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Introduction

Large discrete event simulations are known to consume significant amounts of time on sequential
machines. One basic approach to the problem of reducing the required simulation time is the
exploitation of parallelism. However, in parallelizing the simulation new problems arise. Due to
the distributed generation of events causality errors can occur. As a result the sequence in which to
process the events is essentially indeterminate. Several methods have been developed to avoid or to
circumvent these causality errors. One of the methods which seems to offer the greatest potential
as a general purpose simulation mechanism is the Time Warp paradigm [1].

To predict the performance metrics of parallel execution of discrete event simulations, tools have
been developed to analyze the sequential execution of these simulations and to give bounds on the
performance. To that end, an average parallelism evaluation tool is developed and implemented to
obtain a conceptual simple, but very meaningful characterization of the software system and the
bounds on the performance. These performance metrics can also be applied as a measure in the
evaluation of effectiveness of the Time Warp paradigm in parallel simulation. An implementation
of the Time Warp paradigm is realized on the Parsytec GCel-3/512 as well as on the Parsytec
PowerXplorer under the PARIX operating system.

The Time Warp Performance Evaluation Environment

We are specifically interested in the application of the Time Warp method to dynamic complex
systems that can be modelled with Asynchronous Cellular Automata (ACA) [2]. In addition to
the modelling and parallel simulation of ACA, we are also interested in the performance prediction
and evaluation of the simulation system. To that end, we formulated a benchmark environment
that provides a platform for experimentation with ACA. The benchmark environment, aside of the
ACA computational model and the Time Warp protocol, is composed of the following parts: a
performance model, a parallelism analysis tool, and performance measurement tool (see Fig. 1).

A performance model of the ACA and the Time Warp method is constructed for the prediction
of the parallel performance of the ACA with the Time Warp method. We describe the stochastic
characteristics of the components of the system with use of Markov modelling and measure their
response to well defined stimuli.

The use of the critical path analysis tool is twofold. First, it can be used within the validation
and verification of the standalone ACA performance model. The ACA performance model gives a
prediction about the parallel performance, and the critical path analysis tool actually determines
the potential parallelism, i.e., the parallelism inherent to the application. Second, this measured
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Figure 1: The simulation environment.

inherent parallelism is used in the evaluation of the efficiency and effectiveness of the parallel
simulation method. The performance metrics measured after execution of the ACA with Time
Warp can be compared with the results of the critical path analysis tool. In this way it is possible
to see how much of the potential parallelism in the application is actually realized. This allows for
fine tuning of the simulation environment to the parallel platform.

The performance model of the ACA and the Time Warp method can than be verified by per-
formance measurements extracted from the execution of the simulation system. This will result in
a better understanding whether an application can be effectively solved by an ACA in combination
with the Time Warp mechanism.

Critical Path Analysis and Ising Spin System Simulation

Critical Path Analysis

In performance analysis and evaluation of Parallel Discrete Event Simulation (PDES) protocols
we need a measure to compare the effectiveness of the different protocols. A relative criterion can
be obtain by comparing the measured execution time of the different protocols. This allows for a
ranking of the different protocols, but does not answer the question: “How much of the inherent
parallelism is actually realized and what is the lower bound on the execution time?” This lower
bound on the execution time is the ultimate goal that the PDES protocols strive to, and not their
relative position among the others. An absolute measure that expresses the ability of the PDES
protocol to exploit the available parallelism would be very useful in the evaluation of the various
protocols.

A discrete event simulation can be described by a program dependency graph, also called a
space-time diagram (see Fig. 2). In the program dependency graph, the concurrent entities are
identified and their intra- and interdependencies described by directed arcs in the graph. The lower
bound on execution time (and the inherent parallelism) can be computed from the critical path in
the space-time diagram [3].



50 - - = type 1 constraint

—= type 2 constraint

Simulation Time

40

30

20

10

LP,  LP, - LPy Space

Figure 2: Space-time diagram depicting the events with their dependency constraints.

Ising Spin System Simulation

For our example, we will look into the two-dimensional version of the Ising spin system. The model
is comprised of an n x n square lattice in which each lattice site has an attribute called spin, which
can take on either of the values 1 (known as up spin) or -1 (known as down spin). Spins on adjacent,
nearest-neighbor sites interact in a pair-wise manner with a strength J (known as the exchange
energy). There may also be an external field of strength B (known as the magnetic field). The
magnetization of the system is the difference between the number of up and down spins on the
lattice.

The parallel implementation of the Ising spin system exploits data parallelism available in the
system. The lattice is subdivided in sub-lattices of equal sizes, and distributed over the parallel
processors.

Sample Run with Critical Path Analysis Tool

From the execution of the Ising spin system with the Time Warp protocol on sixteen nodes of the
Parsytec PowerXplorer, we have extracted the following trace data.

In Fig. 3(a) the profile of the execution of the simulation is shown. During the execution, the
number of active processors vary between one and sixteen. One can clearly identify an initialization
phase in the beginning of the simulation. This corresponds to the exchange of boundary information,
required by the Ising spin implementation. After the initialization phase, the simulation continues
with randomly updating lattice points, and exchanging message when boundary points are flipped.

Figure 3(b) is a histogram of the degree of parallelism during the execution of the Ising spin
simulation. From the shape of the execution, one can see that 13 % of the time only one process is
active (most prominent in the initialization phase of the simulation). The other values are clustered
around the degree of parallelism of ten. This corresponds with the second phase of the execution in
Fig. 3(a). The average parallelism, A, for this simulation run is 8.82, while the measured speedup,
S, is 1.90.

The abstraction of the parallel execution to the space-time diagram and the critical path analysis
provides information for performance “debugging” and directs users to bottlenecks in the program.
This can be very useful in comparing different decompositions of the same problem by showing how
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Figure 3: Trace output of Ising spin simulation.

much concurrency is available in each decomposition.

References

[1] D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming Languages and Systems,
vol. 7, no. 3, pp. 404-425, July 1985.

[2] B. J. Overeinder and P. M. A. Sloot, “Application of Time Warp to parallel simulations with
asynchronous cellular automata,” in Proceedings of the 1993 Furopean Simulation Symposium,
(Delft, The Netherlands), pp. 397-402, Oct. 1993.

[3] B. J. Overeinder and P. M. A. Sloot, “Parallel performance evaluation through critical path
analysis,” in Proceedings of the HPCN Europe 95 Conference, (Milan, Italy), Springer Verlag,
May 1995.

Contact address

Contact: B. J. Overeinder

Institution: Parallel Scientific Computation & Simulation Group
Department of Computer Science, University of Amsterdam

Mail: B. J. Overeinder
Parallel Scientific Computation & Simulation Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Phone: +31 20 525 7463

Fax: +31 20 525 7490

Email: bjo@fwi.uva.nl

WWW: http://www.fwi.uva.nl/fwi/research/vgd/pwrs/



