
Extensions to Time Warp Parallel Simulation for Spatial
Decomposed Applications

Benno J. Overeinder Peter M. A. Sloot
Department of Computer Science, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract

In recent years, the use of discrete event simulation to
solve problems from natural sciences has become more
common as the dynamic time evolution of the real-world
system is naturally incorporated in the discrete event sys-
tem model. The parallel simulation of these discrete event
systems puts some extra requirements on the parallel syn-
chronization schemes such as Time Warp. The large sci-
entific problems require efficient memory management—
both time and space efficient—and parallelism control to
achieve satisfactory performance.

1 Introduction

There is an increasing interest in the application of discrete
event simulation to solve problems from natural sciences.
In particular, problems with heterogeneous spatial and tem-
poral behavior are, in general, most exactly mapped to
asynchronous models [Bersini and Detours, 1994; Lumer
and Nicolis, 1994]. The interest in discrete event simula-
tion now is motivated by the ability of this protocol to cap-
ture the asynchronous behavior that is a qualifying charac-
teristic of these models. Besides the aspect of asynchronic-
ity, a general tendency is the construction of more realistic
models resulting in more complex and larger simulations,
which requires vast amounts of execution time. One fun-
damental method to reduce the execution time of large dis-
crete event simulations is the exploitation of parallelism in-
herent to this class of simulations [Livny, 1985; Overeinder
and Sloot, 1995]. Most research in Parallel Discrete Event
Simulation (PDES) is focussed on protocol design; and al-
though there are encouraging advances, none of the proto-
cols devised thus far have been shown to perform efficiently
for different applications.

We are specifically interested in the application of PDES
methods, in particular the Time Warp method [Jefferson,
1985], to dynamic complex systems that can be modeled
with Asynchronous Cellular Automata (ACA) [Overeinder
and Sloot, 1993]. Typical ACA models are for example
continuous-time Ising spin systems or spatial-decomposed
population dynamics models. In the next sections, we will

describe some new insights and extensions to the original
Time Warp method in order to apply the PDES method suc-
cessfully to ACA models. In Section 4, we present the re-
sults of a parallel Ising spin simulation using the Time Warp
execution environment. Section 5 concludes with a discus-
sion and some future work.

2 Background

Discrete event systems are characterized by a limited num-
ber of events occuring at irregular time intervals. Efficient
simulation of such systems require concurrent execution
of events at different points in simulation time. The ab-
sence of a global clock necessitates sophisticated synchro-
nization algorithms to ensure that cause-and-effect relation-
ships are correctly reproduced by the simulator. Parallel
discrete event simulation is essentially concerned with the
correct ordering, or scheduling, of the asynchronous exe-
cution of events over distributed or parallel systems. There
are basically two methods to impose the correct temporal
order of the asynchronous event execution: conservative
and optimistic methods.

First, the conservative approach proposed by Chandy and
Misra [1979] strictly imposes the correct temporal order of
events. Second, the optimistic approach, introduced by Jef-
ferson [1985], uses a detection and recovery mechanism:
whenever the incorrect temporal order of events is detected
a rollback mechanism is invoked to recover. Although both
approaches have their specific application area, optimistic
methods offer the greatest potential as a general-purpose
simulation mechanism.

The most well-known optimistic method is the Time Warp
simulation mechanism, which is based on the concept of
virtual time. Virtual time describes how different dis-
tributed objects interact in time, and can therefore be used
to serve as a basis for distributed simulation. The Time
Warp mechanism implements virtual time and adheres to
the temporal coordinate system imposed on a distributed
simulation.

In optimistic simulation, the parallel simulation processes
execute events and proceed in local simulated time as long



as they have any input at all. A consequence of the opti-
mistic execution of events is that the local clock or Local
Virtual Time (LVT) of a process may get ahead of its neigh-
bors’ LVTs, and it may receive an event message from a
neighbor with timestamp smaller than its LVT, that is, in
the past of the simulation process. The event causing the
causality error is called a straggler. If we allow causality
errors happen, we must provide a mechanism to recover
from these errors in order to guarantee a causally correct
parallel simulation. Recovery is accomplished by undoing
the effects of all events that have been processed prema-
turely by the process receiving the straggler. The net ef-
fect of the recovery procedure is that the simulation process
rolls back in simulated time.

The premature execution of an event results in two things
that have to be rolled back: (i) the state of the simulation
process and (ii) the event messages sent to other processes.
The rollback of the state is accomplished by periodically
saving the process state and restoring an old state vector
on rollback: the simulation process sets its current state to
the last state vector saved with simulated time earlier than
the timestamp of the straggler. Recovering from premature
sent messages is accomplished by sending an anti-message
that annihilates the original when it reaches its destination.
The messages that are sent while the process is propagat-
ing forward in simulated time, and hence correspond with
simulation events, are called positive messages.

A direct consequence of the rollback mechanism is that
more anti-messages may be sent to other processes recur-
sively, and allows all effects of erroneous computation to be
eventually canceled. As the smallest unprocessed event in
the simulation is always safe to process, it can be shown that
this mechanism always makes progress under some mild
constraints.

In optimistic simulation the notion of global progress in
simulated time is administered by the Global Virtual Time
(GVT). The GVT is the minimum of the LVTs for all the
processes and the timestamps of all messages (including
anti-messages) sent but unprocessed. No event with times-
tamp smaller than the GVT will ever be rolled back, so stor-
age used by such event (i.e., saved state vector and event
message) can be discarded. Also, irrevocable operations
such as I/O cannot be committed before the GVT sweeps
past the simulation time at which the operation occurred.
The process of reclaiming memory and committing irrevo-
cable operations is referred to as fossil collection.

3 Optimistic Parallel Discrete Event
Simulation and Ising Spin Systems

The Asynchronous Cellular Automata (ACA), like the
“classical” Cellular Automata (CA), is a set of dynamic
systems where space and variables are discrete. The syn-
chronous CA evolves in discrete time t � 1 � 2 ������� . The state

of a cell at t
�

1 is determined by the state of the cell and its
neighbors at t and may explicitly depend on t and the result
of a random experiment. The ACA evolves, unlike the CA,
not in discrete, but in continuous time. In the ACA model,
the state changes at different cells occur asynchronously at
unpredictable random times, and thus is a discrete event
system. Zeigler [1982] also postulated that discrete event
ACA models might be a more natural and adequate repre-
sentation of the universe at the level of basic physics.

A specific example of an ACA is the continuous-time Ising
spin model. Glauber [1963] introduced continuous-time
probabilistic dynamics for an Ising system to represent
the time evolution of the physical system. The Ising spin
model with continuous-time probabilistic dynamics cannot
be solved by Monte Carlo simulation, since time has no ex-
plicit implication on the evolution of the system in this ex-
ecution model. To capture the asynchronous continuous-
time dynamics correctly, the most efficient underlying ex-
ecution model is discrete event simulation. In this respect,
the Ising spin model is an ideal application to study the ef-
fectiveness of PDES methods, as the dynamic behavior of
the Ising spin model is essentially determined by one pa-
rameter, namely the temperature of the system. The tem-
perature determines the ratio of communication to compu-
tation in the Ising spin model, and gives a well-defined pa-
rameter to evaluate the Time Warp method with a realistic
application.

The Ising model is a popular model of a system of interact-
ing variables in statistical physics. To introduce the Ising
model, consider a lattice containing N sites and assume that
each lattice site i has associated with it a number si, where
si
� �

1 for an “up” spin and si
��� 1 for a “down” spin.

The total energy of the Ising model is given by

E ��� J
N

∑
i 	 j 
 nn � i �

sis j
� µ0H

N

∑
i 
 1

si ,

where si
��
 1, J is the measure of the strength of the inter-

action between the spins, and the first sum is over all pairs
of spins that are nearest neighbors. The second term is the
energy of interaction of the magnetic moments, µ0, associ-
ated with the spins with an external magnetic field, H. In
our discussion, the external magnetic field H is zero.

E = -J E = +J

Figure 1: The interaction energy between nearest neighbor
spins in the absence of an external magnetic field.

If J � 0, then the states ��� and ��� are energetically favored
in comparison to the states ��� and ��� (see Fig. 1). Hence for
J � 0, we expect that the state of the lowest total energy is
ferromagnetic, i.e., the spins all point to the same direction.
If J � 0, the states ��� and ��� are favored and the state of



the lowest energy is expected to be antiferromagnetic, i.e.,
alternate spins are aligned.

At random times, a spin is granted a chance to change the
state, a so-called spin flip. The attempted state change ar-
rivals for a particular spin form a Poisson process. The
Poisson arrival processes for different spins are indepen-
dent, however, the arrival rate is the same for each spin. The
attempted spin flip, or trial, is realized by calculating the en-
ergy difference ∆E between the new configuration and the
old configuration. The spin flip is accepted with a probabil-
ity P given by

P ��� 1 � if ∆E � 0,
exp � � ∆E � kT � � otherwise,

given temperature T and Boltzmann’s constant k. For con-
venience we measure energy in units of k and take J � 1, so
that T is effectively unitless.

The resulting continuous-time Ising spin model is par-
allelized by spatial decomposition. The Ising spin lat-
tice is partitioned into sub-lattices, and the sub-lattices are
mapped onto the parallel processors. To minimize the com-
munication between sub-lattices, local copies of the neigh-
bor boundaries are stored locally (see Fig. 2). By main-
taining local copies of neighbor boundaries, spin values are
only communicated when they are actually changed, rather
than when they are only referenced. A spin flip along the
boundary is communicated to the neighbors by an event
message. The causal order of the event messages, and thus
the spin updates, are guaranteed by the Time Warp mecha-
nism.

PE 2PE 1

PE 3

a a’
b’

c

b

c’

c’

Figure 2: Spatial decomposition of the Ising spin lattice.
The grey areas are local copies of neighbor boundary strips.
For example, processor PE 2 has a local copy of spin “a”
owned by processor PE 1. Processors PE 2 and PE 3 both
own a copy of spin “c”. The arrows in the figure indicate
the event messages sent upon a spin flip.

Asynchronous Cellular Automata, and thus also the Ising
spin model, put some additional requirements on the orig-
inal formulation of the Time Warp method. For example,
the Time Warp method, as all optimistic PDES methods,
must save its state vector each time an event is executed.

The state vector of an spatial decomposed ACA can be ar-
bitrarily large, that is, all the cells in the sub-lattice are
part of the state vector. For efficient memory management,
we incorporate incremental state saving in the Time Warp
method [Overeinder and Sloot, 1993]. Incremental state
saving stores not the full state vector, but saves only the
changes to the state vector due to the execution of an event,
which is only a small fraction of the full state. Besides ef-
ficient memory management, incremental state saving also
reduces the time overhead related to the memory copy.

With incremental state saving, no full copy of a state vec-
tor at a certain simulation time exists in the simulation exe-
cution environment. Instead, upon a rollback of a series of
events, the state vector is reconstructed by processing the
event–partial state collection in reverse order. Although in-
cremental state saving requires less state saving time and
memory, there is an increased cost of state reconstruction.
In general, the number of rolled back events is a fraction of
the number of events executed during forward simulation.
The fraction of rolled back events and the time overhead
difference between state saving is an order of 10 bytes ver-
sus an order of 106 bytes, therefore incremental state saving
is favorable in spatial decomposed ACA applications.

Alternatively, Lubachevsky [1987] presented a conserva-
tive parallel simulation method to simulate ACA. Our per-
spective and experimental framework essentially differs
from his work, as we apply ACA to optimistic methods to
study the application parameters that influence the dynamic
execution behavior of the Time Warp method.

4 Results

To validate the efficacy of the proposed extensions to the
original Time Warp method, we have designed and im-
plemented a parallel discrete event execution environment
called the Amsterdam Parallel Simulation System (APSIS).
APSIS is by design a portable simulation environment,
which runs currently on a number of Unix platforms, such
as Solaris, Linux, and BSD/OS, and with various communi-
cation libraries, like PVM, MPI, and the lightweight Com-
munication Kernel [Overeinder et al., 1995]. The exper-
iments with the Ising spin model were performed on the
Distributed ASCI Supercomputer (DAS). The DAS con-
sists of four wide-area distributed clusters of total 200 Pen-
tium Pro nodes. ATM is used to realize the wide-area in-
terconnection between the clusters, while the Pentium Pro
nodes within a cluster are connected with Myrinet system
area network technology.

A series of experiments were executed to get insight into the
efficiency and scalability behavior of Time Warp, for differ-
ent problem sizes and Ising spin parameter settings. In the
first series of experiments, we study the absolute efficiency
of the parallel Ising spin simulation compared to the best-
known sequential Ising spin simulation for different tem-



peratures, problem sizes, and event granularity (that is, the
amount of work per event). The sequential continuous-time
Ising spin simulation is basically a Monte Carlo simulation
extended with a Poisson arrival process to incorporate time
evolution into the model. The Monte Carlo simulation ex-
ecution mechanism is a lightweight process compared to
sequential discrete event simulation execution mechanism.
With Monte Carlo simulation there is nearly no overhead
involved in the execution of the spin flip trials. A random
spin is selected and a trail is executed. With discrete event
simulation, a trial is an event that must be scheduled for fu-
ture execution, that is, inserted into the event list (in general
a priority queue). Later, if the scheduled trial is the next
pending event, the event is dequeued and the trial is exe-
cuted. Parallel discrete event simulation includes, besides
the event list management overhead, also the state saving
and rollback overhead as described in the previous section.
The absolute efficiency figures include all these extra over-
head costs compared to the sequential Monte Carlo simula-
tion.

The absolute efficiency figures Fig. 3 and Fig. 4 indicate
that the parallel performance increases with the problem
size and event granularity. The event granularity deter-
mines the PDES protocol overhead ratio, apart from syn-
chronization errors. The temperature T for the Ising spin
system determines the computation/communication ratio:
as the temperature increases, the behavior of the system be-
comes more dynamic and hence more communication oc-
curs between the nodes. In particular, the efficiency for
the relative small lattice size of 32 � 32 is sensitive to the
temperature T , as with small lattice sizes relatively more
changes occur along the boundaries. See for example the
absolute efficiency figures for the 32 � 32 (Fig. 3) and 128 �
128 (Fig. 4) lattices with temperatures T � 2 � 0 and T � 3 � 0.
While the figures for T � 2 � 0 are almost equal for both lat-
tices, the figures for T � 3 � 0 differ. Due to the higher tem-
perature of the spin system, more trials are accepted. The
fraction of successful trials that must be communicated to
the neighbors is proportional to the ratio of boundary lattice
points and the total number of lattice points, which is ap-
proximate 4 � L, where N � L � L. For lattice size 32 � 32
the ratio is 0 � 125, while for lattice size 128 � 128 the ratio
is approximate 0 � 031.

The event granularity (amount of work per event or in
this discussion per trial) is expressed as the amount of ex-
tra computational work in terms of a sinus and exponen-
tial evaluation. The results for event granularity 0 are for
the basic Ising spin system. The results for increasing
event granularities give an indication how a similar prob-
lem scales as the amount of computational work to evaluate
a state change increases.

In Fig. 5 the ratio between the committed events and the
total number of processed events is depicted. Committed
events are the definite events after the GVT sweeps past
their simulation time, see Section 3. The number of pro-
cessed events is the total number of committed and rolled

0 10 20 30 40 50

work/trial

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

 e
ffi

ci
en

cy

T = 2.0
T = 2.4
T = 3.0

Figure 3: Absolute efficiency versus event granularity
(work/trial) for parallel Ising spin simulation of 32 � 32
spins on 4 processors.

0 10 20 30 40 50

work/trial

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

 e
ffi

ci
en

cy

T = 2.0
T = 2.4
T = 3.0

Figure 4: Absolute efficiency versus event granularity
(work/trial) for parallel Ising spin simulation of 128 � 128
spins on 4 processors.

0 10 20 30 40 50

work/trial

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f c

om
m

itt
ed

 e
ve

nt
s

T = 2.0
T = 2.4
T = 3.0

Figure 5: Ratio of committed events versus event granular-
ity (work/trial) for parallel Ising spin simulation of 128 �
128 spins on 4 processors.

back events. The ratio of committed events is thus an indi-
cation how effective the Time Warp simulation mechanism
is to synchronize the parallel simulation processes. From
the figure we can see that the ratio of committed events
ranges between 0.8 and 0.9, for respectively high and low
temperatures. Although the ratios of committed events, and
thus the efficacy of Time Warp, do not dramatically differ
for the different temperatures, the way it is accomplished
does. Figure 6 shows the average rollback length for the
different temperatures. Whereas the ratios of committed



0 10 20 30 40 50

work/trial

0

5

10

15

20

25

av
g.

 r
ol

lb
ac

k 
le

ng
th

T = 2.0
T = 2.4
T = 3.0

Figure 6: Average rollback length versus event granularity
(work/trial) for parallel Ising spin simulation of 128 � 128
spins on 4 processors.

events are almost identical, the average rollback length for
T � 2 � 0 is almost twice as large as the average rollback
length of T � 2 � 4 and T � 3 � 0. With low temperatures, the
fraction of successful trials is small and hence the frequency
of synchronization between the neighbors is low. Conse-
quently, the infrequent synchronization makes it likely that
the time retardation between the simulation processes is rel-
atively large and one of the processes must rollback this dis-
tance in simulated time.

The typical variation of the T � 2 � 0 curve for event granu-
larity 4–10 in Fig. 6 is discussed at the end of this section.

To determine the relative efficiency and scalability of the
parallel Ising spin implementation, the execution time of
the parallel simulation on one processor is compared with
the execution time on different number of processors. Fig-
ure 7 shows the relation between execution time and the
number of processors for a fixed problem size. Together
with the results from Fig. 8, we can see that the parallel
Ising spin for T � 2 � 0 scales almost linearly up to 6 pro-
cessors, but eventually drops to a relative efficiency of 0.83
for 8 processors. For temperature T � 3 � 0 the relative ef-
ficiency decreases gradually to 0.68 for 8 processors. The
decreasing efficiency is mainly due to the increased costs
to synchronize the parallel processes. With the increase of
the number of processors, the time period necessary to syn-
chronize the parallel simulation processes also increases.

1 2 4 8

processors

100

1000

ex
ec

ut
io

n 
tim

e

T = 2.0
T = 2.4
T = 3.0

Figure 7: Log-log plot of the scalability of parallel Ising
spin for lattice size 128 � 128.

0 2 4 6 8

processors

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

ef
fic

ie
nc

y

T = 2.0
T = 2.4
T = 3.0

Figure 8: Relative efficiency of parallel Ising spin for lattice
size 128 � 128.

The influence of the number of processors on the synchro-
nization of the parallel simulation processes is further in-
vestigated. With parallel executions up to six processors,
the influence of the increase in temperature is relatively
small, but with eight or more processors, the Time Warp
method requires more time to synchronize the computation
over the processors. The increased overhead of the Time
Warp method is directly apparent from the number of rolled
back events, which increases up to 40%–60%.

From the three parameters determining the parallel
performance—the event granularity, the computa-
tion/communication ratio, and the number of rollbacks—
the number of rollbacks seems the most predominant.
The detailed execution trace shown in Fig. 9 and Fig. 10
exposes that during periods of synchronization, it takes up
to ten seconds to resynchronize the parallel computation
before any progress can be made (each GVT update takes
0.05 seconds in this execution). The event rate is the
number of events that are committed per second, and
in this respect a measure for progress. During normal
operation, the simulation reaches a event rate of 19 000
events per second. In Fig. 9 we can identify four serious
glitches in the event rate, around GVT update period 400,
950, 1150, and 1750. In these periods, the event rate drops
to 10% of the steady state performance (about 2000 events
per second). In particular the period centered around 1750
takes about 10 seconds to resynchronize (see Fig. 10) and
weight heavy upon the parallel performance.

The periods of resynchronization are a typical example of
thrashing, where most of the time is spent on simulation
rollback instead of forward simulation. While one simula-
tion process rolls back, another process advances in sim-
ulation time. When the rollback is completed, the simu-
lation process restarts with event execution and as a re-
sult sends event messages to neighboring processes. These
event messages arrive in the simulation past of the neigh-
boring processes, and trigger a rollback, etc., etc., until the
simulation processes are in synchrony. The thrashing be-
havior is a combination of a number of factors: number of
processors, lattice size, event granularity, and temperature
(synchronization frequency). This behavior is also appar-



0 500 1000 1500 2000

periodic GVT update

0

5000

10000

15000

20000

ev
en

t r
at

e

EWMA

Figure 9: Simulation progress (event rate) during execu-
tion. Parallel Ising spin with lattice size 256 � 256 on 6
processors. The curve is smoothed by taking the exponen-
tial weighted moving average (EWMA), as the EWMA fol-
lows the dynamic behavior accurately and can be efficiently
computed.

1600 1700 1800 1900

periodic GVT update

0

5000

10000

15000

20000

ev
en

t r
at

e

EWMA

Figure 10: Simulation progress (event rate) during execu-
tion (detail of Fig. 9 between 1600 and 1900).

ent from Fig. 6 for temperature T � 2 � 0. Although it not
significantly influences the parallel performance, the sud-
den increase in average rollback length for event granular-
ity range 4–10 is an indication of instability.

To shorten these periods of resynchronization, the opti-
mism of the protocol must be throttled, that is, the simula-
tion execution mechanism should not execute events that lie
in the remote future as it is likely that these events have to
be rolled back eventually. In effect, the progress of the indi-
vidual simulation process should be bound to a limited sim-
ulation time window. In this way, the processes are forced
to synchronize with each other in a short time frame, after
which the simulation can continue as before. The effect of
a simulation time window can be clearly seen in Fig. 11.
For simulation time window 3000, the absolute efficiency
drops abruptly for the event granularity range 4–10, after
which the absolute efficiency figure slowly recovers (see
also Fig. 6). If the optimism is throttled with a simulation
time window of 2000, the absolute efficiency starts below
the results for the time window 3000 in the event granu-
larity range 0–3. However, in the 4–25 range the throttled
simulation with time window 2000 performs superior to the
time window 3000 simulation. Afterwards, their results are
almost identical. This observation motivates an adaptive

approach that recognizes the periods of resynchronization
and adjusts the simulation time window dynamically, such
that the efficiency is improved significantly.

0 10 20 30 40 50

work/trial

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

lu
te

 e
ffi

ci
en

cy

VT window = 2000
VT window = 3000

Figure 11: Absolute efficiency for different Virtual Time
windows. Parallel Ising spin with lattice size 256 � 256 and
T � 2 � 0 on 6 processors.

5 Conclusions

The application of optimistic parallel discrete event simu-
lation methods such as Time Warp to asynchronous cellular
automata is in potential a viable approach to parallelize the
simulation. However, two essential extensions to the Time
Warp method have to be included: incremental state sav-
ing and optimism control (throttling). The results show that
given a fast communication network such as Myrinet, Time
Warp is viable alternative for parallel simulation. In partic-
ular, low communication latencies are essential to achieve
performance, as the event messages are small.

In order to design and implement effective optimism con-
trol, we will further study the different phases in the dy-
namic behavior of Time Warp. The formulation of sim-
ple though applicable metrics to control the amount of op-
timism in the Time Warp method determines the success of
the mechanism.

References

H. Bersini and V. Detours. Asynchrony induces stability
in cellular automata based models. In Proceedings of the
IVth Conference on Artificial Life, pages 382–387, Cam-
bridge, MA, July 1994.

K. M. Chandy and J. Misra. Distributed simulation: A
case study in design and verification of distributed pro-
grams. IEEE Transactions on Software Engineering, SE-
5(5):440–452, September 1979.

R. J. Glauber. Time-dependent statistics of the Ising
model. Journal of Mathematical Physics, 4(2):294–307,
February 1963.



D. R. Jefferson. Virtual time. ACM Transactions on Pro-
gramming Languages and Systems, 7(3):404–425, July
1985.

M. Livny. A study of parallelism in distributed simula-
tion. In Proceedings of the 1985 SCS Multiconference on
Distributed Simulation, pages 94–98, San Diego, CA, Jan-
uary 1985.

B. D. Lubachevsky. Efficient parallel simulation of asyn-
chronous cellular arrays. Complex Systems, 1(6):1099–
1123, December 1987.

E. D. Lumer and G. Nicolis. Synchronous versus asyn-
chronous dynamics in spatially distributed systems. Phys-
ica D, 71:440–452, 1994.

B. J. Overeinder and P. M. A. Sloot. Application of Time
Warp to parallel simulations with asynchronous cellular
automata. In Proceedings of the 1993 European Simula-
tion Symposium, pages 397–402, Delft, The Netherlands,
October 1993.

B. J. Overeinder and P. M. A. Sloot. Parallel perfor-
mance evaluation through critical path analysis. In High-
Performance Computing and Networking (HPCN Europe
’95), number 919 in LNCS, pages 634–639. Springer-
Verlag, May 1995.

B. J. Overeinder, J. J. J. Vesseur, F. v/d Linden, and
P. M. A. Sloot. A communication kernel for parallel
programming support on a massively parallel processor
system. In Proceedings of the Workshop on Parallel
Programming and Computation (ZEUS’95) and the 4th
Nordic Transputer Conference (NTUG’95), pages 259–
266, Linkøping, Sweden, May 1995.

B. P. Zeigler. Discrete event models for cell space sim-
ulation. International Journal of Theoretical Physics,
21(6/7):573–588, 1982.

Biography

Benno Overeinder received his Master’s degree (cum
laude) in Computer Science at the University of Amster-
dam. He is currently a senior researcher at the department
of Computer Science. His research focus is parallel sim-
ulation of discrete event systems. He has published vari-
ous papers on parallel discrete event simulation, optimistic
parallel simulation methods, parallel performance analysis,
and run-time support systems for parallel and cluster ma-
chines. His research interests are methods and paradigms
in parallel simulation, parallel program environments, and
load balancing.

He can be reached via email: bjo@wins.uva.nl, or
URL: http://wins.uva.nl/˜bjo/

Peter Sloot received a Master’s degree in Chemical
Physics and Theoretical Physics at the University of Am-

sterdam. His PhD work was carried out in collaboration
with the Dutch Cancer Institute and the University of
Amsterdam. Currently he is a professor of Computa-
tional Physics at the University of Amsterdam. His main
interest is in the modeling and simulation of complex
dynamical systems. He is the project leader of the Parallel
Scientific Computing and Simulation group at the UvA
(http://www.wins.uva.nl/research/pscs/),
co-founder of the Computational Science Center Amster-
dam (http://www.beta.uva.nl/institutes/-
csa/) and a consultant in a number of national and
international high performance computing initiatives.


