displays good numerical properties (low numet
dispersion and damping). This was found from a number of exploratory experi
a 1-dimensional finite element model (data not shown). On the other hand it is very ¥
suited for incorporation of parallelism as we will see below.
It was expected that the required accuracy with which the eigen frequencies can bet tt
mined using this method necessitates the use of a very high resolution FE model,
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tnsequently, is quite computationally and memory intensive. Therefore the simulation
code was designed and implemented for parallel execution.

1 Parallelizing the explicit FE method from Scratch

In good tradition, we have chosen to base our parallelization method on decomposition
of the FE mesh. The consequences of the decomposition method for the time-stepping
algorithm as well as for the calculation of system parameters like energy had to be con-
sidered in the design. In our discussion we will only consider the pure finite element
system, consisting of an ideal sphere. In the full blown simulation a variety of phenom-
enacan be taken into account, like transducer mounting, suspension rod and sources of
vibration. At this point it suffices to say that the chosen parallelization method doesn’t
have major consequences for the hybrid (full fledged antenna) simulation, and therefore
tan be left out of this discussion. We focus on two important aspects of the paralleliza-
llon process: paralle] time-stepping (which essentially is the kernel of the program) and
he parallel calculation of the system’s energy. The code has been developed in C with
PVM message passing primitives, utilizing the SPMD paradigm. The process with iden-
tifier 0 is used to read in the mesh, and is used for /O, a sort of primus inter pares among
the parallel processes.

11 Parallel Energy Calculations

Inorder to check if the system energy remains conserved if the antenna is not influenced
_ﬁy-any external source we have to monitor the energy in the system. The total energy
it is given by:

Eiot = %(VTJ‘JV +d"Kd) , (12)

wilh v the velocity vector, in which the individual velocity vectors of all nodal points
areconcatenated, and d the displacement vector, also formed by concatenating the fields
atall nodal points. How do we calculate this in parallel?

ﬁ!FEmCSh is decomposed along the surfaces of the tetrahedral elements that constitute
mesh Firstly, a dual graph of the mesh is constructed, which then can be partitioned
g any graph-partitioning method [5]. Nodal points that lie on shared boundaries are
ed on each process that has this boundary in its local domain, whereas elements
10 a unique process. This procedure is schematically depicted in Fig. 5 for a sim-
ple quadrilateral mesh.

Partitioning of a quadrilateral mesh in four parts, nodal points at shared boundaries are
ted while elements are assigned to unigue processes.
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The global mass and stiffness matrices are c

tributions from eac i ¢ i e denote the assembly of twoels
ment stiffness matrices k; and ko by k) @ ko, K is constructed as follows (analogouss
for the mass matrix).

B %(viT'M:v‘ +diTK,d) .

v! denotes the velocity vector for the nodes in sub-domain i,d is the displacement fieli
K is the stiffness matrix of sub-domain ¢, which is simply the assembly of its local ek
ment stiffness matrices and finally M. is an adjusted version of the (diagonal) mass ms
trix of sub-domain i. The “normal” mass-matrix contains the mass for each nodl point
at the appropriate entry. In this adjusted version the masses of the internal nodal poin
are untouched, however,

dancy”

way we can assure that we are not double counting any energy contributions.

2.2 Parallel Time Evolution

If we have constructed the mass and stiffness matrices for each sub-domain (or process)
correctly, we can parallelize the Newmark scheme above as follows. Each process gelss
unique process identifier (ID), equal to the sub-domain identifier (i) above. Nodal points
that are shared among two or more processes are considered to have one real owner (i
owning process considers it as a node of type A), while the other processors only hay
the replica of this node (considering the node as type B). Assigning a node to a specifie
process is based on the process ID. The process with the lowest ID considers a shar.
nodal point as A-type, while the rest of the processes only may see it as B-type. Conse
quently, process 0 can only have shared nodes of type A, while on the other hand process
P —1 (assuming we have P processes) can have only shared nodes of type-B. The New
mark scheme is parallelized as follows.

dni1 =d, + v, At + a, (82

Sendd,;; from A-nodes to B-nodes
Received,,; for B-nodes from A-nodes
anyy = M 'K(dpy)

Senda,y; from B-nodes to A-nodes
Receivea, ., for A-nodes from B-nodes
Add contributions to ap4+1 from B-nodes
Vnt1 =V, + (a, + ﬂn+:)%
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The A-B nodal point scheme has been adopted from Lonsdale et al. [3]. This construc-
tion parallelizes the time-stepping kernel correctly.

3 Experiments

Inthis section we show a selection of the experimental results that have been produced
forthe validation of our parallel FE simulation. First, we investigate if the model is phys-
kally correct. Next, we measure the performance benefits that we get from exploiting
parallelism for different mesh resolutions. We consider two different graph partition-
ing methods for decomposing the meshes; recursive spectral bisection (RSB) [5] and a
method that generalizes the concept of orthogonal recursive bisection (ORB) to parti-
lioning cardinalities that are not necessarily a power of 2. The performance measure-
ments are done on two target platforms: a Parsytec PowerXplorer (32 PowerPC’s. with
each 32 Mbyte of RAM) and a Parsytec CC (40 PowerPC+’s, each having 96 Mbyte of
RAM). Our target material in the experiments below is the alloy CuAl (90-10), while
weonly consider spheres of radius 1.5 m.

L1 Physical Correctness

Figure 6 displays the z-displacement versus time of an arbitrary nodal point (in this case
number 1713) on the surface of a FE sphere consisting of 79556 elements, which vi-
brates in a pure quadrupole mode, that is, each nodal point in the system gets an initial
velocity vi' = (2, —y, 0). The beats are produced by the superposition of the princi-
pal quadrupole frequencies that are slightly split up. Table 2 enumerates the average of
frequencies that are found around the analytical eigen frequency fo (fo = 780.25 Hz)
and the deviation in % of the average value quadrupole mode for 10 different FE models
consisting of n tetrahedral elements . We can observe that the main frequency found for
the highest resolution model approaches the analytical frequency up to 0.15%. Figure 7
shows us the evolution of the total energy for two FE models that are initiated with a
Quadrupole field. Clearly, the high resolution model has a lower fluctuation in energy
during the simulation. Furthermore it approaches the analytical value better.

Diapuacetues m o-Giuchon va. wmw o gont 1711

B 400 oo

e =
e 1 ramenan

Fig. 6. The time trajectory in the z-direction of Fig.7. The energy evolution for two FE models
an arbitrary nodal point at the surface of a FE that are initiated with a pure quadrupole field.
miodel of 79556 elements, initiated with a pure Model resolutions are 9412 and 79556 respec-
quadrupole velocity field. tively.
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[ n ] S |U{f}in%|

84

7.910e+02

H,Yte-m

124

7.922e+02

1.695e+00

698

8.011e+02

4.868e-01

1086

7.976e+02

4.437e-01

2724

7.899e+02

3.231e-01

2851

7.965e+02

3.623e-01|

6114

7.862e+02

2.250e-01

9412

7.853e+02

3.012e-01

51501

7.821e+02

2.847e-01

79556

7.817e+02

1.550e-01

mode for various model resolutions.

3.2 Parallel Performance

Vi USSR o priabmasars h T PramerNpkcrer
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versus the partitioning cardinality.

Fig. 8. The kernel execution time on the Pow-
erXplorer for 4 different mesh sizes and two dif-
ferent decomposition methods (ORB and RSB)

Table 2. The average frequency and the approximated error in % for the quadrupole princp

Next, consider parallel performance of the simulation kernel. We apply ORB (partitios
ing cardinalities of 2, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32) and RSB (partitioning cardini
ities of 4, 8, 16, 32) respectively to 4 different meshes of size 6114, 9412, 51501 a
79556. Figure 8 displays the single kernel execution times that were obtained for sim
lations on the PowerXplorer for varying number of processors. Figure 9 shows simil
results obtained on the Parsytec CC. The execution times are best-case, that is, ene
calculations and for example external force calculations (modelling graviational rads
tion sources) are left out. Both figures are shown in log-log style, to clarify the regios
where the performance gain is linear.

.

Fig.9. The kernel execution time on the (¢
for 4 different mesh sizes and two different &
composition methods (ORB and RSB) versuti¥
partitioning cardinality.

Exncuton ime ws. Nurmter of processans on e 7
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4 Discussion and Conclusions

41 Summary

We have constructed three consecutively more refined simulation models for the cal-
culation of the vibrational properties of a gravitational radiation antenna. The first two
models were shown to be too restrictive for our purposes, which forced us to build a
third model based on the FE method. The design of the corresponding simulation tool
was tailored for distributed memory computer systems, since we expected that the re-
quired simulation accuracy would necessitate significant computing power. In more de-
il we have discussed the consequences of domain decomposition as the parallelization
strategy for the FE kernel.

42 Discussion

Table 2 indicates that the dominating frequency for FE simulations initiated with a pure
quadrupole mode, approaches the analytical frequency value for increasing model reso-
lution. Since the FE models always are slightly asymmetric some additional modes will
be present of which the frequency has shifted from the analytical value. However, the
deviation of these frequencies from the analytical value becomes smaller with the model
resolution. Fig. 6 shows the z-displacement of an arbitrary nodal point at the sphere sur-
face in the simulation for the highest resolution model. We can observe the beats, that
result from the frequency splitting. Figure 7 shows us the evolution of the total energy
for two FE models that are initiated with a quadrupole field. Clearly, the high resolution
model has a lower fluctuation in energy during the simulation. Furthermore it approaches
the analytical value better. The energy values that are found are completely independent
of the number of processors used, which enforces our confidence in the correctness of
our implementation.

InFigs. 8 and 9 we can observe that the difference in execution speed between ORB and
RSB is not significant. In fact ORB consequently is slightly better than RSB for partition-
ing cardinalities that are powers of two. Both methods create compact 3-dimensional sub
domains not containing any disconnected parts, leading to an average surface-volume
ratio of these sub-domains that is approximately the same.

The working memory of the CC-processors is much larger than that of the PowerXplorer.
Therefore on the CC all problems can be executed on a single processor, in contrast with
the PowerXplorer, where the single processor performance can not be determined for
the high-resolution problems. The CC communication network as well as the CPU is
significantly faster than that of the PowerXplorer, which accounts for the fact that the
kernel execution time for each problem instance is shorter on the CC.

Forthe PowerXplorer the kernel execution times are not significantly decreased for more
than 16 partitions, while in case of the CC increasing partitioning cardinality conse-
quently leads to faster execution times, at least in case of the high resolution models.
Note that we have considered best case performance, leaving for example energy cal-
culations out. Therefore we can expect that the absolute performance of the simulation
code in a more realistic simulation (taking other phenomena into account) will degrade
compared to the best case and consequently, it will result into better “scalability” of the
code, since the calculation - communication ratio of the application increases.
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4.3 Conclusions

We have seen that application of high performance computing methodology to our sin:
ulation can lead to a significant performance gain. Large models can now be simulatel
efficiently on parallel systems that are built from commodity processors like the Pox
erPC. Typical simulation runs require up to 100.000 time steps (kernel iterations), ne
cessitating execution times of the order of one to two weeks per simulation run ona|
Ultra-Sparc (left aside the fact that the problem requires a significant amount of me |
ory, which for the high resolution models becomes a bottleneck on a single processit
as we could see for the PowerXplorer). On the two parallel machines in our study, the
simulation time can be reduced to the order of a few hours, by fully exploiting the prob
lem’s parallelism.

The simulation program will be used for the feasibility study of calculating the effects |
of a variety of different phenomena, enumerated in the introductory section. In the neg
project phase it will be utilized in the analysis and validation of the signals that are pickel
up by the GRAIL antenna.
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