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Chapter 1

Introduction

“355/113 — Not the famous irrational number π ,
but an incredible simulation!”

1.1 Rationale
Simulation is an everyday activity that is indispensable in society for the last
decennia. Simulation spans a spectrum of activities aimed to gain more insight
in the system under study. The system under study can be anything from the
aerodynamic properties of a new airplane under development, to the intrinsics
of protein folding into a complex, three-dimensional shape. Or the system un-
der study is an organization or a community, for example a company that has
to manage the stock logistics efficiently, or in health care where one study the
variability in the spread of HIV and hepatitis C in injecting drug users.

Although the research disciplines differ, the approach to the simulation
study is similar. A model of an actual or theoretical physical system is de-
signed, experiments with the model are executed, and the results of the exper-
iment are analyzed. Models of a physical system come in all sorts: the most
exact model is the physical system itself, a scaled model in size or dimension of
the physical system, an analog (physical) model, or an abstract model written
in a formal notation (e.g., mathematical formulas or a formal logic language).
The type of model, or level of abstraction from the physical system, also deter-
mines the method of executing experiments with the model. For example, the
tidal movement of the sea in the Schelde delta in the Netherlands are exten-
sively studied and simulated. A scaled model of the Schelde delta is designed
by the Waterloopkundig Laboratorium. The scaled Schelde basin has l ×w × h
dimensions of 30×22.5×1.2 meter. The Schelde basin includes a wave generator
that creates waves with different characteristics, and allows to study the influ-
ence of three-dimensional wave attack on structures. Instead of a scaled model
of the Schelde delta, an abstract model using partial differential equations can
be constructed. In general, abstract models composed of mathematical equa-
tions or formal logic notation are realized in computer programs, also called
computer simulations, such that the experiments with the abstract model can
be executed on computers. This is called the computer experiment. The com-
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puter experiment is more flexible than experiments with the (scaled) physical
system, allows exact control over the experimental conditions, and is in gen-
eral more cost effective. In case of theoretical physical systems, the real-world
system is not at hand for experimentation, and computer experiments are the
only alternative. However, validation of the abstract model is of greatest impor-
tance: does our computer experiment describe the behavior of the real-world or
theoretical physical system? In a paper by Stevenson (1999), a critical look is
presented at quality in large-scale simulations.

This thesis is about computer simulation, and in particular about meth-
ods for parallel or distributed computer simulation. The increasing complex-
ity of the real-world and theoretical systems under study, requires enormous
amounts of time on the fastest available sequential computers. The challenge
to reduce the so-called turnaround time of the computer simulation—that is
the time required to complete the computer experiment—is approached by ex-
ploiting the parallelism that is inherent to the system, and is made available
in the abstract model of the system. Exploiting the parallelism in the simu-
lation model requires an integrated hardware-software approach. The paral-
lel hardware architecture consisting of processing nodes interconnected by a
communication network, and the parallel software that orchestrates the con-
current activities. Parallel hardware architectures are briefly discussed in this
chapter. Software methods for parallel and distributed simulation are the main
contribution of this thesis.

In the following sections of this introductory chapter, we present the ba-
sic issues in modeling and simulation. In particular a specific class of mod-
els is discussed, namely discrete event systems, which find more and more
application in science and engineering. The parallelization of discrete event
simulations is a non-trivial task. Many problems appearing in parallel and
distributed computing are present in parallel discrete event simulation, e.g.,
non-deterministic program execution (although the behavior is deterministic),
timestamp ordering and process synchronization, and distributed coordination.
Apart from the simulation specific problems, the non-simulation specific op-
portunities and pitfalls of parallel computing are lurking, for example, data
decomposition, load mapping and balancing, etc. These opportunities and pit-
falls in parallel discrete event simulation are presented in the remainder of the
thesis.

After the presentation of the basic issues in modeling and simulation—see
Banks et al. (1999) or Zeigler et al. (2000) for a more in-depth presentation—a
short exposé is given about parallel computing. Different hardware architec-
ture design alternatives are presented, and different objectives for parallel and
distributed computing are discussed. For an extensive discussion of parallel
computer architectures, see Hwang (1993). In addition to the parallel comput-
ing objectives, so-called resource management strategies, i.e., the allocation of
computers and network interconnections, have to be considered.
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1.2 Modeling and Simulation

1.2.1 Systems and System Environment

To model a system, it is necessary to understand the concept of a system and
the system constraints. We define a system as a group of objects that are joined
together in some interaction or interdependence toward the accomplishment of
some purpose. An example is a production system manufacturing automobiles.
The machines, component parts, and workers operate jointly along an assembly
line to produce a high-quality vehicle.

A system is often affected by changes occurring outside the system. Such
changes are said to occur in the system environment. Depending on the purpose
of the simulation study, or the experimental framework, one must decide on the
boundary between the modeled system and its environment.

1.2.2 Components of a System

In order to understand and analyze a system, a number of terms are defined.
An entity is an object of interest in the system. An attribute is a property of
an entity. An activity represents a time period of specified length. If a bank
is being studied, customers might be one of the entities, the balance in their
checking accounts might be an attribute, and making deposits might be an
activity.

We define the state of a system to be that collection of variables necessary to
describe a system at a particular time, relative to the objectives of a study. In
a study of a bank, examples of possible state variables are the number of busy
tellers, the number of customers in the bank, and the time of arrival of each
customer in the bank.

We categorize systems to be one of two types, discrete or continuous. A
discrete system is one for which the state variables change instantaneously at
separated points in time. A bank is an example of a discrete system, since
state variables—e.g., the number of customers in the bank—change only when
a customer arrives or when a customer finishes being served and departs. A
continuous system is one for which the state variables change continuously with
respect to time. An airplane moving through the air is an example of a contin-
uous system, since state variables such as position and velocity can change
continuously with respect to time. Few systems in practice are completely dis-
crete or completely continuous, but since one type of change predominates for
most systems, it will usually be possible to classify a system as being either
discrete or continuous.

With respect to discrete systems, we define an event as an instantaneous
occurrence that may change the state of the system. The term endogenous is
used to describe activities and events occurring within a system, and the term
exogenous is used to describe activities and events in the environment that
affect the system.
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1.2.3 Model of a System

A model is defined as a representation of a system for the purpose of studying
the system. In practice, what is meant by “the system” depends on the objec-
tives of a particular study. For most studies, it is not necessary to consider all
the details of a system; thus, a model is not only a substitute for a system, it
is also a simplification of the system. On the other hand, the model should
be sufficiently detailed to permit valid conclusions to be drawn about the real
system.

Different models of the same system may be required as the purpose of
investigation changes. For example, if one wants to study a bank to determine
the number of tellers needed to provide adequate service for customers who just
want to cash a check or make a savings deposit, the model can be defined to
be that portion of the bank consisting of the tellers and the customers waiting
in line or being served. If, on the other hand, the loan officer and the safety
deposit boxes are to be included, the definition of the model must be expanded
in an obvious way.

Just as the components of a system were entities, attributes, and activities,
models are represented similarly. However, the model contains only those com-
ponents that are considered to be relevant to the study. Important qualities of
a model of a system are realizability and predictability (Misra 1986). Realiz-
ability defines that the state of the model at a certain simulation time t is a
function of its initial state and the changes on the state up to and including
t . It says merely that a model cannot guess any future changes to the state of
the system. Predictability guarantees that the system is “well defined” in the
sense that the output of the model up to any time t can be computed given the
initial state of the system.

1.2.4 Experimentation and Simulation

At some point in the lives of most systems, there is a need to study them to try
to gain some insight into the relationships among various components, or to
predict performance under some new conditions being considered. Figure 1.1
maps out different ways in which a system might be studied.

While there may be an element of truth in the famous advice of Bratley, Fox,
and Schrage (1987)∗ that describes simulation as a “method of last resort,” the
fact is that we are very quickly led to simulation in many situations, due to
the sheer complexity of the systems of interest and of the models necessary to
represent them in a valid way.

Given, then, that we have an abstract model to be studied by means of
simulation (henceforth referred to as a simulation model), we must then look
for particular tools to execute this model (i.e., actual simulation). It is useful
for this purpose to classify simulation models along three different dimensions:

∗“The best advice to those about to embark on a very large simulation is often the same as
Punch’s famous advice to those about to marry: Don’t!”
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System

model
Abstract

solution
Analytical

model
Physical

of the system
with a model
Experiment

actual system
with the

Experiment

Simulation

Figure 1.1: Taxonomy of methods to study a system.

Static vs. Dynamic Simulation Models A static simulation model is a rep-
resentation of a system at a particular time, or one that may be used to rep-
resent a system in which time simply plays no role; examples of static simula-
tions are Monte Carlo models. On the other hand, a dynamic simulation model
represents a system as it evolves over time, such as a conveyor system in a
factory.

Deterministic vs. Stochastic Simulation Models If a simulation model
does not contain any probabilistic (i.e., random) components, it is called de-
terministic; a complicated (and analytically intractable) system of differential
equations describing a fluid flow might be such a model. In deterministic
models, the output is “determined” once the set of input quantities and rela-
tionships in the model have been specified, even though it might take a lot of
computer time to evaluate what it is. Many systems, however, must be mod-
eled as having at least some random input components, and these give rise to
stochastic simulation models. Most queueing and inventory systems are mod-
eled stochastically. Stochastic simulation models produce output that is itself
random, and must therefore be treated as only an estimate of the true charac-
teristics of the model; this is one of the main disadvantages of such simulation.

Continuous vs. Discrete Simulation Models Loosely speaking, we define
discrete and continuous simulation models analogously to the way discrete and
continuous systems were defined in Section 1.2.2. It should be mentioned that
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a discrete model is not always used to model a discrete system and vice versa.
The decision whether to use a discrete or a continuous model for a particular
system depends on the specific objectives of the study. For example, a model of
traffic flow on a freeway would be discrete if the characteristics and movement
of individual cars are important. Alternatively, if the cars can be treated “in
the aggregate,” the flow of traffic can be described by differential equations in
a continuous model.

1.2.5 A Closer Look at System Models

Although many attempts have been made throughout the years to categorize
systems and models, no consensus has been arrived at. However, it is conve-
nient to make the following distinction between the different models:

st
at

e

T30 402010

(a) Trajectory of a continuous-time model.

st
at

e

T30 402010

(b) Trajectory of a discrete-time model.

st
at

e

40302010 T

(c) Trajectory of a discrete event model.

Figure 1.2: Trajectory of the state vector for continuous-time, discrete-time,
and discrete event models.

Continuous-Time Models Here the state of a system changes continuously
over time (see Fig. 1.2(a)). These types of models are usually represented by
sets of differential equations. A further subdivision would be:
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• lumped parameter models expressed in ordinary differential equations
(ODE’s): e.g., ẋ = f (x, u, t), where ẋ = dx/dt is the time derivative of the
systems’ state x .

• distributed parameter models expressed in partial differential equations
(PDE’s): e.g., ∂u/∂t = σ · ∂2u

∂x ∂y .

Discrete-Time Models With discrete-time models, the time axis is dis-
cretized (see Fig. 1.2(b)). The system state changes are commonly represented
by difference equations. These types of models are typical to engineering sys-
tems and computer-controlled systems. They can also arise from discrete ver-
sions of continuous-time models. Example: ẋ = f (x, u, t) to f (xk, uk, tk) =
xk+1 − xk/1t or xk+1 = xk +1t · f (xk, uk, tk). The time-step used in the discrete-
time model is constant.

Discrete Event Models In discrete event models, the state is discretized and
“jumps” in time (see Fig. 1.2(b)). Events can happen any time but only every
now and then at (stochastic) time intervals. Typical examples come from “event
tracing” experiments, queueing models, operations research, image restora-
tion, combat simulation, etc.

1.2.6 Model Execution: Time-Driven versus Event-Driven
We have seen that in continuous systems the state variables change contin-
uously with respect to time, whereas in discrete systems the state variables
change instantaneously at separate points in time. Unfortunately for the com-
putational experimenter there are but a few systems that are either completely
discrete or completely continuous, although often one type dominates the other
in such hybrid systems. The challenge here is to find a computational model
that mimics closely the behavior of the system, specifically the simulation time-
advance approach is critical.

If we take a closer look into the dynamic nature of simulation models—
keeping track of the simulation time as the simulation proceeds—we can dis-
tinguish between two time-advance approaches: time-driven and event-driven.

Time-Driven Simulation

Continuous systems described by, for example, partial differential equations
must be discretized in time and space to be solved on a computer. The execu-
tion mechanism for continuous systems is time-driven simulation, where the
simulation time advances with a fixed increment. With this approach the sim-
ulation clock is advanced in increments of exactly 1t time units. Then after
each update of the clock, the state variables are updated for the time interval
[t, t + 1t]. This is the most widely known approach in simulation of natural
systems. Less widely used is the time-driven paradigm applied to discrete sys-
tems. In this case we have specifically to consider whether:
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• the time step 1t is small enough to capture every event in the discrete
system. This might imply that we need to make 1t arbitrarily small,
which is certainly not acceptable with respect to the computational times
involved.

• the precision required can be obtained more efficiently through the event-
driven execution mechanism. This primarily means that we have to trade
efficiency for precision.

Event-Driven Simulation

In event-driven simulation, also called discrete event simulation, on the other
hand, we have the next-event time advance approach. Here (in case of discrete
systems) we have the following phases:

1. The simulation clock is initialized to zero and the times of occurrence of
future events are determined.

2. The simulation clock is advanced to the time of the occurrence of the most
imminent (i.e., first) of the future events.

3. The state of the system is updated to account for the fact that an event
has occurred.

4. Knowledge of the times of occurrence of future events is updated and the
first step is repeated.

The most important advantage of this approach is that periods of inactivity
can be skipped over by jumping the clock from event time to the next event
time. This is perfectly safe since—per definition—all state changes only occur
at event times. Therefore causality is guaranteed.

1.2.7 World Views in Discrete Event Simulation
All discrete event simulations contain an executive routine for the manage-
ment of the event calendar and simulation clock, i.e., the sequencing of events
and driving of the simulation. This executive routine fetches the next sched-
uled event, advances the simulation clock and transfers control to the appro-
priate routine. The operation routines depend on the world view, and may be
events, activities, or processes (Hooper 1986).

Event Scheduling In event scheduling each type of event has a correspond-
ing event routine. The executive routine processes a time ordered calendar of
event notices to select an event for execution. Event notices consist of a time
stamp and a reference to an event routine. Event execution can schedule new
events by creating an event notice and place it at the appropriate position in
the calendar. The clock is always updated to the time of the next event, the one
at the top of the calendar.
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Activity Scanning In the activity scanning approach a simulation contains
a list of activities, each of which is defined by two events: the start event and
the completion event. Each activity contains test conditions and actions. The
executive routine scans the activities for satisfied time and test conditions and
executes the actions of the first selectable activity. When execution of an activ-
ity completes, the scan begins again.

Process Interaction The process interaction world view focuses on the flow
of entities through a model. This strategy views systems as sets of concurrent,
interacting processes. The behavior of each class of entities during its lifetime
is described by a process class. Process classes can have multiple entries and
exits at which a process interacts with its environment. The executive rou-
tine uses a calendar to keep track of forthcoming tasks. However, apart from
recording activation time and process identity, the executive routine must also
remember the state in which the process was last suspended.

1.3 Parallel Computing

1.3.1 Parallel Architectures
Parallel processing, the method of having many tasks solve one large problem,
has emerged as an enabling technology in modern computing. The past sev-
eral years have witnessed an ever-increasing acceptance and adoption of par-
allel processing, both for high-performance scientific computing and for more
“general-purpose” applications, as a result of the demand for higher perfor-
mance, lower cost, and sustained productivity. The acceptance has been facil-
itated by two major developments: massively parallel processors (MPPs) and
the widespread use of cluster and distributed computing.

Distributed versus Shared Memory

Parallel computers consists of three building blocks: processors, memory mod-
ules, and an interconnection network. There has been a steady development
of the sophistication of each of these building blocks but it is their arrange-
ment that is the most important factor to differentiate one parallel computer
from another. The processor used in current parallel computers are exactly the
same as processors used in single-processor systems. An exemplary illustra-
tion of the use of custom processors in parallel computers is the ASCI initia-
tive (Clark 1998). Within the ASCI project (the US Department of Energy’s
Accelerated Strategic Computing Initiative), a number of parallel computers
are designed and constructed that must scale the performance curve to achieve
100 Tflops (100 · 1012 floating point operations per second) by the year of 2004.
The ASCI machines Red, Blue Pacific, Blue Mountain, and White use respec-
tively the Pentium Pro, PowerPC, MIPS, and POWER3-II microprocessors.
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The interconnection network connects the processors to each other, and
sometimes to memory modules as well. The major distinction between the
so-called distributed-memory and shared-memory variants of parallel com-
puter architectures is whether each processor has its own local memory, or
whether the interconnection network connects all processors to one shared
global memory. These alternatives are called distributed-memory and shared-
memory parallel architectures respectively, and are illustrated in Fig. 1.3.

interconnection network

interconnection network

m

p

m
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Figure 1.3: Distributed-memory and shared-memory parallel architectures.

The memory organization model in shared-memory parallel computers is
categorized in uniform memory access (UMA) and nonuniform-memory-access
(NUMA). In a UMA parallel computer, the physical memory is uniformly
shared by all the processors. All processors have equal access time to all mem-
ory words, which is why it is called uniform memory access. A NUMA parallel
computer is a shared-memory system in which the access time varies with the
location of the memory word. The shared memory is physically distributed to
all processors, called local memories. The collection of local memories forms a
global address space accessible by all processors.

A distributed-memory parallel computer consists of multiple computers, of-
ten called nodes, interconnected by a message-passing network. Each node is
an autonomous computer consisting of a processor, local memory, and some-
times attached disks or I/O peripherals. All local memories are private and are
accessible only by local processors. However, this restriction can be alleviated
by providing distributed shared memories. Internode communication is carried
out by passing messages through the interconnection network.

Shared-memory systems offer the advantage of much easier programming.
Building massively parallel shared-memory systems that also scale is ex-
tremely difficult however. Therefore most successful MPP architectures are
distributed-memory systems.

MPP versus Cluster Computing

Massively parallel processors (MPPs) are now the most powerful computers in
the world. These machines combine a few hundred to a few thousand CPUs
in a single large cabinet connected to hundreds of gigabytes, or even terabytes
of memory (Clark 1998). MPPs offer enormous computational power and are
used to solve computational “grand challenge” problems such as global climate
modeling, nuclear tests simulation, and drug design (Larzelere II 1998; Clark
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2000). As simulations become more realistic, the computational power required
to produce them grows rapidly. Thus, researchers on the cutting edge turn to
MPPs and parallel processing in order to get the most computational power
possible.

The second major development affecting scientific problem solving is dis-
tributed computing. Distributed computing is a process whereby a set of com-
puters connected by a network are used collectively to solve a single large
problem. As more and more organizations have high-speed local area net-
works interconnecting many general-purpose workstations, the combined com-
putational resources may exceed the power of a single high-performance com-
puter. In some cases, several MPPs have been combined using distributed
computing to produce unequaled computational power. The introduction of
faster interconnection networks, such as Gigabit Ethernet, HIPPI, Myrinet,
or SONET/ATM high-speed networks, has resulted into so-called cluster com-
puting. Here the distinction between MPPs and distributed computing almost
disappears for the users.

The most important factor in the take up of day to day distributed com-
puting is cost. Large MPPs typically cost more than $10 million. In contrast,
users see very little cost in running their problems on a local set of existing
computers. It is uncommon for distributed-computing users to realize the raw
computational power of a large MPP, but they are able to solve problems sev-
eral times larger than they could using one of their local computers.

1.3.2 Resource Management: Scheduling and Load Bal-
ancing

Essential to parallel computing is the efficient use of the resources, i.e., the
components that make up the parallel computer such as the processors, the
interconnection network, and the I/O subsystem. The allotment of resources to
(parallel) applications is called resource management. Resource management
can be directed by different strategies or objectives, such as resource utiliza-
tion, fast turnaround times, and fair use of resources. There is a vast amount
of literature on resource management, and some starting points can be found
in Nagel and Williams (1998) and Błażewicz et al. (2000). In this section we
will discuss two important resource management strategies in parallel and dis-
tributed computing, namely high performance and high throughput computing.

In the following discussion on scheduling and load balancing, we will use
the terms job, process, and task to make a hierarchical distinction between the
components of a sequential or parallel program. A job is the execution of a
sequential or parallel program, and can be composed of one or more processes.
A process, or task, is a logical processor executing sequential instructions and
has its own state and data.
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High Performance versus High Throughput Computing

The difference between high performance computing (HPC) and high through-
put computing (HTC) is best illustrated by two typical (simulation) applica-
tions requiring vast amounts of computing resources (processing time), and
are therefore executed on a parallel or distributed computer:

• Iteratively improve or optimize a parameter estimate in a loop of sim-
ulation runs, requiring the simulation turnaround time to be as fast as
possible.

• Statistical parameter study requiring a whole series of simulation runs
with identical input parameters or small changes in the parameters.

The first simulation type is a high performance computing application,
where the resource management allocates resources to the application in order
to minimize the turnaround time. As a consequence, resources might not be
fully utilized throughout the simulation execution run. For the second sim-
ulation type, the resource management follows a different strategy. In the
statistical parameter study, hundreds to thousands of independent simulation
runs are necessary in order to collect sufficient data for statistical analysis.
These simulation runs can be sequential or parallel execution runs, but the
main resource management concern is to dispatch as much simulation runs
per time unit as possible. Not the individual turnaround times of the simula-
tion runs are important, but the number of completed jobs per time unit, thus
falling into the high throughput computing category.

Scheduling and Load Balancing

One of the biggest issues in resource management is the development of ef-
fective techniques for the distribution of processes of a sequential or parallel
program on multiple processors. The problem is how to distribute, or schedule,
the processes among processing elements to achieve some performance goals,
as discussed in the previous section.

Process scheduling methods are typically classified into several subcate-
gories. Local scheduling performed by the operating system of a processor con-
sists of the assignment of processes to the time-slices of the processor. Global
scheduling, on the other hand, is the process of deciding where to execute a pro-
cess in a parallel or distributed computer. In this discussion, global scheduling
methods are classified into two major groups: static scheduling and dynamic
scheduling (often referred to as dynamic load balancing).

In scheduling, the assignment of tasks to processors is done before task
execution begins. Information regarding task execution times and processing
resources is assumed to be known at execution time. A task is always exe-
cuted on the processor to which it is assigned. Typically, the goal of scheduling
methods is to minimize to overall execution time of a concurrent program while
minimizing the communication delays.
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Dynamic load balancing is based on the redistribution of processes among
the processors during execution time. This redistribution is performed by
transferring processes from the heavily loaded processors to the lightly loaded
processors (called load balancing) with the aim of improving the performance
of the application.

1.4 Problems and Challenges
In scientific computing, much attention has been paid to continuous-time sim-
ulation and Monte Carlo simulation, while discrete event simulation was tra-
ditionally applied in the fields of computer science, operations research and
management science. In recent years, there is an increasing interest in the ap-
plication of discrete event simulation to solve problems from natural sciences.
In particular, problems with heterogeneous spatial and temporal behavior are,
in general, most exactly mapped to asynchronous models. The interest in dis-
crete event simulation now is motivated by the ability of this protocol to capture
the asynchronous behavior that is a qualifying characteristic of these models.
Also with the development of new paradigms and methodologies to solve scien-
tific problems, discrete event simulation becomes an effective execution model
for this class of problems.

Although event-driven simulation is considered an expensive execution
model, in contrast to time-driven execution model used in continuous-time
simulation, it is an efficient execution model for the class of asynchronous prob-
lems. Besides the aspect of asynchrony, a general tendency is the construction
of more realistic models resulting in more complex and larger simulations,
which require vast amounts of execution time. One fundamental method to re-
duce the execution time of large discrete event simulations is the exploitation
of parallelism inherent in this class of simulations (Berry and Jefferson 1985;
Livny 1985).

Another application area that revitalized the interest in parallel and dis-
tributed simulation in recent years, are virtual environments into which hu-
mans or devices are embedded. A multiple user virtual environment simula-
tion widely used by the military today is for example battlefield training ex-
ercises. A variation on this theme is to embed into the virtual environment
actual physical components, possibly in addition to human participants. This
is often used to test the component, for example, to test the operability of the
fire department in case of a large blaze near an oil refinery. The the U.S. De-
partment of Defense developed a standardized framework called High Level
Architecture (HLA) for this type of “mock-up” simulations (Defense Modeling
and Simulation Office 1999). From a technical standpoint, HLA is important
because it provides a single architecture that spans both the parallel and dis-
tributed simulations and virtual environments (Fujimoto 2000).

Our primary interest is high performance computing in scientific simula-
tion, thus reducing the turnaround times of large scientific simulations. Our
effort to reduce the turnaround times of large simulations is divided into two
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strategies: scheduling and load balancing.
First, we study the parallel scheduling of events with the Time Warp par-

allel simulation method (Jefferson 1985). Most research in parallel and dis-
tributed discrete event simulation is focused on protocol design; and although
there are encouraging advances, none of the protocols devised thus far have
been shown to perform efficiently under different conditions (resulting from,
for example, dynamic execution behavior and available resources). We have
put our research effort into parallel simulation methods in perspective of the
projected use for large, data-intensive scientific simulations. This resulted in
the adaption and extension of the Time Warp method to provide efficient sup-
port for this class of simulations. In general, the execution behavior of parallel
discrete event simulation is extremely complex by its asynchronous, nondeter-
ministic concurrent characteristics. As a detailed knowledge of the execution
behavior of parallel simulation methods is essential for the successful applica-
tion in parallel computing, an environment to study this execution behavior to
extract comprehensive information is designed.

Second, we study dynamic load balancing techniques for parallel simula-
tion on clusters of workstations. The use of clusters of workstations becomes
in a progressively increasing extent a parallel platform to solve large scientific
problems. The shared resources in a cluster need an adaptive resource man-
ager that is able to redistribute the computational load as resources become
available or unavailable. Furthermore, the effectivity of the Time Warp paral-
lel simulation method is to some extent dependent on the load balance. If the
parallel Time Warp simulation computation experiences load imbalance, the
performance of the simulation is not only hampered by the fact that some of
the processors have more (useful) work to do than other processors, but also
the Time Warp method overhead increases significantly, resulting in a severe
performance drop. Hence, an adaptive runtime support environment that is
able to deal with the dynamic availability of resources and the dynamic behav-
ior of the simulation application is a valuable facility in providing a parallel
simulation environment for clusters of computers.

1.5 Outline of Thesis
The thesis is composed of two parts. The first part reports on the research
in parallel discrete event simulation methods as well as on the application of
these methods. The second part presents the study on dynamic load balancing
facilities for parallel programs, including an experimental assessment of the
load balancing environment.

Part I, Chapter 2 starts with an overview of parallel discrete event simu-
lation (PDES) methods and the current status in PDES research. The funda-
mental problem in PDES is formulated, and two basic approaches to solve this
problem are presented. The two approaches are known as conservative meth-
ods and optimistic methods. For both basic approaches, a number of methods
and extensions to these methods have been developed. In particular, optimistic
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simulation methods are an active research field. The optimistic simulation
methods have been used in various application areas, all with their specific re-
quirements. These requirements has resulted in a number of extensions to the
basic optimistic simulation method, making this method generally applicable
to a large class of simulation problems.

The design and implementation of an optimistic simulation environment
called APSIS is described in Chapter 3. The APSIS simulation environment
incorporates the Time Warp optimistic simulation method, and is designed for
data-intensive, scientific simulation applications. This simulation class im-
poses a number of design constraints that resulted in a number of extensions
to the basic Time Warp optimistic simulation method. In particular, special
considerations are taken for efficient data structures for the event lists and the
dynamic generation and retraction of simulation events. Furthermore, effec-
tive memory management support, which is essential for data-intensive simu-
lations, is studied.

Together with the APSIS simulation environment, the APSE parallelism
analysis environment is developed. The parallel simulation execution analysis
methods incorporated in the APSE environment are described in Chapter 4.
The theoretical space-time model used by the analysis method is discussed, and
the analysis techniques working on this space-time model are explained. The
analysis method is very general, and can be applied to message-passing par-
allel programs, including object-oriented programs. The results of the APSE
analysis can be used to assess the available parallelism that is inherent to the
simulation. This inherent parallelism is a yardstick to compare the amount
of parallelism that is realized, or effectively used by the Time Warp optimistic
simulation method with. Chapter 4 concludes with an experimental validation
and assessment of the APSIS/APSE environment for a number of relative sim-
ple queueing simulations. The execution behavior of the queueing simulations
are well-understood and hence experimental APSE results can be verified with
the theoretically expected parallel execution behavior.

Chapter 5 presents an extensive case study of the application of the Time
Warp simulation method to asynchronous cellular automata. The concept of
asynchronous cellular automata is a general solving methodology for a large
class of data-intensive, scientific applications. The asynchronous cellular au-
tomata application instance used to experiment with the APSIS/APSE envi-
ronment is the continuous-time Ising spin system. The Ising spin system is a
fairly simple model, but exhibits complex spatio-temporal behavior. As such,
the Ising spin model is an excellent application to assess the APSIS/APSE en-
vironment. The critical behavior of the Ising spin system also influences the
execution behavior of the Time Warp simulation method in an unexpected, but
explainable, manner.

The critical behavior of the Ising spin system and its influence on the ex-
ecution behavior of the Time Warp method is further investigated in Chap-
ter 6. Critical phenomena as observed in Ising spin systems are characterized
by infinite correlation lengths (or in finite systems, by system-size correlation
lengths). Particular these critical phenomena seem to influence the execution
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behavior of the Time Warp method. For example, if we consider the turnaround
times of the Ising spin system simulation with Time Warp, we observe a cer-
tain “constant” turnaround time if the Ising spin system is at a certain distance
from the critical point. However, around the critical point in the Ising spin sys-
tem, the Time Warp simulation turnaround times scale in a non-trivial way.
Chapter 6 studies this remarkable phenomena, and relates this behavior to
so-called self-organized criticality discovered in the Time Warp method.

Clusters of workstations, but also distributed computers interconnected by
wide-area networks, are used as an alternative parallel computing platform
for HPC or HTC applications, including parallel simulations. But the dynamic
availability of the computing resources in such clusters necessitates an adap-
tive runtime support system that allows the migration of computational work
from overloaded to idle resources, or from relocated resources to available re-
sources. Part II, Chapter 7 first introduces the concepts of resource manage-
ment and load balancing. Next, our research contribution to adaptive runtime
support systems and task migration is presented. The task migration facilities
are incorporated into the well-known PVM message-passing environment. The
adaptive runtime support system is called Dynamite. The dynamic task mi-
gration facility of the Dynamite environment is evaluated by a series of exper-
iments. The experiments are accomplished with the NAS Parallel Benchmark
kernels and the GRAIL finite-element model simulation. Dynamic load balanc-
ing of optimistic parallel Time Warp simulations need extra research effort, as
load balance or imbalance also influences the execution behavior of the Time
Warp simulation method. Experiments with optimistic parallel simulation us-
ing the Time Warp method are not yet accomplished at the date of this writing,
and are part of ongoing research.



Part I

Scheduling Strategies





Chapter 2

Issues in Parallel Discrete Event
Simulation

People like us, who believe in physics, know that the distinction between
the past, present and future is only a stubbornly persistent illusion.

—Albert Einstein

2.1 Introduction
With the increasing complexity of the world in which we live, scientists and en-
gineers devise simulation models that predict the complexity but require enor-
mous amounts of time on the fastest available sequential machines. New ap-
plications that utilize all available computational resources outstrip the steady
performance improvements of sequential machines, as the systems we envision
are just one step bigger and more sophisticated that the current systems.

Many scientific, engineering, military, and economics projects depend heav-
ily on simulation and the results from these simulation are often on the time-
critical path of the project. One basic approach to reduce the required simula-
tion time is the exploitation of parallelism (for discussion of high-performance
computing versus high-throughput computing see Section 1.3.2). If the simula-
tion problem is extremely regular, a time-driven approach is reasonable where
the different parts of the simulation are executed synchronously in simulated
time. However, for discrete event systems with a highly irregular temporal
behavior, the amount of work that can be performed concurrently at a certain
point in simulated time is marginal. This implies that with a synchronous
time-driven execution mechanism, only a limited number of concurrent activi-
ties in the simulated system can be exploited by parallel processing. Therefore,
parallel discrete event simulation methods have been developed to exploit the
available parallelism in the discrete event system. Just until recently, paral-
lel discrete event simulation was merely an academic research topic, but with
the current available high-performance hardware and software platforms, a
true revival of the use of parallel discrete event simulation in industrial and
military application areas can be observed. Typical examples are (mobile) com-
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munication network simulation (Bhatt et al. 1998) and combat simulation (Fu-
jimoto 1998; Smith 1998).

Although discrete event simulation contains a substantial amount of par-
allelism, the parallelization is very difficult in practice. As in asynchronous
discrete event systems few events occur at a single point in simulation time,
the concurrent execution of events at different points in simulated time is re-
quired. A major drawback is the inherent complexity of this type of simulation,
since the notion of a global clock that synchronizes the events is released. The
absence of a global clock necessitates sophisticated synchronization algorithms
to ensure that cause-and-effect relationships are correctly reproduced by the
simulator. The synchronization algorithm that is essentially concerned with
the correct ordering, or scheduling, of asynchronous execution of events over
the distributed or parallel system is the heart of the parallel discrete event
simulation problem. There are basically two methods to impose the correct
temporal order of asynchronous event execution: conservative and optimistic
methods. Alternative methods have been proposed but can be reduced to these
two.

The conservative approach proposed by Chandy and Misra (1979, 1981),
and independently by Bryant (1977), strictly imposes the correct temporal or-
der of the events. The optimistic approach, introduced by Jefferson (1985),
allows the cause-and-effect relationship to be broken but uses a detection and
recovery mechanism: whenever the incorrect temporal order of events is de-
tected a rollback mechanism is invoked to recover. Both approaches have lim-
ited scope of applicability.

This chapter presents a survey of the issues in parallel discrete event sim-
ulation, and in particular details on topics related to the optimistic simula-
tion method. The comprehensive survey of the optimistic simulation method
establishes the basis for the design considerations and decisions of the par-
allel simulation environment presented in Chapter 3 and Chapter 4, and the
interpretation and analysis of the computer experiments presented in Chap-
ter 5. In the following sections, we introduce the basic concepts used in parallel
discrete event simulation for both the conservative and the optimistic meth-
ods. Hereafter, the conservative and optimistic methods themselves are pre-
sented, including extensions to the basic methods. Due to the complexity of
the execution methods for parallel discrete event simulation it has been recog-
nized that a structured categorization is essential (Fujimoto 1990a; Overein-
der, Hertzberger, and Sloot 1991; Ferscha and Tripathi 1994; Nicol and Fuji-
moto 1994). The chapter concludes with a discussion of the applicability of the
methods to certain classes of problems and which method offers the greatest
potential as a general purpose simulation mechanism.



2.2 Basic Concepts 21

2.2 Basic Concepts

2.2.1 Need for Logical Processes
Asynchronous Parallel Discrete Event Simulation (PDES) strategies typically
aim to decompose the simulation application into a set of concurrently exe-
cuting processes, trying to exploit the parallelism inherent in the respective
model components. The application system being modeled can be viewed as
composed of some physical processes, PP0, PP1,. . ., that interact at various ar-
bitrary points in simulated time.

The simulation model is constructed as a set of logical processes LP0, LP1,. . .,
one per physical process. The principle difference between physical processes
and logical processes is that the latter are mathematical or logical abstractions
of the “real-world” physical processes. Each logical process LPi such defined,
contains a portion of the state of the system being simulated corresponding to
the physical process it models, as well as a local clock that denotes the progress
of this process. As a consequence, the subset of the state variables Si is unique
to a specific logical process LPi : the state variables are not shared, i.e., Si ∩

S j = ∅ (i 6= j) for S = {S1, S2, . . .}. In this context, it is possible to consider
in each logical process LPi two kinds of events: internal events and external
events. The internal events only have causal effects on the local state variables
Si associated with LPi . The external events also affect the state variables in
subsets S j ⊂ S (i 6= j) associated with other logical processes. The interaction
between logical processes takes place through external events.

Now we come to one of the most fundamental concepts in discrete event
simulation, namely the notion of timestamp. Every event (internal and exter-
nal) has both a spatial coordinate, the LPi where the event is scheduled, and
a temporal coordinate, the timestamp determining when the event must be
executed. Events are communicated by exchanging messages, and any logical
process is free to send an event message to any logical process (including it-
self). Hence, the spatial coordinate of the event is specified by the destination
of the message. The temporal coordinate however must be tagged explicitly to
the event message by means of a timestamp indicating the clock value at which
the event must be executed.

Consider for example three airports: Amsterdam, London, and Paris. We
are interested in the arrival/departure throughput of airplanes of the individ-
ual airports and the direct influence the airports have on each other. Here,
the airports are considered to be physical processes. The combination depar-
ture/arrival of an airplane between two of the airports is a point of interac-
tion in simulated time. Note that the airplanes are not modeled as physical
processes. The experimental frame (see Section 1.2) only considers the ar-
rival/departure throughput of the airports.

In the simulation, the airports are implemented as logical processes: a one-
to-one mapping is obtained of physical processes to logical processes, including
a notion of time unique to the subset of state variables that it is responsible for
(see Fig. 2.1). The airports of Amsterdam, London, and Paris are represented
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by the logical processes LPA, LPL , and LPP respectively. Each logical process
LPi , i ∈ {A, L , P}, contains a subset of the state variables Si and a local clock
Ti . The departure and the resulting arrival of an airplane is modeled by a time
stamped event message that is send by the airport where the plane departs
from, to the airport where the plane will arrive. In this example, the departure
event is an internal event, i.e., only has causal effect on the local state vari-
ables; and the arrival event is an external event, i.e., affects the state variables
associated with other logical processes. In the following discussion, the time-
stamp associated with a departure event is the departure time, and analogous,
the timestamp associated with an arrival event is the expected arrival time of
the airplane.

time stamped
event message

LLP

iST i

LPA

LPP

LST L

logical process

T A AS

PST P

Figure 2.1: Logical processes representing the airport model. The arcs between
the logical processes denote the exchange of time stamped event messages.

2.2.2 The Curse of Causality
The decomposition of the application into concurrently executing processes, in-
troduces a complication that is the core problem all PDES strategies are trying
to solve. The problem becomes clear if one examines the operation of a sequen-
tial discrete event simulator. The sequential simulator typically uses three
data structures: the state variables, a future event list (or the calendar), and a
global simulation clock. For the execution routine it is crucial that the earliest
time stamped event (Emin) from the future event list is selected as the one to be
processed next. If the execution mechanism would depart from this rule and
select another event with a larger timestamp (E j ), it would be possible for E j

to change the state variables used by Emin. This implies that one is simulat-
ing a system where the future can affect the past. We call errors of this kind
causality errors.

With the distributed execution of the simulation application, the correct
causality between events must be assured. The distributed execution protocol
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consists of logical processes that interact by exchanging time stamped mes-
sages. Each logical process stores incoming messages in a future event list for
further processing. One can assure that no causality error occurs if each logical
process adheres to the following local causality constraint:

Definition 2.1

Local Causality Constraint A discrete event simulation, consisting of logical
processes that interact exclusively by exchanging time stamped messages,
obeys the local causality constraint if and only if each logical process exe-
cutes events in nondecreasing timestamp order.

To illustrate the causality problem, consider the following example. The
two LPs representing Amsterdam and London have both scheduled an event:
the departure event E1 at logical process LPA with timestamp 21:30∗, and the
departure event E2 at LPL with timestamp 23:15 (see Fig. 2.2(a)). Suppose now
that the execution of E1 schedules an arrival event E3 for LPL containing a
timestamp less than 23:15, for example timestamp 22:30 (flight from Amster-
dam to London takes approximately one hour) (Fig. 2.2(b)), then E3 could affect
E2, necessitating sequential execution of all three events. If one had no infor-
mation what events could be scheduled by other events, one would be enforced
to process the only safe event: the one containing globally the smallest time-
stamp. This abolishes all parallelism and results in a sequential execution.
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Figure 2.2: The potential causality error.

During the simulation we must therefore decide whether E1 can be executed
concurrently with E2. But how do we know whether or not E1 affects E2 without
∗All times are GMT.
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actually performing the simulation for E1? It is this fundamental problem the
parallel discrete event simulation strategies must address.

We can classify the parallel discrete event simulation strategies by their ba-
sic approach to solve the fundamental problem, and this results in two distinct
categories: conservative or optimistic methodologies. Conservative approaches
strictly avoid the possibility of any causality error ever occurring. These ap-
proaches rely on a protocol to determine when it is safe to process an event.
The optimistic approaches allow causality errors to occur, but use a detection
and rollback mechanism to recover. In the next sections, we will describe some
of the concepts and the functional behavior of conservative and optimistic sim-
ulation mechanisms.

2.3 Conservative Methods
Historically, the conservative approaches were the first distributed simula-
tion mechanisms (Bryant 1977; Chandy and Misra 1979). The basic problem
conservative mechanisms must address is to determine which event is safe to
process. If a process contains an event E1 with timestamp T1 and the process
can determine that is impossible to receive an event with a smaller timestamp,
then the process can safely execute event E1 without future violation of the
local causality constraint. Processes that do not contain any safe event must
block. This behavior can result in deadlock situations if no appropriate precau-
tions are taken.

Conservative parallel discrete event simulation algorithms statically spec-
ify the links that indicate which process may communicate with which other
processes. Each link has a clock associated with it that is equal to either the
timestamp of the message at the front of that link’s queue or, if the queue is
empty, the time of the last received message. In order to determine when it
is safe to process a message, two conditions are required: (i) messages from
any process to any other process are transmitted in chronological order accord-
ing their timestamps, and (ii) the communication link preserves the order of
messages sent (FIFO). The process repeatedly selects the link with the small-
est clock and, if there is a message in that link’s queue, updates its local clock
to the link’s clock and processes the message. The order of event processing
will be correct because all future messages received will have later timestamps
than the local clock, since they will arrive in chronological order along each
link. If the selected queue is empty, the process blocks. This is because the
process may receive a message over this link with a time that is less than all
the other input timestamps. Thus to insure correct order, the process is forced
to wait for a message to update the clock on the link before the process can
update its local clock. This protocol makes certain that each process will only
process events in nondecreasing timestamp order, and thereby ensuring the
chronological integrity.

Deadlock occurs when there is a cycle of blocked processes and each process
is blocked due to another process in the cycle. For example consider the net-
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Figure 2.3: An example of a deadlock situation.

work of Fig. 2.3. Each process is waiting on the incoming link with the small-
est clock value because the associated message queue is empty (the counter-
clockwise cycle in the figure). And although there are event messages in other
input queues, the three processes are blocked due to another process in the
cycle.

Several methods have been proposed to overcome the vulnerability of con-
servative approaches to deadlock, falling into two categories: deadlock avoid-
ance and deadlock detection and recovery.

2.3.1 Deadlock Avoidance
The deadlock avoidance method introduces a new type of message to be used
in the simulation: the null message. A null message with timestamp Tnull sent
by LPi to LP j indicates that there will be no more messages from process LPi

with timestamp less than Tnull. Clearly, null messages have no counterpart
in the physical system: a null message is an announcement of the absence of
messages.

The operation of the deadlock avoidance method is a slightly modified ver-
sion of the basic conservative algorithm. Whenever LPi receives a safe event
message Ei with timestamp Ti , the logical process updates its local clock ac-
cordingly and advances the simulation up to time Ti . At this point LPi gener-
ates and sends the event messages that results from processing the event E i .
Suppose that LPi can predict it will not send any more messages to LP j with
timestamp smaller than T j (where T j ≥ Ti ). Then, in the new scheme, LPi sends
a null message with timestamp T j to LP j to advance the clock on the link. As
LPi has progressed to simulation time Ti it can predict all event messages and
the absence of messages at least up to Ti . Consequently, all outgoing links will
have a clock value equal to or greater than Ti .

Reception of a null message is identical to receiving any other message.
The clock value associated with the input link is updated, and possibly the local
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clock value of the logical process (if the input link has the smallest clock value).
The logical process can then predict the new time bounds on its outgoing links,
send this information to its neighbors, and so on.

To demonstrate how the deadlock is avoided in Fig. 2.3 consider the follow-
ing scenario. Assume that all LPs can predict future events minimal up to
Ti + 4, independent from other factors that can account for future events with
even larger timestamp. The local clock of LPA is 15 (the smallest clock value
of the incoming links). LPA predicts that no event message with timestamp
less than 19 (15+ 4) will be sent to any other LP, and informs its neighbors by
sending a null message with timestamp 19. (Note that only LPL is informed
with a null message, as the outgoing link to LPP already reached clock value
20. See also Table 2.1.) LPL receives the null message, updates its local clock
value and computes the new lower bound on its outgoing links, and sends the
null messages with timestamp 23 (19+ 4) to its neighbors. Eventually, the null
message with timestamp 23 arrives at LPP , and the associated clock value of
the incoming link is updated from 10 to 23. LPP can now safely process the gen-
uine event message scheduled for simulation time 20, and simulation execution
proceeds.

LVT LPA LPL LPP

15 (19, null)→ LPL

19 LPL ← (19, null)
(23, null)→ LPA

(23, null)→ LPP

20 LPP ← (20, m)

Table 2.1: Null message transmissions and receipts.

The deadlock avoidance scheme requires that there is a strictly positive
lower bound on the predictability for at least one logical process in each cycle.
In other words, if a null message with timestamp T is circulated through a
cycle of logical processes, then after one full circulation the timestamp of the
null message should be incremented to at least T + ε, where ε > 0. From the
predictability property (Section 1.2.3) it follows that such an ε > 0 exists if
the system model is well-defined. After a finite number of circulations of null
messages through the cycle, a safe event message will be scheduled and the
simulation can continue. A more rigorous proof may be found in (Chandy and
Misra 1979).

2.3.2 Deadlock Detection and Recovery
Chandy and Misra (1981) also presented a two-phase scheme where the dis-
tributed simulation is allowed to deadlock, but provisions are made to detect
and resolve the deadlock. In the first phase, the parallel phase, the simulation
proceeds until it deadlocks. The second phase, the interface, initiates deadlock
recovery computations. The scheme involves a central controller process to
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monitor for deadlock and to control deadlock recovery, thus violating a distrib-
uted computing principle. To avoid a single resource to become a performance
bottleneck, any general distributed deadlock detection mechanism can be used
(Chandy, Misra, and Haas 1983; Groselj and Tropper 1989). The deadlock can
be broken by the observation that the message with the smallest timestamp is
always safe to process; or, with use of a distributed computation, obtain a lower
bound to enlarge the set of safe messages.

In an algorithm described by Misra (1986), a special message called the
marker circulates through the network of logical processes to detect and resolve
deadlock. A cyclic path traversing every link in the network is precomputed.
Logical processes are colored, indicating whether the LP has received or sent a
message since the last visit of the marker message. A logical process is white if
it has neither sent nor received a message since the last visit; otherwise the LP
is black. Initially all logical processes are black and the marker starts at some
LP. If an LP receives a marker, it takes the color white and is supposed to route
the marker along the cycle in finite time. The marker identifies deadlock if the
last N logical processes it has visited were all white, where N is the number
of links in the network. The algorithm for deadlock detection is correct if the
messages arrive over the link in the same order as sent.

The scheme can be extended to detect and recover from deadlock. If the
marker also administers the minimum of “next event times” of the visited white
LPs, it knows upon detection of deadlock the smallest next event time and the
LP at which the next events occurs. To recover from deadlock, this LP can be
restarted to process its first event.

The mechanisms described above only attempt to detect and recover from
global deadlocks. Prakash and Ramamoorthy (1988) suggested a hierarchical
decentralized algorithm that takes advantage of the locality of these deadlocks.
An alternative approach to detect and recover from local deadlocks is proposed
by Liu and Tropper (1990).

2.3.3 Performance of Conservative Methods
The performance of conservative mechanisms is critically determined by the
degree to which processes can look ahead and predict future events; or more
importantly, what will not happen in the simulated future. As already outlined
in the deadlock avoidance approach, a process with lookahead ε can guarantee
that no events, other than the ones that it can predict, will be generated up
to time T + ε. The larger the lookahead, the earlier processes may be enabled
to safely process future events that they have already received. Thus the null
messages with a predicted timestamp T + ε can also be used to some extent in
the deadlock detection and recovery algorithm to improve performance.

Fujimoto (1989a) describes lookahead quantitatively using a parameter
called the lookahead ratio and presents empirical data to demonstrate the im-
portance of exploiting lookahead to achieve good performance. Other studies
of the performance as a function of lookahead have been published by Lin and
Lazowska (1990b), Loucks and Preiss (1990), and Su and Seitz (1989). The
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YAWNS algorithm (Nicol 1993) takes a synchronous approach to conservative
simulation and lookahead. The YAWNS algorithm incorporates barrier syn-
chronizations and global reductions on functions of future simulation times.
An important quality of the algorithm is the little model-specific lookahead
information required to achieve performance.

An important performance issue in deadlock avoidance algorithms is the
overwhelming amount of null messages induced by the protocol. For example,
suppose that the null message traveling through the cycle of waiting logical
processes has a timestamp 10, and that the next genuine event is scheduled
on simulation time 100. If with each full circulation of a null message the
local clock of the logical process is increased with 1, it will take 90 circulations
before the first genuine event will be processed. If an LP could deduce that it
was essentially waiting for itself, the LP could just process the next event. The
carrier null message protocol (Cai and Turner 1990) adds extra information to
null messages to exploit this ability of lookahead in order to reduce the number
of null messages. Other optimizations to reduce the number of null messages
are presented by de Vries (1990) and Preiss et al. (1991).

2.4 Optimistic Methods
Optimistic methods do not strictly adhere to the local causality constraint as
defined in Section 2.2. In this respect, optimistic methods relieve from the con-
straints imposed by conservative methods, among which the most prominent
are the determination of safe events and the static topology of possible inter-
actions between logical processes. A consequence of allowing causality errors
to occur is that a mechanism has to be provided to detect and recover from
these errors. The basic method to recover from errors is to rely on state roll-
back to correct the erroneous computation. The application of state rollback is
also found in databases and fault-tolerant systems as the basic mechanism to
recover from errors. Because state rollback is used to recover from causality
errors, i.e., errors made in chronology, we can say that state rollback is the ba-
sic synchronization mechanism used in optimistic methods. By the use of the
causality error detection and recovery mechanisms, optimistic methods avoid
blocking and the determination of events that are safe to process, which are
serious performance pitfalls in the conservative approach.

For a comprehensive understanding of the complexity of optimistic distrib-
uted simulation and the consequent problems to be solved, we will present a
detailed overview of the issues in optimistic distributed simulation.

First, the basic optimistic simulation mechanism will be elaborated in
larger detail. The archetype optimistic simulation protocol, proposed by Jef-
ferson and Sowizral (Jefferson and Sowizral 1982; Jefferson 1985), is known
as the Time Warp distributed simulation method. The Time Warp protocol is
based on the virtual time concept. The virtual time concept is derived from
the work of Lamport (1978) on logical clocks, with this difference that logical
clocks are used to construct an ordering of events, while virtual time is used to
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impose an ordering of events. In the following discussion, we regard the virtual
time to be the simulation time as used in local clocks and timestamps.

Next, the performance improvements to the different functional compo-
nents making up the distributed simulation mechanism are described. For
example, rollback is an expensive operation, and one might want to prevent
the recursive cancellation of processed events if the cancellation itself is un-
necessary. Another issue is the overhead introduced by state saving; this can
be reduced by saving not every state change. Much of the overhead of the opti-
mistic distributed simulation protocol is a consequence of unlimited optimism
of the execution mechanism. Solutions have been proposed to limit this un-
bridled optimism. The Global Virtual Time (GVT) computation influences the
memory efficiency. The improvements described in this section are not inte-
grated or total solutions, and hence the choice for GVT computation and state
saving strategies are independent. The design and implementation alterna-
tives of the functional components are in principle orthogonal to each other.

2.4.1 Virtual Time
The virtual time concept is a method to organize a distributed system by im-
posing a temporal coordinate system on the distributed computation (Jefferson
1985). A virtual time system is a distributed system that executes in coordina-
tion with an imaginary global virtual clock ticking virtual time. Virtual time
is a temporal coordinate system used to measure computational progress and
define synchronization.

The distributed system is envisioned as a collection of processes, where each
process is considered occupying a point in virtual space. Every primitive action,
such as changing a variable, sending a message, etc., thus has both a virtual
time coordinate and a virtual space coordinate. The set of all actions that take
place at the same virtual place x and same virtual time t is referred to as the
event at (x, t).

The processes in the virtual time system communicate with each other by
exchanging messages. Each message is stamped with four values: sender, send
time, receiver, receive time. The send time indicates the virtual time at the
moment the message is sent, and the receive time determines the virtual time
when the message must be received. The event times are subject to the two,
trivial, clock conditions as defined by Lamport (1978) and similarly by Jefferson
(1985):

Definition 2.2

Clock Condition 1 If e and e′ are events in one process, and e comes before e′,
then the virtual time of event e must be less than the virtual time of event
e′.

Clock Condition 2 If e is the sending of a message and e′ is the receipt of that
message, then the virtual send time of the message at event e must be less
than its virtual receive time at event e′.
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The clock conditions guarantee the adherence to the causality constraint as de-
fined in Section 2.2, or in other words, that the direction of information transfer
is always pointing in the direction of increasing virtual time.

The concept of virtual time has many similarities with the notion of logical
clocks (Lamport 1978). The introduction of logical clocks that adhere to the
two clock conditions, allows for a total ordering of the events in the distributed
system. The important difference between logical clocks and virtual time is
that with logical clocks events are time stamped a posteriori, while with virtual
time the events are time stamped a priori. The implementation of logical clocks
assigns logical clock values to the events yielding a total order of the events of
that execution. Virtual time does the reverse: all events are stamped with a
clock value in such a way they comply to the clock conditions and form a totally
ordered sequence. With virtual time it is up to the execution mechanism to
process the events in consistence with the correct total order.

In the previous discussion of virtual time, we did not mention distributed
simulation on purpose because the virtual time concept is more generally ap-
plicable to coordinate distributed computations. For example, virtual time can
be used for consistent checkpointing and restarting of distributed applications
(see also Chapter 7), atomic transaction processing in distributed database con-
trol (Jefferson and Motro 1986), and preservation of message order in virtual
circuit communication. Li et al. (1992) presented a distributed logic program-
ming system based on virtual time to control global backtracking in the com-
putation. In the next section we discuss an execution mechanism called Time
Warp that correctly implements virtual time, i.e., each process handles mes-
sages in timestamp order.

2.4.2 The Basic Time Warp Mechanism
The Time Warp simulation mechanism is based on the concept of virtual time.
Virtual time describes how different distributed objects interact in time, and
can therefore be used to serve as a basis for distributed simulation. The Time
Warp mechanism implements virtual time and adheres to the temporal coordi-
nate system imposed on a distributed simulation.

In optimistic simulation, logical processes execute events and proceed in lo-
cal simulated time as long as they have any input at all. First, the logical pro-
cess selects the event with the minimum timestamp of all unprocessed event
messages. Next, the LP sets the local clock—also called the Local Virtual Time
(LVT) of a logical process—to the minimum timestamp, and processes the se-
lected event. After completion of the event execution, the logical process starts
the following iteration by selecting the next event with the smallest timestamp.

A consequence of the optimistic execution of events is that the local clock or
LVT of a process may get ahead of its neighbors’ LVTs, and it may receive an
event message from a neighbor with timestamp smaller than its LVT, that is, in
the past of the logical process. The event causing the causality error is called a
straggler. If we allow causality errors to happen, we must provide a mechanism
to recover from these errors in order to guarantee a causally correct distributed
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simulation. Recovery is accomplished by undoing the effects of all events that
have been processed prematurely by the process receiving the straggler. The
net effect of the recovery procedure is that the logical process rolls back in
simulated time.

The premature execution of an event results in two things that have to
be rolled back: (i) the state of the logical process and (ii) the event messages
sent to other processes. In order to rollback, the mechanism requires a record
of the logical processes’ history with respect to internal and external events:
state, messages received and sent. The rollback of the state is accomplished
by periodically saving the process state and restoring an old state vector on
rollback: the logical process sets its current state to the last state vector saved
with simulated time earlier than the timestamp of the straggler. Recovering
from premature sent messages is accomplished by sending an anti-message
that annihilates the original when it reaches its destination. The messages
that are sent while the process is propagating forward in simulated time, and
hence correspond with simulation events, are called positive messages.

The annihilation of an anti-messages with a positive message can follow two
scenarios. If upon receipt of an anti-message the matching positive message is
still in the input queue, the two messages will annihilate each other and the
logical process will proceed. However, if an anti-message arrives that corre-
sponds to a positive message that is already processed, then the process has
made a causality error and the logical process must also roll back. Note that
this rollback is triggered by the rollback of the original logical process that sent
the anti-message. A direct consequence of the rollback mechanism is that more
anti-messages may be sent to other processes recursively, and allows all effects
of erroneous computation to be eventually canceled. As the smallest unpro-
cessed event in the simulation is always safe to process, it can be shown that
this mechanism always makes progress under some mild constraints (Leivent
and Watro 1993).

In optimistic simulation the notion of global progress in simulated time is
administered by the Global Virtual Time (GVT). The GVT is the minimum of
the LVTs for all the processes and the timestamps of all messages (including
anti-messages) sent but unprocessed. No event with timestamp smaller than
the GVT will ever be rolled back, so storage used by such event (i.e., saved
state vector and event message) can be discarded. Also, irrevocable operations
such as I/O cannot be committed before the GVT sweeps past the simulation
time at which the operation occurred. The process of reclaiming memory and
committing irrevocable operations is referred to as fossil collection.

The different optimistic simulation strategies from literature can all be
characterized by their opportunistic processing of events that involves the oc-
currence of causality errors. The differences are mainly along the design axes
of the functional components of the archetype optimistic simulation method,
such as, cancellation strategies, state saving strategies, bounded optimism, etc.
Depending on the application, these different designs may either improve or
degrade performance.
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2.4.3 Rollback Strategies
Rollback or cancellation strategies are specific methods to recover from a
causality error and to cancel the side effects of the erroneous computation.
A rollback comprises the restoration of the state vector and the annihilation
of the simulation messages that are sent during the erroneous computation.
The alternative cancellation strategies are primarily concerned with the lim-
itation of the number of anti-messages and the propagation of the erroneous
computation.

Aggressive Cancellation

The rollback strategy introduced with the basic Time Warp algorithm (see Sec-
tion 2.4.2) is called aggressive cancellation. The aggressive cancellation mecha-
nism attempts to correct the mistakes made by Time Warp as quickly as possi-
ble. Upon receipt of a straggler, the mechanism immediately recovers the state
by restoring the last state vector saved with simulation time earlier than the
timestamp of the straggler. The premature sent messages are directly anni-
hilated by sending the corresponding anti-messages to the destination of the
original positive message.

Lazy Cancellation

An alternative to aggressive cancellation is lazy cancellation, first proposed
by Gafni (1988). The basic idea behind lazy cancellation is suggested by the
observation that a straggler event does not sufficiently alter the simulation to
change the generated positive event messages during the recomputation.

In contrast to the aggressive cancellation mechanism, the lazy cancellation
mechanism does not send anti-messages immediately upon receipt of a strag-
gler. It delays the propagation of anti-messages while the process resumes ex-
ecuting forward in simulated time from its new LVT. During the resimulation,
the lazy cancellation mechanism checks whether the computation regenerates
the same messages. If the same message is recreated, then there is no need
to cancel the original message. An anti-message created at simulation time T
is only sent if the process’s LVT sweeps past time T without regenerating the
same message.

The lazy cancellation mechanism avoids unnecessary canceling of correct
messages at the costs of additional memory and bookkeeping overhead and de-
laying the annihilation of actually wrong events. This allows the erroneous
computation to spread further than it would under aggressive cancellation.
Depending on the application, lazy cancellation may either improve or degrade
performance. One can construct extreme cases where lazy cancellation per-
forms N times slower than aggressive cancellation when N processors are used;
and vice versa where lazy cancellation achieves near N -fold speedup using N
processors, while aggressive cancellation requires the same amount as the se-
quential execution (Reiher et al. 1990). Empirical results indicate that lazy
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cancellation is slightly favorable over aggressive cancellation (Lomow et al.
1988; Reiher et al. 1990).

An interesting property of lazy cancellation is that it can, under certain cir-
cumstances, run faster than the critical path of the simulation, this is called
super-critical speedup (see Chapter 4 for a discussion on the critical path). The
lazy cancellation strategy surpasses the simulation critical path by the possi-
bility of having a wrong computation producing a correct result.

Lazy Re-evaluation

Lazy re-evaluation is somewhat similar to lazy cancellation, but deals with
the delayed discarding of state vectors instead of the delayed sending of anti-
messages. Suppose the simulation process receives a straggler. If the simu-
lation process has the same state vector after processing the straggler as the
state vector logged by the state saving mechanism and no new messages have
arrived, then the simulation immediately jumps forward to the LVT before the
rollback occurred. (Therefore the mechanism is also called jump forward opti-
mization.)

Lazy re-evaluation is promising in simulation models where events do not
modify states (“read-only” or query events). However, the additional mem-
ory and bookkeeping overhead, and also the considerable complication of the
Time Warp code makes that the mechanism is not commonly applied (Fujimoto
1990a).

Direct Cancellation

In optimistic simulation methods, it is important to be able to cancel the incor-
rect computation faster than it can spread through the system. This critical
spreading behavior can be prevented by giving anti-messages a higher prior-
ity than positive messages. Fujimoto (1989b) proposed a mechanism that uses
shared memory to optimize the cancellation of incorrect computations. If dur-
ing the execution of an event E1 a new event E2 is scheduled, the mechanism
associates a pointer reference to E2 with event E1. Upon rollback of event E1,
the pointer reference can be used to cancel E2, using either lazy or aggressive
cancellation. Good performance results have been reported on a specific version
of Time Warp that uses direct cancellation (Fujimoto 1990b).

Preventing Rollback Chains

Other approaches have been proposed to limit the length of successive roll-
backs as early as possible. Prakash and Subramanian (1991) attach some state
information to messages, to prevent cascading rollbacks. This information al-
lows the simulation process to filter out messages based on obsolete states that
will eventually annihilated by anti-messages currently in transit. Madisetti
et al. (1990) proposed within their Wolf system a mechanism that freezes the
spatial spreading of the incorrect computation based upon a so-called sphere of
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influence. The Wolf algorithm ensures that the effects of an uncommitted event
are limited to a sphere of a computable radius around the simulation process.
A disadvantage of this approach is that the set of simulation processes that
might be affected by the incorrect computation is significantly larger than the
actual set, and thereby leads to sending unnecessary control messages.

2.4.4 State Saving
The previous section discussed various rollback strategies, which differ in their
method to restore the state vector and annihilate simulation messages. The
rollback of the state vector implies that whenever an LP detects a causality
error, i.e., receives a straggler, it returns to an earlier state just before the
timestamp of the straggler. To restore the state vector of an LP, the simulation
mechanism needs a record of the LP’s state history. This is accomplished by
periodically saving the process state, also called checkpointing. The different
state saving strategies can be distinguished from each other by the method
they apply to save the (partial) state vector and consequently restore the state
vector to a particular simulation time to which the simulation rolls back.

The simplest method for state saving is to copy the entire state of an LP
each time it executes an event. This is often referred to as copy state saving
(CSS). One major disadvantage of CSS is that it becomes very expensive when
the state size is large. The overhead costs of state saving consist of memory
consumption and processing time. Improvements to the CSS method, such
as periodic state saving, incremental state saving, and hybrid methods, have
been proposed to reduce the memory consumption and/or the processing time
overhead.

Periodic State Saving

The periodic state saving (PSS) method reduces the state saving overhead by
increasing the checkpoint interval. Thus opposed to CSS, periodic state saving
copies the entire state only after every χ th state update, where χ is the state
saving interval. However, the fact that not every state is saved counteracts
some of these gains, as the reconstruction of the uncheckpointed state may be
necessary. If a rollback occurs and the required state is not in the state queue,
the LP must roll back to an earlier checkpointed state. The required state is
recomputed from the earlier state by reprocessing the input messages. The
output messages regenerated during state reconstruction must not been sent
since they are an artifact of the state reconstruction phase. The process of
reconstructing a missing state is called coasting forward.

The checkpoint interval is the key parameter that determines the efficiency
of PSS method: it regulates the trade-off between the total cost of state sav-
ing and the amount of re-execution in coasting forward. Establishing a static
value for the checkpoint interval that produces optimal performance is diffi-
cult. Furthermore, many applications show dynamic behavior where the opti-
mal checkpoint interval is likely to vary over the runtime of the simulation. As
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there is no single optimal checkpoint interval for the runtime of the applica-
tion, the checkpoint interval should be adapted to the dynamic behavior of the
simulation. Typical feedback effects such as thrashing (increase in rollbacks)
and throttling (decrease in rollbacks) of the simulation induced by a change in
checkpoint interval, also push towards adaptive checkpointing algorithms in
order to achieve performance optimization (Preiss et al. 1994).

Several adaptive PSS methods have been proposed to select the optimal
checkpoint interval during the execution of the simulation application. Lin
et al. (1993) studied the interrelationship among checkpoint interval, the roll-
back behavior, and the overhead associated with state saving and restoration.
Based on this model, a checkpoint interval selection algorithm which deter-
mines the optimal checkpoint interval during execution of Time Warp simu-
lation was proposed. Fleischmann and Wilsey (1995) performed an empirical
study on four adaptive PSS methods. The results show significant difference in
performance, however, the performance of the adaptive PSS methods is better
than the best static value for the checkpoint interval. They present a heuristic
that recalculates the state saving costs (state saving and coasting forward) af-
ter every N events. If the execution time has increased significantly, the state
saving interval is decreased by one, otherwise it is increased by one. Sköld
and Rönngren (1996) argued that the optimal checkpoint interval also depends
on the execution time or event granularity for different types of events. Their
event sensitive state saving method is sensitive to which type of event the pre-
viously executed event belongs, and decide whether to save the state vector
based on this information. Experimental results indicate that event sensitive
state saving is a promising approach for simulation models where event granu-
larity has large variance. Auriche et al. (1998) were successful in constructing
an analytical model for checkpoint interval selection that accounts for mem-
ory management costs. The presented experimental results show that their
method improves performance compared to already existing ones in some sim-
ulation scenarios.

Incremental State Saving

A different approach to reducing the state saving overhead and memory con-
sumption is incremental state saving (ISS) (Overeinder et al. 1992; Bauer and
Sporrer 1993; Unger et al. 1993). Many challenging real-world applications
in, for example, VLSI, communication systems, and natural sciences, are char-
acterized by LPs with very large states where only a fraction of the state is
updated in each event execution. In such applications, it may be inefficient or
perhaps infeasible to save copies of the complete state of the LP, which can be
on the order of hundreds of kilobytes. The ISS mechanism typically exploits
the partial state update due to the execution of an event by only saving each
change to the state as it occurs. The incremental history record of the LP’s
state is created by saving the old value of a variable prior to overwriting the
variable with a new value. This incremental state history record is used to
restore the state of the LP by restoring each saved variable value in reverse
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order they were saved.
The benefits of the ISS method are low state saving time and low mem-

ory consumption, on the condition that the LP state can be divided into small
parts, with a relative small number of those parts being saved after each event
execution. A typical example application can be an individual-based popula-
tion dynamics model, where each LP is responsible for a subdomain with a
dynamically changing population of individuals (McCauley et al. 1993; Mel-
lott et al. 1999). With the evolution of the population dynamics model, the LP
only records the changes resulting from events such as birth, death, etc., per
individual. A drawback of the partial incremental state saving mechanism,
however, is the increased costs for state restoration in ISS as opposed to CSS.
As the state of the LP is reconstructed by restoring each saved variable in re-
verse order, the cost of state reconstruction is directly related to the rollback
length. Therefore, the use of ISS is only effective if the rollback distance in the
simulation application is sufficiently small.

Another important issue in state saving is transparency. A major advantage
of CSS is that it can easily be made transparent to the programmer. However,
due to problems associated with identifying which parts of the state are up-
dated and when, makes a transparent implementation of ISS quite complex.
If no special provisions for transparent ISS is taken, the application program-
mer is provided with support functions to save a variable. These functions
must be inserted by hand, which is not a natural activity for an application
programmer with no special understanding of state saving, and is therefore
an error prone approach. A number of transparent ISS have been proposed
that exploits the operator overloading and type parameterization capabilities
in C++ (Steinman 1993b; Rönngren et al. 1996; Gomes et al. 1996). Rönngren
et al. (1996) showed that their approach achieves a high degree of transparency
with acceptable overhead compared to a non-transparent implementation of
ISS. The ISS method integrated in the SPEEDES system (Steinman 1993b)
elegantly integrates ISS with an efficient implementation of lazy cancellation,
which requires roll forward as well as rollback support. West and Panesar
(1996) developed a new technique that they call Automatic Incremental State
Saving. This technique essentially edits the already compiled executable code
directly to insert incremental state saving calls. In this way, code written and
compiled by a third party may now be state saved. Bruce (1995) showed how
the theory of persistence can be used as a simple yet general mechanism for
performing the necessary (incremental) state saving with minimal impact on
the application code. The presented results show that the performance of the
persistent data structure is competitive with existing mechanisms.

The total overhead costs of incremental state saving depends to a large de-
gree on the percentage of the state that is modified due to the execution of an
event. West and Panesar (1996) find that their Automatic Incremental State
Saving is beneficial if less than 15% of the state is modified in each event as
compared to copy state saving. In another empirical study by Cleary et al.
(1994), the results indicate that the cross-over point between ISS and CSS
costs lies between 30% and 50% of state updated, which is in good agreement



2.4 Optimistic Methods 37

with their theoretical analysis.

Hybrid State Saving

Both periodic state saving and incremental state saving have additional costs
over copy state saving during state reconstruction. PSS introduces overheads
in coasting forward from an earlier checkpointed state, while the state recon-
struction in ISS demands large overheads in applications with large rollback
distances. To solve these flaws, hybrid state saving methods have been pro-
posed that combine PSS and ISS.

The Multiplexed State Saving (MSS) minimizes the overhead for forward
execution and maintains low cost access to state at arbitrary times in the past
by interleaving ISS and PSS (Franks et al. 1997). The combination yields the
bounded rollback costs of checkpointing methods, with the speed of incremen-
tal methods for rollbacks of short distances. The Hybrid State Saving (HSS) is
similar to the approach in MSS in its method it interleaves PSS with ISS (Soli-
man and Elmaghraby 1998). An analytical study of HSS shows that if 15% or
more of the time to save an LP’s sate is needed to save state increments after
every event execution, HSS outperforms ISS.

2.4.5 Optimism Control

A serious problem hampering the effective application of optimistic simulation
methods is thrashing. Thrashing of an optimistic simulation occurs when the
system experiences excessive long and/or frequent rollbacks. This behavior
is typically characterized as cascading rollbacks and echoing rollbacks, where
two or more LPs initiate mutual rollbacks. This results in an inefficient execu-
tion where correcting causality errors consumes more computation time than
the forward simulation. The specific thrashing behavior is induced by overly
optimistic behavior of the simulation protocol. The optimistic behavior is a
combination of aggressiveness and risk. Aggressiveness is the property that
determines the execution of events without the guarantee of freedom of er-
rors, and risk is the property by which the results of aggressive processing are
propagated to other LPs. Besides thrashing, overly optimistic behavior is also
responsible for inefficient use of memory because a certain amount of history
information must be maintained to allow rollback. This results in performance
degradation of the virtual memory by inducing excessive paging and/or poor
cache performance (Das and Fujimoto 1997).

As uncontrolled optimism may lead to poor performance, a method to con-
trol optimism is desirable in order to adapt to the dynamic, unpredictable na-
ture of synchronization requirements of the parallel simulation. The different
approaches to optimism control, also called optimism throttling, can be catego-
rized by the state information used to implement adaptivity, and by the method
with which they control aggressiveness and risk.
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Non-Adaptive Protocols

The first methods to control excess optimism of the simulation method used
time windows. The time windows approach limits the optimism by executing
events within a window of simulated time beyond the global virtual time. The
events outside the time window are delayed until the time window is updated.
The time window bounds the difference between the logical clocks and hence
limits the lengths of rollback chains. The original simulation system exploiting
this idea was the Moving Time Window (MTW) protocol (Sokol et al. 1989). A
key problem with this class of non-adaptive optimistic protocols is the determi-
nation of the appropriate size of the time window. A narrow time window will
limit the rollbacks, but admits a small amount of parallelism. A time window
that is too large, can potentially exploit more parallelism, but the rollbacks
may increase as well. A similar idea is studied by Turner and Xu (1992) in the
Bounded Time Warp (BTW) protocol, where no events are processed beyond a
bound in simulation time until all processes have reached that bound, when a
new bound is established.

The Breathing Time Bucket algorithm (Steinman 1992) uses optimistic pro-
cessing with local rollback. However, unlike other optimistic windowing ap-
proaches, anti-messages are never required. In other words, Breathing Time
Buckets could be classified as a risk-free optimistic approach. Breathing Time
Warp (Steinman 1993a) is an extension to the Breathing Time Bucket algo-
rithm by allowing it to take risks. The idea is to execute the first N1 events
beyond the GVT, just as the basic Time Warp algorithm does. Then the pro-
tocol issues a nonblocking synchronization operation and switches back to the
risk-free breathing time bucket algorithm to execute the next N2 events. If all
LPs reached their event horizon, that is, issued the nonblocking synchroniza-
tion, a new GVT computation is started and a next cycle is issued.

The MIMDIX system (Madisetti et al. 1993) employs the ideas of probabilis-
tic resynchronization to eliminate overly optimistic behavior. A special process
called a “genie” probabilistically sends a synchronization message to all LPs,
causing them to synchronize to the timestamp of the message. By keeping the
timestamp of the synchronization message close to the GVT, the LPs can be
kept temporally close to each other, thus reducing the risk of cascading roll-
backs.

The non-adaptive protocols can be adjusted to behave like a conservative
method in one extreme and like a pure optimistic method in the other extreme.
For example, the width of the time window in the MTW or BTW protocol can be
tightened to behave as a conservative simulation; or if the width is infinite, the
protocol is equivalent to Time Warp. However, it is left to the simulation mod-
eler to select the appropriate parameter settings. In general, the simulation
modeler is not in great detail familiar with the intrinsics of the PDES protocol
and the underlying parallel hardware, which makes it difficult to tune the sim-
ulation for optimal performance. Furthermore, many simulation models are
dynamic in their runtime behavior, hence there is no single optimal parameter
setting to control optimism. This observation motivated the design of optimism
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control mechanisms that adapt themselves to changing behavior of the simu-
lation by monitoring the state of the parallel simulation and determine the
appropriate trade-off between conservatism and optimism.

Adaptive Protocols Based on Local State

Adaptive protocols are characterized by their adaptive optimism control based
on the state of the parallel simulation. In the following discussion, the adaptive
protocols are broadly classified according to whether the decisions are taken
purely on the local state of each LP or on the global state of all LPs.

The control mechanism in Adaptive Time Warp (Ball and Hoyt 1990) uses
a penalty based method to limit optimism by blocking the LP for an interval of
real time (the blocking window). The blocking window is adjusted to minimize
the sum of total CPU time spent in blocked state and recovery state (that is,
undoing the effects of the erroneous computation). The logical process may
decide to temporarily suspend event processing if it had recently experienced
an abnormally high number of causality errors. The time the LP blocks is
directly proportional to the width of the blocking window. To determine the
optimal blocking window width, ATW assumes that the time spent either in
the blocked and recovery state can be numerically approximated using a two
term Taylor’s series expansion.

Hamnes and Tripathi (1994) proposed a local adaptive protocol that uses
simple local statistical data to avoid additional communication overhead. The
protocol is designed to adapt to the application in order to maximize progress
of simulation time in real time (with simulation time progress rate α). The al-
gorithm gathers statistics on a per channel basis within each LP and uses this
information to maximize α. By an interrelation of null messages, rollbacks,
and blocking, the adaptive protocol retains aspects of both the optimistic and
conservative protocols to provide a continuum of simulation protocols accom-
modated to the simulation application at hand. The probabilistic adaptive di-
rect optimism control presented by Ferscha (1995, 1999) is similar in spirit,
but adds a probabilistic component in the sense that blocking is induced with
a certain probability. Several forecasting methods have been explored, such as
incremental forecast methods like arithmetic mean or exponential smoothing,
as well as integrated autoregressive moving average (ARIMA) models. Prob-
abilistic optimism control was shown to outperform Time Warp for stochastic
Petri net simulations, especially under load imbalance.

Optimism control mechanisms are not limited to bounded time windows
and blocking windows, but scheduling and dynamic load balancing can also
interact with the synchronization mechanism. High processor utilization may
not imply good performance as processors may be busy with incorrect computa-
tion that will be undone later (Nicol and Fujimoto 1994). Parameterized Time
Warp (Palaniswamy and Wilsey 1996) combines three adaptive mechanisms
(state saving period, bounded time window, and scheduling priority) to min-
imize overhead and increase the performance of the parallel simulation. The
measure useful work is defined to determine the actual amount of optimism uti-
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lized by the process. Useful work is a function of a number of parameters such
as the ratio of the number of committed to the total number of events executed,
the number of rollbacks, the number of anti-messages, the rollback length, etc.
The state saving period and the bounded time window are increased for larger
values of the useful work parameter. The scheduling priority also increases
with the useful work parameter, as the priority for scheduling should increase
if the LP is more productive then before. Experiments with digital logic simu-
lations demonstrated superiority of the method over ordinary Time Warp.

Adaptive Protocols Based on Global State

Global state adaptive protocols are similar to the local adaptive counterparts
with respect to their mechanisms to control optimism, but they rely primarily
on some aspects of the global state rather than on the local state information.
The Adaptive Memory Management protocol by Das and Fujimoto (1997) uses
an indirect approach to control overly optimistic event execution. It has been
observed that overly optimistic Time Warp not only incurs high rollback costs,
but also high memory management costs. And vice versa, that the amount of
memory allocated to a Time Warp simulation automatically limits the amount
of optimistic execution. The adaption algorithm attempts to minimize the total
execution time rather than concentrating on one specific criteria. They argue
that this approach prevents from optimizing for one aspect of the computation
at the expense of a disproportional increase in another.

The Near Perfect State Information (NPSI) protocols (Srinivasan and
Reynolds 1998) are a class of adaptive protocols relying on the availability of
near-perfect information on the global state of the parallel simulation. As al-
ready mentioned, there are two phases in the design of adaptive protocols, and
in NPSI in particular, namely the state information on which to decide and
the mechanism that translates this information into control over the LP’s opti-
mism. NPSI protocols use a quantity error potential (EPi ) associated with each
LPi , to control LPi ’s optimism. The protocol keeps each EPi up to date as the
simulation progresses. A second component of the protocol translates the EPi

into control over the aggressiveness and risk of LPi . One instance of a NPSI
protocol is the Elastic Time Algorithm (ETA). In ETA, the farther LPi moves
away from its predecessor, the slower its progress due to the restraining pull of
the elastic band tying it to its predecessor—hence elastic time. The tension in
the elastic band corresponds to the LPi ’s error potential. An assumption in the
applicability of NPSI protocols is that the NPSI is available at minimal costs,
thus limiting the use of such protocols to shared memory multiprocessors or
distributed memory systems with high-speed reduction network support.

Tay et al. (1997) proposed a throttle scheme based on the concept global
progress window (GPW), which allows the individual simulation process to be
positioned on a global time scale. The GPW indicates the progress status of
the slowest and the fastest LPs, and is represented by GPW = [GVT . . . GFT],
where GFT is the maximum of all LVT i . Thus, GPW provides a global time
scale for each LP to calibrate its simulation progress. The adaptive throttle
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design regulates the number of events executed in each LP simulation cycle
to achieve an in pace LVT progression. For slow LPs (close to GVT), a larger
regulator value is used to accelerate the event execution. As for the fast LPs,
the regulator is set to 0 to prevent it from advancing it LVT further.

2.4.6 Global Virtual Time Algorithms
The Global Virtual Time (GVT) is used in the parallel optimistic Time Warp
synchronization mechanism to determine the progress of the simulation. Con-
trary to LVT, the essential property of the GVT is that its value is nondecreas-
ing over real time (wall-clock time). Conceptually, the GVT is the simulated
time up to which all LPs have simulated correctly and beyond which all LPs
have simulated speculatively. By the property that no LP can ever rollback to
a simulation time earlier than the value of the GVT, the GVT algorithm can
guarantee that Time Warp eventually progresses the simulation by commit-
ting intermediate results. The progress property is also used for termination
detection, as the simulation often completes when the GVT reaches a specific
end time.

Another important use of GVT in Time Warp is within the fossil collec-
tion mechanism, which coordinates memory management and irrevocable op-
erations such as I/O (including interaction with users). Optimistic simula-
tions must save state information and positive/negative event message pairs
as events are processed in order to support rollbacks. State saving and storing
event messages consume valuable memory resources which must be reclaimed
periodically. Because LPs never rollback to a simulation time earlier than the
GVT, it is safe to reclaim memory resources for events with timestamps less
than GVT. For irrevocable operations that cannot be easily rolled back this
safety criteria also applies, hence the irrevocable operations are effectuated or
committed as the GVT sweeps past their simulation time.

The computation of the GVT has an influence on the performance and op-
erability of Time Warp. The exchange of information necessary to compute
the GVT generates extra messages over the communication network. Further-
more, the GVT algorithm requires computational resources, thus the LPs stop
simulating in order to engage in the computation of the GVT. Both the distrib-
uted nature of the information and the time-consuming GVT algorithms make
that relative stale values of the GVT are computed, and consequently fossils
cannot be quickly identified and collected. These performance considerations
motivated the design of algorithms for accurate GVT estimation that are scal-
able over the number of LPs in the parallel simulation. In general, the GVT
algorithms can be categorized as either centralized or distributed in nature.

Centralized GVT Computation

In centralized GVT algorithms the GVT is computed by a central GVT manager
that broadcasts a request to all LPs for their current LVT and while collecting
those values perform a min-reduction (global reduce operation selecting the
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minimum value). In this approach there are two main problems that compli-
cate the computation of an accurate GVT estimation. First, the messages in
transit that can potentially roll back a reported LVT, are not taken into con-
sideration; this is also known as the transient message problem. Second, the
reported LVT values were drawn from the LPs at different real times, this is
called the simultaneous reporting problem.

One of the first GVT algorithms proposed by Samadi (1985) starts a GVT
computation via a central GVT manager which sends out a GVT start message.
After all LPs have send a reply to the request, the GVT manager computes
and broadcasts the new GVT value. The transient message problem is solved
by acknowledging every message, and reporting the minimum over all time-
stamps of unacknowledged messages and the LVT of the LP to the GVT man-
ager. Lin and Lazowska (1990a) introduced some improvements over Samadi’s
algorithm. In Lin’s algorithm, the messages are not acknowledged but the mes-
sage headers include a sequence number. The receiving LP can identify missing
messages as gaps in the arriving sequence numbers. When the GVT manager
starts a GVT computation, i.e., broadcast a GVT start message, the LPs send
out to all their communication partners LP j the smallest sequence number still
demanded from this neighboring LP j . This information is used as an implicit
acknowledgement of all previous messages with smaller sequence number. The
receiving LP j can use this information to determine which messages are still
in transit and compute a lower bound on their timestamps.

In the previous discussion, we assumed that the reported LVT and time-
stamps of unacknowledged messages are reported at some real time. However
in reality, the instantaneous report, or global snapshot, is not possible, and
hence the reported values are drawn at different real times. The simultaneous
reporting problem is solved in the GVT algorithms described above by setting a
lower and upper bound on the reporting real time at each LP such that the set
of intervals {[starti , stopi ] | i ∈ LP} share a common real time RT . Each LP can
then forward information to the GVT manager as it leaves the interval. Using
this approach, calculation of the GVT involves four phases. The start and stop
phases to generate starti and stopi at each process, the collect phase to receive
the information needed to calculate the GVT and the notify phase to notify all
LPs of the updated GVT. The stop and collect phase can often be combined,
and similarly, the notify phase from a previous round can be combined with
the start phase of the next round.

To reduce the communication complexity of the GVT computation, Bellenot
(1990) uses a message routing graph. The GVT computation requires two cy-
cles, one to start the GVT computation and the second to report local minima
and compute the global minimum. The multi-level token passing algorithm
proposed by Concepcion and Kelly (1991) applies a hierarchical method to par-
allelize the GVT computation. The token passing algorithm can be elegantly
mapped to a hypercube topology and significantly decreases the number of mes-
sages for the computation of the GVT. The multi-level decomposition allows
the parallel determination of the minimum time among the managers of each
level.
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Bauer et al. (1991, 1992) proposed an efficient algorithm where all event
messages through a certain communication channel are numbered. The LPs
administer the number of messages sent and received, and the minimum time-
stamp of an event message since the last GVT report. Periodically, the LPs send
their local information and their LVT to the GVT manager, which deduces from
the information the minimum of the transient message timestamps and LVTs.

The passive response GVT (pGVT) algorithm (D’Souza et al. 1994; D’Souza
et al. 1997) is able to operate in an environment with faulty communication
channels, and adapts to the performance capabilities of the parallel system on
which it executes. In the pGVT algorithm, the LP considers message latency
times to decide when new GVT information should be sent to the GVT manager.
This allows each LP to report GVT information to arrive just in time to allow
for aggressive GVT advancement by the GVT manager. A key performance
improvement of pGVT is that the LPs simulating along the critical path will
more frequently report GVT information than others.

An efficient, asynchronous, shared-memory GVT algorithm is presented by
Fujimoto and Hybinette (1997). The GVT algorithm exploits the guarantee
of shared-memory multiprocessors that no two processors will observe a set
of memory operations as occurring in different orders. This property is used
to solve the simultaneous reporting problem requiring only one round of in-
terprocessor communication. Furthermore, the sequentially consistent shared
memory is exploited such that the algorithm does not require message acknowl-
edgements, FIFO delivery of messages, or special GVT messages. The transient
message problem is just eliminated by allowing the sender LP copying the mes-
sage into the receiver’s buffer. The applications that would most benefit from
this algorithm are small grain interactive simulations where GVT must be per-
formed relatively frequently in order to rapidly commit I/O operations.

Distributed GVT Computation

Distributed GVT algorithms neither require a centralized GVT manager, nor
the availability of shared-memory between the LPs. For the distributed compu-
tation of the GVT for a simulation system with FIFO message delivery, distrib-
uted snapshot algorithms (Chandy and Lamport 1985) find a straightforward
application. However, due to the frequency of the GVT computation, i.e., accu-
rate estimation of the GVT, more efficient solutions are desired. Mattern (1993)
presented an efficient “parallel” distributed snapshot algorithm for non-FIFO
communication channels which neither requires messages to be acknowledged.
The different and rather simple solution is that the algorithm determines two
snapshots, where the second is pushed forward such that all transient mes-
sages are enclosed between the two snapshots. The problem of knowing when
the snapshot is complete (all transient messages have been caught) is solved
by a distributed termination detection scheme.

The interference of GVT computation messages with the regular simula-
tion messages, motivated Srinivasan and Reynolds (1993) to design a parallel
reduction network (PRN)—in hardware—used by their GVT algorithm. The
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LPs communicate some state information to the PRN, which is maintained by
the distributed GVT algorithm. Along state information, message receipt ac-
knowledgements are also sent over the PRN. The PRN is used to compute
and disseminate the minimum LVT of all LPs and the minimum of the time-
stamp of all unreceived messages. The GVT is made available to each LP asyn-
chronously of the LPs, at no cost.

The GVT algorithm in the SPEEDES simulation environment (Steinman
et al. 1995) is especially optimized to support interactive parallel and distrib-
uted optimistic simulation. The SPEEDES GVT algorithm is featured in the
Breathing Time Warp algorithm (see Section 2.4.5). The transient message
problem, that complicates the GVT computation, is solved by flushing out all
messages during the GVT update phase. The SPEEDES GVT algorithm con-
tinues to process events during this phase, but new messages that might be
generated are not immediately released. Brief performance figures show that
their algorithm performs well on a number of different hardware architectures.

2.5 Summary and Discussion
Parallel Discrete Event Simulation (PDES) yields a fundamental approach to
reduce the required execution time of realistic simulation models. As the real-
world models become increasingly more advanced and complex, PDES meth-
ods will be an invaluable technique to realize the practical simulation of cer-
tain classes of discrete event models. The parallelism that is available in DES
models is exploited by decomposing the simulation model into so-called logical
processes, which are the simulation equivalent of the real-world physical pro-
cess. PDES methods are merely concerned with synchronization between the
logical processes which execute in parallel. Two principal PDES methods can
be identified: conservative and optimistic methods. Conservative methods ad-
here to the correct execution order of the events in the distributed simulation.
Optimistic methods on the other hand are less rigid and allows causality errors
to occur, but use a detection and rollback mechanism to recover.

Conservative methods offer good potential for certain classes of problems.
A major drawback, however, is that they cannot fully exploit the parallelism
available in the simulation application. If it is possible that event Ei might
affect E j either directly or indirectly, conservative approaches must execute Ei

and E j sequentially. If the simulation is such that Ei seldom affect E j these
events could have been processed concurrently most of the time. As a con-
sequence, conservative algorithms heavily rely on lookahead to achieve good
performance.

Optimistic methods offer the greatest potential as a general purpose simula-
tion mechanism. A critical question faced by optimistic approaches is whether
the system will spent most of its time on executing incorrect computations and
rolling them back, at the expense of correct computations. Several extensions
to the basic optimistic Time Warp protocol have been proposed to control this
thrashing behavior and to prevent cascading rollbacks to occur. Various opti-
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mism control and rollback strategies are reported that improve the efficacy of
the optimistic simulation method significantly. Another serious problem with
the optimistic mechanisms is the need to periodically save the state of each
logical process. This limits the effectiveness of the optimistic mechanisms to
applications where the amount of computation, required to process an event,
is significantly larger than the cost of saving the state vector. Solutions to al-
leviate this problem are periodic state saving, incremental state saving, or a
hybrid approach combining periodic and incremental state saving.

A number of analytical performance modeling of conservative and opti-
mistic parallel simulation studies have been published (Nicol and Fujimoto
1994). A common characteristic among theses studies are the assumptions
made for the purpose of mathematical tractability. For example, the inter-
event arrival time of events is assumed to be an exponential random variable;
or it is assumed that upon sending a message, it is routed to some proces-
sor randomly selected from among all processors. In general, Markov chain
analysis underlies the performance studies.

A worst-case comparison of optimistic versus conservative methods re-
ported by Lipton and Mizell (1990) shows that Time Warp is capable of arbi-
trarily better performance than most conservative methods, while the converse
is not true. Even though the assumptions in the study describe a simulation
application behavior which is rarely observed in practice (constant cost roll-
backs, zero-cost message passing, and state saving), it shows how Time Warp
can guess correctly while a conservative method blocks. Likewise, the proof
that Time Warp performs not worse than conservative methods by a constant
factor demonstrates Time Warp’s resilience. The constant factor derived by
Lipton and Mizell contains a term that is the rollback cost, so if rollback cost
becomes arbitrarily large, so does the disparity in performance. Nicol (1991)
studied the performance bounds on parallel self-initiating discrete event sim-
ulations. A self-initiating model schedules its own state reevaluation times
(events) independently form other LPs, and sends its new state to other LPs
following the reevaluation. The analysis quantifies the processor utilization to
be proportional to 1/k for optimistic methods and 1/P for conservative meth-
ods without lookahead, where k is the fanout (the number of processors a
message is sent to) and P is the total number of processors. The 1/P figure
highlights the importance of lookahead for achieving performance with conser-
vative methods. Another result of the analysis demonstrates the dependence
of performance on the time increment distribution, showing that distributions
with significant constant components lead to good performance. An analytical
performance model by Dickens et al. (1996) compares the YAWNS conserva-
tive protocol with Bounded Time Warp (BTW). The BTW protocol performs
asymptotically better than YAWNS, as the number of LPs grows. However, if
many LPs are allowed per processor, YAWNS performs better than BTW under
moderate levels of aggregation, or when state-saving costs are nonnegligible. A
qualitative results is inferred that it is likely that limiting optimism is a good
thing in a window-based framework.

The type of application is important when determining an appropriate ap-
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proach to distributed simulation. For dynamic topology systems and systems
with irregular interactions, Time Warp methods are preferred over conserva-
tive methods, especially if state-saving overheads do not dominate. On the
other hand, if the application has good lookahead properties, conservative al-
gorithms can exploit the special structure within a fixed topology system. If the
application has both poor lookahead and large state-saving overheads all exist-
ing parallel discrete event simulation approaches will have trouble obtaining
good performance, even if the application has a considerable amount of paral-
lelism.

The performance impact of the various Time Warp optimizations is difficult
to assess in general. The performance trade-off between aggressive versus lazy
cancellation differs from application to application. Reiher et al. (1990) com-
pare the two canceling strategies using a number of benchmarks and two ap-
plications. The benchmark results show that applications exist that run poorly
under either method, but well under the other. Further, the two realistic appli-
cations perform reasonably well using either cancellation strategy, but some-
what better with lazy cancellation than aggressive (at most 10%). Dynamically
switching between aggressive and lazy cancellation allows an optimal choice
depending upon the characteristics of the application (Rajan and Wilsey 1995).
Performance improvements of at most 10% are found for the dynamic cancella-
tion approach over pure aggressive or lazy cancellation.

Periodic state saving experiments conducted by Lin et al. (1993) indicate
a performance improvement of at most 10% over copy state saving. Fleis-
chmann and Wilsey (1995) investigate dynamically adjusting periodic state
saving strategies. The dynamic algorithm performs as much as 12% better
than the best static periodic state saving interval value. A comparative study
by West and Panesar (1996) presented the state saving costs for copy state sav-
ing and incremental state saving. Their implementation of copy state saving
and automatic incremental state saving require 0.10 µsec/word (4 bytes) and
0.53 µsec/word respectively. Automatic incremental state saving is beneficial
if less than 19% of the state is changed. Manual incremental state saving re-
quires 0.42 µsec/word, which brings the ISS/CSS break-even point to 25%.

Optimism control mechanisms can substantially improve the performance
of the optimistic simulation. For simulation applications that are sensitive to
thrashing behavior, optimism control can show orders of magnitude improve-
ment over unthrottled optimism in Time Warp. Choi (1998) presents the re-
sults of experiments with three different VLSI circuit simulations using the
MTW optimism control mechanism. The execution times of two VLSI circuit
simulations show a smooth increasing slope as the time window increases.
However, the execution times of the third VLSI circuit simulation exhibit a
sharp increasing slope due to an exponential growth of the number of rollbacks
as the time window increases. In a study by Ferscha (1999), the adaptive opti-
mism control mechanism halved the execution time of a Petri net “stress test”
Time Warp simulation. Other studies by Palaniswamy and Wilsey (1996) and
Srinivasan and Reynolds (1998) report performance improvements of 30% to
200% for various simulation applications.
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Parallel discrete event simulation has been successfully applied in numer-
ous application areas. For example, in biology with ant foraging models or
population dynamics models (Deelman et al. (1996) describe the spreading of
Lyme disease). In physics with colliding pucks (rigid bodies) and Ising spin
systems (see Chapter 5). An important application field is computer science it-
self, with for example digital logic circuits and multistage interconnection net-
works. Public sectors such as telephone switching networks (Bhatt et al. 1998),
and road and aviation traffic simulation (Wieland 1998) find also application
in PDES. Typical military applications are combat simulation and military
training (Smith 1998). With respect to military applications, the High Level
Architecture (HLA) has been proposed as the common framework for all U.S.
Department of Defense simulation applications (Dahmann 1999). The design
principle of time management in HLA is transparency: the local time manage-
ment mechanism used within each component (called a federate in HLA) must
not be visible to other components. The broad spectrum of applications drove
the design of HLA time management services, which can include event-driven,
time-stepped, parallel discrete event simulation, and wall-clock time-driven
mechanisms (Fujimoto 1998; Pham and Bagrodia 1999).

The successful use of PDES in the various application areas might lead
one to conclude that PDES is an established methodology to parallelize dis-
crete event simulations. However, this is not the case. As Bagrodia (1996)
describes the perils and pitfalls of PDES, there are a number of issues to take
care of to increase the chance that the parallel execution of a model will yield
performance benefits. Typical pitfalls hampering the parallel performance are
shared variables, poor lookahead, high connectivity, load imbalance, low event
or computation granularity, and high checkpoint overheads. Unger and Cleary
(1993) identified four important performance parameters for Time Warp. Two
of these characterize the model: granularity and time-advance; and two char-
acterize the Time Warp executive: state saving overhead and overhead asso-
ciated with each event (event list insertion, maintenance of information, mes-
sage interaction). In general, the objective in partitioning the model in parallel
components is to maximize both granularity and time-advance. If granularity
is large, the speedup will not be constrained by the Time Warp state saving
and event overheads. The time-advance is useful as an upper bound on the
achievable speedup, and hence should be maximized.

An extra complication with risk in optimistic methods is that simulation
code that runs correctly on a serial machine may fail catastrophically when run
in parallel (Nicol and Lui 1997). This can happen when an erroneous message
(a message that will be canceled in the future) arrives at an LP where the
message makes absolutely no sense given the LP’s state. A possible failure is
for example an array index reference out of the array bounds. And although
the recovery mechanism will correct the erroneous computation eventually, the
LP will be aborted by this fatal index error. If the simulation modeler did
not anticipate the possibility of this inconsistency, these nonsense states can
be eliminated by requiring acknowledgement of anti-messages and ordinary
simulation messages.
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Future directions in parallel simulation research that alleviate the prob-
lems described above, both in performance and correctness, are for example
application specific libraries, new languages, support for shared state. With
application specific libraries, PDES can become accessible to many simula-
tion users. In new simulation languages, new constructs and programming
paradigms can be provided that are natural and easy for simulation model-
ers to use, and provide the information required by the parallel simulation to
obtain good performance (Bagrodia 1998; Bagrodia et al. 1998).

The various aspects of optimistic parallel discrete event simulation pre-
sented in this chapter, find their application in the sequel of this thesis. Chap-
ter 3 presents the design and implementation of a portable Time Warp sim-
ulation kernel, and discusses the application programming interface, rollback
strategy, state saving strategy, and GVT computation. In Chapter 4, a per-
formance evaluation tool is described that enables the performance evaluation
of a PDES protocol compared to a hypothetical ideal parallel execution of the
discrete event simulation. The Ising spin experiments presented in Chapter 5,
show clearly the need for incremental state saving and optimism control.



Chapter 3

The APSIS Time Warp Kernel

Main Entry: ap·sis
1 : the point in an astronomical orbit at which the distance of the body
from the center of attraction is either greatest or least
2 : APSE 2

—Merriam-Webster Dictionary

3.1 Introduction
The development of Parallel Discrete Event Simulation (PDES) applications is
a complex design and implementation activity. Besides the complexity of par-
allel program development, the simulation modeler also has to think about the
intrinsics of the PDES method, e.g., conservative versus optimistic synchro-
nization and the consequent design and implementation details. For example,
with conservative simulators the developer must be familiar with the issues
of lookahead and known Logical Process (LP) connectivity, and with optimistic
simulators he must be familiar with the issues of state saving and rollback.
The lack of versatile parallel simulation environments or languages and per-
formance analysis tools to simplify the development of PDES simulations, has
hampered the acceptance of PDES in the simulation community.

The Amsterdam Parallel Simulation System (APSIS) addresses some of the
problems identified above, by providing a platform that supports for experi-
mental development of optimistic simulation protocols and applications, and
the subsequent performance analysis. Specifically, requirements for computa-
tional science applications are taken into consideration to assess the potential
of PDES methods to solve problems originating from, e.g., physics, chemistry,
or biology. These requirements put special constraints on the design of the sim-
ulation environment and necessitate new extensions to the basic Time Warp
method. Performance analysis should be an integrated part of PDES applica-
tion development. At any instant, the PDES protocol or application developer
must be able to validate the efficiency of his parallel design and identify per-
formance bottlenecks. In Chapter 4, the design and implementation of the per-
formance analysis tool is presented, including its integration with the APSIS
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simulation environment, which is described in this chapter.
Section 3.2 presents PDES languages and environments reported in liter-

ature, and discusses the merits of simulation languages versus simulation li-
braries. The APSIS design requirements and decisions are discussed in Sec-
tion 3.3, together with a description of the functional design of the application
programming interface, the software architecture, and the hardware architec-
ture. In Section 3.4, we describe the necessary extensions to the basic Time
Warp method that are introduced to efficiently support simulations stemming
from computational science. The specific implementation details of the key
features of the Time Warp simulation kernel are presented in Section 3.5.

3.2 Parallel Discrete Event Simulation Environ-
ments

The migration process from sequential discrete event simulation to parallel
discrete event simulation should be as smooth as possible. The user should
concentrate his effort on the modeling process instead of being bothered with
the details of parallel synchronization protocols. One of the most important
design goals of parallel discrete event simulation environments is to provide
a level of abstraction from these synchronization details in order to enhance
the usability of PDES. The PDES environment hides the complexity of the
synchronization protocol by providing pre-built simulation kernel(s) as well as
development tools.

The various PDES environments can be described and compared by their
constitutional components, namely modeling capability, programming frame-
work, language features and library API, synchronization protocols, and sys-
tem support and environment. The modeling capability determines how the
physical system is modeled, i.e., the world view presented to the user (see Sec-
tion 1.2.7). The programming framework (e.g., structured or object-oriented)
incorporated by the PDES environment affects the development time and
maintenance effort. For example, an object-oriented programming framework
will reduce the development time of the simulation application. However, in
general the object-oriented approach comes at a price of increased runtime
overhead, and often results in slower execution speed as compared to struc-
tured languages such as C. Language features and library API provide a
set of constructs to design simulation models. Runtime system support and
simulation environment comprise different aspects such as logical process to
processor mapping, performance evaluation, statistical information collection,
and visualization and debugging capabilities.

An important feature of parallel simulation environments is whether the
PDES facilities are incorporated in a (new) simulation language or in a run-
time support library (Bagrodia 1998; Low et al. 1999). Simulation languages
provide a full set of well-defined language constructs to design simulation mod-
els, whereas a library only provides a group of routines to be used with a
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general-purpose programming language. Consequently, the conceptual model-
ing framework offered by the PDES environment is more prevalent in simula-
tion languages than in libraries. Furthermore, a simulation language with the
relatively high-level interface to the user allows for optimizations by a compiler
that are cumbersome at the low-level interface of a library. PDES libraries, on
the other hand, give the user more flexibility in controlling the simulation ap-
plication in terms of the behavior of the underlying synchronization control. A
knowledgeable user may fine-tune the options provided, but users must also
note that if the options are not set correctly, the performance of the simulation
may degrade significantly.

3.2.1 Languages
The influence of simulation-language research on the evolution of program-
ming languages, indicates the importance of simulation to computing (Nance
1993). For example, the concept of object-oriented program design was first
incorporated in the discrete event simulation language Simula 67 (Nygaard
and Dahl 1978), the first object-oriented programming language. The object-
oriented design methodology naturally accommodates the modeling activity in
simulation, but appeared to be successful in a much broader modeling and
design perspective to tackle the complexity of large software systems. The sim-
ulation languages discussed in this section are all object-oriented languages,
with the exception of Parsec.

One of the most important benefits of simulation languages over simulation
libraries is that simulation languages provide a more consistent framework
or world view that typically makes it easier for the user to design a model.
The simulation language constructs and semantics reflect the intended use
and allow for a coherent transition from simulation model to simulation ap-
plication. All languages discussed in this section support the process-oriented
world view. A disadvantage of simulation languages is, however, that the user
often needs to learn a new programming language, although there are simula-
tion languages that are enhancements of familiar general-purpose languages.
An additional advantage of enhanced general-purpose languages is their porta-
bility and a richer program development environment support.

The Yaddes system (Preiss 1989) provides an environment for construct-
ing discrete event simulations. The principle features of the Yaddes system
are the Yaddes simulation specification language and compiler, and the run-
time libraries. The Yaddes language is a specification language in the style
of Lex (Lesk and Schmidt 1979) and Yacc (Johnson 1979). The basic compo-
nents of a Yaddes program are model specifications (describe general state ma-
chine), process specifications (create logical processes by instantiating models),
and connections specifications (describe connections between logical processes).
The Yaddes specification files are translated into C language programs that are
then compiled and linked to the simulation runtime library. The runtime simu-
lation libraries support the simulation execution mechanisms: sequential dis-
crete event simulation, Chandy-Misra distributed discrete event simulation,
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and Time Warp distributed discrete event simulation.
ModSim (Rich and Michelsen 1991) is an object-oriented simulation lan-

guage based on Modula-2. It was developed under contract with the Army
Model Improvement Program (AMIP) Management Office using the Jet Propul-
sion Laboratory’s TWOS (Reiher 1990). A sequential version of ModSim, MOD-
SIM II, was later developed and released by CACI Products. The ModSim sim-
ulation kernel was originally the TWOS operating system, while later devel-
opment included also the SIM++ environment (see next section). Both simu-
lation kernels for ModSim support exclusively optimistic simulation based on
the Time Warp protocol. APOSTLE (Wonnacott and Bruce 1996) is a high-
level object-oriented simulation language for PDES. APOSTLE runs on top of
an existing optimistic simulator written in C++. The optimistic simulator cur-
rently used is based on the Breathing Time Buckets synchronization protocol
(Steinman 1992). The APOSTLE language has support for granularity control
that allows multiple events to coalesce so that the overhead of a single event is
spread over many changes of state.

Bagrodia et al. (1998) developed the simulation language Parsec that pro-
vides an easy path for the migration of simulation models to operational soft-
ware prototypes, implementation on both distributed- and shared-memory
platforms, and support for visual and hierarchical model design. The simu-
lation development environment supports a number of front ends for program-
ming models: the C-based Parsec simulation language; a C++ library that
can be interfaced with native C++ code; and the Parsec Visual Environment
(Pave). A portable kernel executes Parsec programs on sequential and parallel
architectures. Parsec programs may be executed in two modes—as (ordinary)
parallel programs or as simulation models. The simulation kernel supports
a sequential, three parallel conservative, and an optimistic synchronization
algorithm.

The Fornax simulation language (van Halderen and Overeinder 1998; van
Halderen et al. 1998) is a Java-based discrete event simulation language. The
versatility of Java enables the expression of additional semantics to offer the
same conceptual framework as simulation languages do. The object-oriented
programming constructs in Java are extended to implement entity, event, and
simulation time control objects. By extending the Java language a process-
oriented simulation language is constructed, where method calls (also called
event method calls) are now time-stamped interactions between entities. The
interaction between entities by event methods requires that the method call
(scheduling an event) and the actual method execution (handling an event) is
decoupled. A number of simulation kernels are available: a sequential simula-
tion kernel, a parallel simulation kernel exploiting parallelism on a multipro-
cessor using multiple lightweight processes, and a parallel simulation kernel
with a distributed global clock. An optimistic simulation kernel is under devel-
opment.

The performance of the sequential simulation kernel and the parallel sim-
ulation kernel using multiple lightweight processes in Fornax compares fa-
vorable with other Java-based simulation libraries and MODSIM III. A ring-
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topology queueing network and an Ising spin system simulation were used for
a quantitative performance evaluation. For the ring-topology queueing net-
work simulation, the performance of Fornax is superior to MODSIM III up to
200 concurrently active queues (entities). The Fornax performance decreases
for more than 200 concurrently active entities; this is due to increased multi-
threading overhead costs. For the Ising spin system simulation, Fornax out-
performed the other Java-based simulation libraries. In the Ising spin system
simulation there was no performance breakdown observed for more than 200
entities, as there are only a limited number of entities active at any instance of
time.

Additional to the simulation kernel, the Fornax simulation environment
provides a framework for visual modeling. For example, in computer archi-
tecture modeling and simulation, a set of predefined (functional) components,
such as processor, memory, cache, bus, etc., can be made available in the visual
modeling environment. The user designs the computer architecture using a
graphical user interface and specifies the component parameters, e.g., memory
size and access times. From this visual design a Fornax simulation is distilled
and executed. Other promising features that are incorporated in the Fornax en-
vironment are the capabilities for Web-based simulation (Fishwick 1997) and
agent-based simulation (Joshi et al. 1997).

3.2.2 Libraries
Libraries are typically composed of a simulation kernel implementing a (num-
ber of) synchronization protocol(s) and an application programming interface
(API). The API provides an interface to the simulation kernel to create and
initialize logical processes, to schedule events or interactions, and to finalize
the parallel simulation. In this respect, simulation libraries fulfill a dualistic
role. The library as such, allows a user to implement a parallel simulation in a
general-purpose language such as C or C++, by calling the appropriate library
functions via the API. The other role of libraries is its use to supply a simu-
lation kernel for parallel simulation languages. Therefore, libraries and their
functionality play a central role in parallel discrete event simulation.

Most PDES library environments reported in literature are research-orient-
ed and based on optimistic protocols. In general, compared with optimistic
protocols, conservative protocols can be implemented with less effort, and the
optimization of the protocol is more application specific. For instance, looka-
head information, which is crucial for a conservative protocol to be effective, is
application dependent. Therefore, the most effective approach is for the pro-
grammer to use a general purpose parallel runtime system, and implement op-
timizations specific to the simulation application. The optimistic protocols are
far more difficult to implement than conservative ones, due to the inherently
complex and intractable nature of the Time Warp mechanism. Furthermore,
the genericness of optimistic protocols makes that the method’s effectiveness is
less application independent, and can be optimized over a broad range of appli-
cation behaviors. Thus, contrary to conservative protocols, the most effective
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way is for the programmer to use a parallel simulation library that hides the
implementation details of the Time Warp mechanism.

The list of PDES library environments discussed in this section is far from
complete. In the presentation, the libraries are selected by their distinctive-
ness, and by the amount to which they integrate the various concepts and their
use in PDES.

The Time Warp Operating System (TWOS) (Jefferson et al. 1987; Reiher
1990) is historically one of the first optimistic simulation environments based
on the Time Warp protocol. TWOS is composed of two layers: the Time Warp
layer and the kernel layer. The TWOS program interface hides the under-
lying kernel layer and hardware. Thus, the programmer cannot access raw
hardware, nor can he use the underlying kernel layer beneath the level of the
TWOS interface. Although all interactions with the virtual machine are per-
formed through TWOS, it is not an interactive operating system. In its current
form, it is linked with the simulation to form a single executable. Interesting
features of the TWOS environment are dynamic object creation and dynamic
load management. Dynamic object creation is a complicated problem. Objects
are created dynamically upon requests of other objects in the simulation. Such
a request may be part of an erroneous computation that will eventually be
rolled back. Therefore, the dynamic creation may need to be undone. Either
the actual creation must be delayed until the commit point, or the entire cre-
ation must be able to be undone. Dynamic load management allows the sim-
ulation to obtain good performance by dynamically balancing computational
work over the nodes based on the effective utilization, which is the fraction of
useful, committed work on the simulation.

SPECTRUM (Reynolds and Dickens 1989) is a test bed for designing and
evaluating parallel simulation protocols. The test bed supports experimenta-
tion on a full range of protocols in a common environment by relying on filters
exclusively to implement parallel protocols. By specifying filters for the actions
like initialization, get-next-event, post-event, advance-time, and post-message,
a specific protocol instantiation can be implemented. With respect to perfor-
mance comparisons, it is recognized that the SPECTRUM test bed is no substi-
tute for carefully crafted implementations of protocols for a given architecture.

The Georgia Tech Time Warp (GTW) (Das et al. 1994) system is specifically
designed for cache-coherent shared-memory multiprocessors. The simulation
kernel is based on the Time Warp mechanism, and is designed to support ef-
ficient execution of small granularity discrete event simulation applications.
This design objective necessitates a simple program interface that can be effi-
ciently implemented. More sophisticated mechanisms can be implemented as
library routines. For example, GTW supports an event-oriented world view, but
more complex world views such as process-oriented simulation can be built on
top of the GTW kernel. A number of techniques are incorporated in GTW to
enable efficient parallel execution of small-grained simulation programs. Some
techniques are also applicable to message-based machines, but the most impor-
tant, e.g., buffer management mechanism, GVT algorithm, and maintaining lo-
cality of state vector information, are specific to cache-coherent shared-memory
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machines.
ParaSol (Mascarenhas et al. 1995) is a multi-threaded system for shared-

memory and distributed-memory parallel simulation. ParaSol is designed to
support active-transactions flow in process-interactive simulations. The idea
here is to develop a process-style description of a transaction’s activity as it
flows through a system (similar to popular sequential simulation languages
such as CSIM, GPSS, or SIMAN). Here, transactions are implemented via
time-stamped threads which transparently migrate between processors to ac-
cess model resources. The use of mobile threads has several advantages: local-
ity of reference, potential for load balancing, and simplicity in application-level
coding. On the other hand, the complexity of working with threads instead of
messages is significant, and poses serious challenges to efficient kernel opera-
tion.

The primary objective of the Parsimony Project (Preiss and Wan 1999) is the
development of a Java-based test bed for distributed, network centric simula-
tion. Parsimony exploits the features of Java to provide a flexible distributed
simulation environment while hiding many of the simulation details from the
user. However, different than Fornax, Parsimony requires explicit send and
schedule method calls to model time-stamped interactions between entities.
The Parsimony package includes three different distributed simulators. A dis-
tributed simulator is one in which a given user-defined simulation is executed
using multiple Java Virtual Machines running on different host computers.

Other parallel simulation libraries not discussed here are SPEEDES (Stein-
man 1992), SIM++ (Baezner et al. 1994), SimKit (Gomes et al. 1995), WARPED
(Radhakrishnan et al. 1996).

3.3 Design of the APSIS Environment

3.3.1 Requirements and Design Goals
The projected use of the APSIS simulation environment is primarily in the
field of dynamic complex systems (Sloot et al. 1997) such as asynchronous
cellular automata. Typical examples of asynchronous cellular automata are
continuous-time Ising spin systems or population dynamics models. Without
going further into the details of these application classes, we can character-
ize the application classes as data intensive, thus requiring efficient memory
management, and in need of dynamic entity creation and deletion. These appli-
cation requirements put constraints on the design of the APSIS environment.

The APSIS environment is a research vehicle for both optimistic simula-
tion protocol design and evaluation, and parallel simulation development of
dynamic complex systems. For effective parallel simulation development we
need to hide the complexity of the optimistic synchronization protocol by pro-
viding a simulation language or library. The protocol design and evaluation
asks for a flexible environment that is easily adapted to incorporate new con-
cepts and is extendible to interface with the environment for evaluation of the
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concepts. From a simulation modeling perspective, the model validation and
simulation verification are important. This requires determinism: given the
same input, a simulation should produce identical results, regardless of the
number of processors or the mapping of the processes to processors used.

Operational requirements are transparent scalability and parallel effi-
ciency. The envisaged parallel platforms range from massively parallel pro-
cessors to networks and clusters of workstations. The simulations should be
executable on varying number of processors and with different mappings of
processes to processors without source code modifications. Over the various
parallel platforms, efficient execution of the simulation should be guaranteed.
Closely related to the transparent scalability and parallel efficiency, is the
portability of the parallel simulation. Portability and efficient network support
allows the development of the parallel simulation on a workstation, while en-
suring that the simulation can be moved to a parallel processor for production
runs.

3.3.2 Overview
The APSIS system contains a development and execution environment for par-
allel simulations. The parallel runtime executive is an optimistic simulation
kernel based on the Time Warp protocol. Simulation of applications stem-
ming from dynamic complex system requires efficient execution of small grain
events. The basic world view supported by the simulation environment is
event scheduling. More complex world views such as process-oriented (see Sec-
tion 1.2.7) can be implemented on top of the simulation kernel. Furthermore,
the data intensive characterization of dynamic complex systems motivates sup-
port for aggregation of entities in subdomains, allowing for data decomposition
which closely relates to the modeling practices of the problem field. Although
special considerations are taken for dynamic complex systems, APSIS is a gen-
eral parallel discrete event simulation system that can be used for computer
network simulations, personal communication services simulations, or avia-
tion applications.

The simulation model adopted in APSIS is the well-known model where
physical processes of a real-world system are represented by logical processes
that interact with each other via time stamped event messages (see Sec-
tion 2.2). A model of a physical process is the description of the state and
the behavior of the associated logical process. The simulation system is than
a network of instantiated models. The runtime support system of APSIS must
therefore support the instantiation and the concurrent execution of models. For
the instantiation of simulation models, the simulation environment provides
initialization and virtual topology constructor functions. Problems with a reg-
ular interaction between the logical processes are easily instantiated with en-
vironment provided virtual topology constructors for, e.g., grid or torus topolo-
gies. Irregular topologies can be specified by the application user. The topology
constructor also maps the logical processes to the parallel processors. For the
concurrent execution, the simulation runtime support relies on message pass-
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ing libraries such as MPI, PVM, etc. The message passing libraries abstract
from the underlying hardware, MPP or cluster of workstations, and allows for
portable program development that is scalable over the number of processing
nodes. The supported programming model is single program, multiple data
(SPMD) (Hwang 1993).

The PDES facilities of the APSIS environment are supported by a library.
As APSIS is a research vehicle, the environment must be flexible and easily
extendible. Languages provide a higher abstraction level, definitely preferable
from a modeling perspective, but are less pliant to changes than libraries. Fur-
thermore, knowledgeable users can fine tune the library parameters, such as
state saving method, cancellation strategy, or optimism control, to attain the
best performance with respect to the application class. The relative simple
interface of the library can be efficiently implemented. If the various design di-
mensions have been crystallized, a production simulation kernel can be accom-
modated by a simulation language like Fornax (van Halderen and Overeinder
1998).

In Fig. 3.1 the APSIS architecture is shown. Four layers are depicted in
the figure. The hardware layer is the parallel platform, which can range from
a cluster of workstations to a massively parallel processor architecture. The
communication libraries MPI, PVM, CK∗, Panda†, etc., abstract from the spe-
cific hardware by providing a uniform, portable interface to the underlying
parallel platform, i.e., the communication infrastructure. The APSIS library
incorporates a number of interfaces to the various message passing layers. The
simulation kernel schedules the events over the parallel architecture and coor-
dinates the distributed logical processes using the message passing interface.
The instantiation of the simulation model and the mapping of the logical pro-
cesses by the topology functions makes use of the message passing layers. To
the upper layers, the APSIS library supports an application programming in-
terface for simulation initialization, event scheduling, and simulation finaliza-
tion. The library is implemented in the C language, and supports both an API
for C as well as C++.

3.3.3 The Application Programming Interface
The APSIS application programming interface includes a set of routines to
design and implement parallel simulation applications. We organize the de-
scription of the interface routines according to their functional use: simula-
tion instantiation, event scheduling and execution, virtual time management,
memory management, and environment configuration and information.

∗The Communication Kernel is a lightweight communication layer designed for simplicity
and efficiency (Overeinder et al. 1995).

†In the APSIS environment, the PVM communication library (called PANPVM) imple-
mented on top of Panda is used.
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Figure 3.1: Overview of the APSIS parallel simulation environment architec-
ture.

Simulation Instantiation

The APSIS initialization function instantiates the simulation model by creat-
ing the logical processes (LPs) making up the the parallel simulation. The
virtual topology constructor functions allows the simulation programmer to
describe the LP interaction pattern that is logically similar to the simulation
model, thus abstracting from the particular parallel architecture, which can
have different physical interconnection topologies. Tables 3.1 and 3.2 summa-
rize the instantiation functions.

apsis_init initialize the APSIS execution environment
apsis_finalize terminates APSIS execution environment
apsis_abort aborts APSIS execution environment
apsis_pid process identifier of calling process

Table 3.1: Initialization, finalization, and environment routines.

The initialization function apsis_init(int *argc, char ***argv)
initializes the APSIS execution environment and creates the logical processes
(currently Unix processes, future development will include threads). The pro-
gramming model is single program, multiple data (SPMD), hence all logical
processes start the same executable. apsis_init accepts the argc and argv
that are provided by the arguments to the ANSI C main function. The first
argument in argv must be the number of logical processes in the parallel
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simulation. This argument is used and discarded by apsis_init. The other
remaining arguments are available to the simulation program.

The function apsis_finalize(void) cleans up all APSIS state and starts
a termination detection algorithm to finalize the parallel simulation. The func-
tion apsis_abort(int errorcode) aborts all the logical processes. The er-
ror code is returned to the Unix or POSIX environment.

The process identifier of a logical process can be determined with the func-
tion apsis_pid(void). The function returns an integer number i , where
0 ≤ i ≤ N − 1 and N is the number of logical processes.

apsis_cart_create create Cartesian virtual topology
apsis_cart_free free Cartesian virtual topology data structure
apsis_cart_pid determines LP pid given Cartesian location
apsis_cart_coords determines Cartesian coords given LP pid
apsis_graph_create create graph virtual topology
apsis_graph_free free graph virtual topology data structure
apsis_graph_neighbors return the neighbors of an LP within a graph

Table 3.2: Virtual topology routines.

The APSIS virtual topology functions are very similar to the MPI virtual
topology functions. The generic virtual topology functions can be efficiently
implemented on top of a message passing layer and allow the definition of a
rich set of topologies.

Function apsis_cart_create(int ndims, int *dims, int *peri-
ods) can be used to describe Cartesian structures of arbitrary dimension. The
number of dimensions is specified in ndims, and the number of logical pro-
cesses in each dimension in array dims. For each coordinate direction one
specifies whether the process structure is periodic or not. For a 1D topology,
it is linear if it is not periodic and a ring if it is periodic. For a 2D topol-
ogy, it is a rectangle, cylinder, or torus as it goes from non-periodic to periodic
in one dimension to fully periodic. The topology translation functions ap-
sis_cart_pid(int *coords, int *pid) and apsis_cart_coords(int
pid, int ndims, int *coords) provide a mean to determine the Carte-
sian coordinates of an LP and the pids of its neighbors.

apsis_graph_create(int nnodes, int *index, int *edges) cre-
ates a graph topology. The three parameters nnodes, index, and edges define
the graph structure. nnodes is the number of nodes of the graph. The nodes
are numbered from 0 to nnodes-1. The ith entry of array index stores the
total number of neighbors of the first i graph nodes. The lists of neighbors of
nodes 0, 1, . . . , nnodes-1 are stored in consecutive locations in array edges.
The array edges is a flattened representation of the edge lists. The total num-
ber of entries in index is nnodes and the total number of entries in edges is
equal to the number of graph edges.

The definitions of the arguments nnodes, index, and edges are illustrated
in the following example.
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process neighbors
0 1, 3
1 0
2 3
3 0, 2

0 1

2 3

Then, the input parameters are:

nnodes = 4
index = (2, 3, 4, 6)
edges = (1, 3, 0, 3, 0 , 2)

Thus, index[0] is the degree of node zero, and index[i] - index[i-1]
is the degree of node i, i = 1, ..., nnodes-1; the list of neighbors of node
zero are stored in edges[j], for 0 ≤ j ≤ index[0] - 1 and the list of neigh-
bors of node i, i > 0, is stored in edges[j], index[i-1] ≤ j ≤ index[i] -
1.

The information function apsis_graph_neighbors(int pid, int max-
neighbors, int *neighbors) returns the array neighbors with pids that
are neighbors to the specified logical process.

Event Scheduling and Execution

The basic simulation world-view incorporated by the APSIS environment is
event-scheduling. In event-scheduling, a model’s execution is viewed as a se-
quence of events, where an event can be represented by a message. The AP-
SIS environment provides two functions to schedule and execute the events
of the parallel simulation in causal order. A third (de-) scheduling function,
apsis_cancel, is discussed in Section 3.4.1.

apsis_send schedule an event for future execution
apsis_recv receive an event for execution
apsis_cancel cancel an event

Table 3.3: Event scheduling and execution routines.

The event scheduling function is apsis_send(int dest, vtime ts,
void *buf, int count), which sends a message buf of size count to des-
tination dest with timestamp ts. The timestamp of type vtime can be either
an integer or a floating point value. The net effect of a call to this function is
the scheduling of an event at LP dest for execution at simulation time ts. The
contents of the event message buf is non-specified by APSIS and depends on
the simulation application.

A call to apsis_recv(void *buf, int count) retrieves the next pend-
ing event for execution. Indirectly, the retrieval of the pending event sets the
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LVT of the LP to the timestamp of the event message. The event messages re-
ceived over successive calls to apsis_recv are guaranteed in non-decreasing
timestamp order, as the LPs must adhere to the local causality constraint.

The simplicity of the two routines apsis_send and apsis_recv is almost
misleading, as it is the full complexity of the Time Warp protocol that realizes
the local causality of the individual LPs. The details of the subtle interplay
between the two routines are presented in Sections 3.3.4 and 3.5.1.

Virtual Time Management

Table 3.4 shows the virtual time information inquiry functions. The function
apsis_gvt(void) returns the current global virtual time known by the Time
Warp kernel of the calling LP. apsis_lvt(void) returns the current local
virtual time of the LP, that is the timestamp of the current event message
being processed by the LP.

apsis_gvt global virtual time
apsis_lvt local virtual time

Table 3.4: Virtual time management routines.

Memory Management

The APSIS environment does not include transparent, or implicit, state saving,
thus the simulation application must explicitly save state changes for potential
future rollbacks. The interface function to the APSIS state saving mechanism
is shown in Table 3.5. The APSIS environment incorporates copy state saving
and incremental state saving. (The design of incremental state saving in APSIS
is further discussed in Section 3.4.2.)

apsis_state_save incremental state save

Table 3.5: Memory management routines.

Independent of the selected state saving mechanism, copy or incremental
state saving, the interface function is apsis_state_save(void *buf, int
count). The function saves the (partial) state vector buf of size count bytes
into a simulation kernel data structure.

Environment Configuration and Information Routines

To allow for a flexible and extendible simulation kernel, a generic in-
terface function to the Time Warp simulation kernel is provided by the
apsis_attr_set(int attr, void *value) and apsis_attr_get(int
attr, void *value) pair (see Table 3.6). These interface functions enable
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knowledgeable users to fine tune the simulation kernel to their simulation ap-
plication. The simulation kernel also has four debugging modes (in increas-
ing detail of debugging messages), which can be set with apsis_debug(int
mode). (The debugging mode can also be set via apsis_attr_set, but for
convenience and historical reasons the apsis_debug function is included.)

apsis_attr_get retrieve library information
apsis_attr_set set library configuration
apsis_debug set library debug level

Table 3.6: Environment configuration and information routines.

Currently, the following simulation kernel attributes can be set: state sav-
ing method and virtual time window. The state saving method can be set to
copy state saving or incremental state saving (default). The virtual time win-
dow controls the optimism of the Time Warp protocol by limiting the execution
of events within a window of virtual time beyond the global virtual time (see
also Section 2.4.5). Other simulation kernel attributes that can be requested
are the number of processed events, committed events, and rolled back events.

3.3.4 The Software Architecture
The API – Time Warp Kernel Interaction

The application programming interface (API) described in the previous section,
interacts with the Time Warp simulation kernel to orchestrate the distributed
execution of events over the parallel platform. The instantiation functions are
the interface to the Time Warp kernel module for logical process creation and
topology definition. The event scheduling and execution functions, and the
state saving function interact with the synchronization module of the simula-
tion kernel. The functions to set kernel attributes work on specific parts of
the Time Warp kernel, and the inquiry functions (including apsis_gvt and
apsis_lvt) do not change the state of the simulation kernel.

The Time Warp Kernel

The APSIS Time Warp kernel is composed of three functional modules, namely
the instantiation, synchronization, and GVT computation module (see Fig. 3.2).
The modules work independent from each other; the instantiation module is
only accessed during simulation startup and initialization. The modules do
not interfere with each computation, but do asynchronously exchange informa-
tion between each other. From Fig. 3.2 one can see that the instantiation and
synchronization modules can be accessed via the API. The GVT computation
module cannot be accessed by the application (with the exception of the ap-
sis_gvt(void) routine, which only returns the current GVT). All modules
make use of the underlying message passing layer.
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Figure 3.2: Overview of the modules in the APSIS Time Warp kernel.

Instantiation The instantiation of the simulation model consists of APSIS
environment initialization and logical process creation. The creation of logical
processes relies on the facilities supported by the underlying message passing
layer. Although the intrinsics of process creation are different for the various
message passing layers, APSIS provides one single method for process creation
that is translated to the particular message passing layer, see the next section
on the message passing interface. With process creation, the message passing
layer is also initialized. Apart from process creation, the instantiation initial-
izes the data structures used by the synchronization and GVT computation
modules.

The virtual topology construction, if requested by the simulation applica-
tion, is translated to the underlying message passing layer. For message pass-
ing layers that incorporate the concept of virtual topologies, the virtual topol-
ogy construction is effectively implemented using the message passing layer
topology constructors. For message passing layers without the notion of vir-
tual topologies, such as PVM, the virtual topology construction is implemented
by translating the mapping of the logical processes to the processors according
to the defined virtual topology.

Synchronization The synchronization module implements the forward sim-
ulation and rollback protocol. The essential data structures for realizing the
transparent rollback-based synchronization protocol for parallel simulation are
the input queue, output queue, and state queue. The input queue, or event
queue, data structure contains the events of the simulation in timestamp or-
der. New scheduled events are inserted at the appropriate place, in timestamp
order, in the queue. Closely associated with the input queue are the output
and state queue, which contain respectively the event message sent and state
changes due to the execution of an event (see for details of the data structure
Section 3.5.1).

The interplay between scheduling and execution functions, and the local
data structures of the Time Warp kernel is shown in Fig. 3.3. The receipt of
an event (process recv in Fig. 3.3), retrieves the next pending event from the
input queue. The execution of this event (process exec) can result in a number
of state changes, which are stored in the state queue. The execution of the
event can also induce a number (zero or more) of new events to be scheduled,



64 The APSIS Time Warp Kernel

by sending event messages to their destination (process send). Copies of the
event messages are stored in the output queue. All side effects resulting from
the execution of an event are directly associated with that event. Thus, all
state change and event message entries in their respective queues are linked
with the “responsible” event in the input queue.

sendexecrecv

inputq / outputq / stateq

outputstateinput

Figure 3.3: Scheduling and execution of events, and the interaction with the
input, output, and state queue.

The rollback mechanism efficiently annihilates the scheduled events and
undoes the state changes by using the associated data structures. Upon detec-
tion of a causality error, that is the receipt of a straggler event with a time-
stamp smaller than the current LVT, the rollback mechanism resets the LVT
to the timestamp of the event directly before the straggler. All premature ex-
ecuted events with their associated side effects are nullified by running down
the output and state queue, and sending out the anti-messages and replacing
the state changes with their original values from the state queue. The rollback
mechanism can be seen as the reverse loop of the normal forward simulation
as shown in Fig. 3.3.

Global Virtual Time Computation The Global Virtual Time (GVT) com-
putation module coordinates a number of activities. First, of course, the GVT
computation itself, that is the estimation of the smallest timestamp of the un-
processed events in the system. The second important task of GVT computa-
tion is fossil collection. And finally, GVT computation is used for distributed
termination detection of the parallel simulation.

The GVT algorithm used in the APSIS environment is based on the algo-
rithm proposed by Bauer et al. (1991, 1992). The underlying message passing
layers provide error-free communication channels with first in, first out (FIFO)
behavior. The APSIS message passing interface to the underlying message
passing layer such as MPI, PVM, etc., enumerates all event messages through
a certain communication channel, resulting in a unique event message number
per destination. The GVT module locally administers the number of messages
sent and received, and the minimum timestamp of an event message since the
last GVT report. Periodically, the LPs send their local information and their
LVT to the GVT manager, which deduces from the information the minimum
of the transient message timestamps and LVTs (see Section 3.5.4). The GVT
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manager is a designated GVT computation module, for example the logical pro-
cess with process identifier equal to zero.

The fossil collection task of the GVT module consists of freeing unused mem-
ory and committing irrevocable operations such as I/O. With each GVT update,
the memory resources consumed by the input, output, and state queue are re-
claimed. Because the LPs never rollback to a simulation time earlier than the
GVT, it is safe to reclaim memory resources for events with timestamps less
than GVT, together with their associated output and state queue entries. An
important performance parameter of the GVT computation and fossil collec-
tion is the GVT update frequency. The three factors determining the optimal
GVT update frequency are computational overhead, communication overhead,
and memory usage. Computational overhead and communication overhead
are minimal at low frequency, while optimal memory usage requires high fre-
quency such that unused memory is reclaimed regularly. From experiments it
appears that the communication overhead, that is the communication latency,
is the most important factor in the determination of the optimal GVT update
frequency. In case of low communication latency (±20 µsec), update frequency
can be as high as 20 Hz, while in case of high communication latency (±1 msec)
the frequency can be as low as 0.5 Hz. Sensitivity analysis shows that fre-
quency parameter setting is robust, that is, for large parameter ranges the
GVT update performance is (sub-) optimal.

The GVT computation is also involved in termination detection of the paral-
lel simulation. With the Time Warp protocol, the parallel simulation continues
as long as there are events to be processed. If no events are pending for execu-
tion at an LP, the LVT of the LP will be set to +∞. If all LPs will have their
LVTs set to +∞, and there are no transient event messages, then no more
events are pending in the parallel simulation. With the next GVT computa-
tion, the new GVT value will be +∞. This will trigger the termination phase
of all LPs to finalize the parallel simulation.

The Message Passing Interface

The design of the APSIS message passing interface abstracts from the specific
message passing layer used on the parallel platform. All Time Warp kernel
routines access the message passing layer via the APSIS message passing in-
terface. To support the APSIS library for a specific message passing layer, eight
functions have to be supplied for program initialization and finalization, send
and receive, and creation and freeing of Cartesian and graph topologies. The
required send primitive is asynchronous (or buffered-mode in MPI terminol-
ogy) and the receive primitive is nonblocking.

3.4 Extensions to the Time Warp Kernel
In this section we introduce two extensions to the Time Warp kernel that en-
large the effective application of the Time Warp protocol to highly dynamic
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systems and simulations with arbitrary large states. First, we introduce a new
primitive to retract scheduled future events. This allows us to actively remove
simulation entities including their scheduled events. Second, the complication
with applications with large states is solved by providing an alternative mech-
anism for copy state saving (checkpointing), called incremental state saving,
which only saves the difference between two states.

3.4.1 Event Retraction
Many challenging simulations are not efficiently supported by the original
formulation of the Time Warp protocol. For example, consider a population
dynamics simulation model consisting of predators hunting for preys. Both
predators and preys schedule their events for future activities, such as move,
eat, and breed. Part of the modeled behavior of the predator is to catch a prey,
resulting in the removal of the prey from the simulation. The elimination of the
prey invalidates the previously scheduled events that initiate an activity of the
non-existent prey. A convenient way of modeling this behavior is to have the
predator “catch” event retract the original prey events in order to cleanup any
trace of the prey. Although it is possible to simulate such activities without
the ability to retract events, the availability of an event retraction primitive
simplifies the simulation model, making it easier to understand and maintain
(Overeinder and Sloot 1993).

At first glance, event message retraction seems to be quite similar to mes-
sage annihilation in rollback, so message retraction could be implemented by
sending the corresponding anti-message for the positive message that is re-
tracted. However, there is one important difference: message retraction is part
of the optimistic simulation and can potentially be rolled back, while message
annihilation in rollback is part of the synchronization protocol which removes
any reference to the event message in the parallel simulation. Thus, although
the mechanism for message retraction is rudimentary available in the Time
Warp protocol, we need to extend the annihilation mechanism to allow for roll-
back of a message retraction.

The new event retraction primitive is designed to interact with the existing
annihilation mechanism without increasing the overhead of the Time Warp
mechanism where the primitive is not used. Similar to rollback, the retraction
primitive cancels an event message by sending the corresponding anti-message
to the logical process that received the original message. But, in addition, a
positive copy of the message is placed into a new data structure called the can-
cel queue that is associated with the logical process that invoked the retraction
primitive. If the event that invoked the retraction primitive is rolled back, we
send the positive copy of the message to the receiving process. Just as the out-
put queue maintains the information necessary to roll back previous sent event
messages, the cancel queue maintains the information to undo invocations of
the retraction primitive.

Lomow et al. (1991) proposed a similar design for a mechanism for user-
invoked retraction of events in Time Warp as described in this section. Agre
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and Tinker (1991) introduced a retraction mechanism that interacts with the
GVT computation and fossil collection mechanism. In their approach, event
retraction is an irrevocable operation and is committed during fossil collection.
Committing the event retraction consequently delays the execution until the
GVT sweeps past the timestamp of the event retraction. An advantage of this
approach is that a cancel queue is not necessary because the event retraction
cannot be rolled back.

The Retract Primitive

The event retraction function apsis_cancel is conceptually the inverse oper-
ation of the event scheduling function described in Section 3.3.3. The schedule
primitive X = apsis_send(dest, ts, buf, count) sends a positive copy
of message buf with timestamp ts to logical process dest. The schedule func-
tion is extended to return an identifier X, the descriptor of the message, which
can be used to refer to the generated message, e.g., to retract it.

The function apsis_cancel(X) retracts a previously sent message whose
descriptor is X. The retract function discards all effects of the event simu-
lation. If the message is not yet executed, the event message is removed
from the input queue. In case the event is executed, the destination logical
process is rolled back, effectively undoing all side effects, the corresponding
event message is removed, and the simulation continues as if the event was
never scheduled. Because retraction is the inverse of event scheduling, ap-
sis_cancel(apsis_send(dest, ts, buf, count)) is equivalent to a no-
op. The apsis_cancel is only meaningful from a modeling perspective if the
virtual time at which the retraction was issued is smaller than the virtual time
at which the event is scheduled for execution. A sanity check tests whether
this precondition is met before the retraction is executed.

3.4.2 Incremental State Saving
The design and implementation of incremental state saving (ISS) in the AP-
SIS environment is an essential feature to effectively support the simulation
of dynamic complex systems. The motivation and merits of ISS are extensively
described in Section 2.4.4. In this section we present the details of the incorpo-
ration of ISS in the APSIS environment.

One of the design goals formulated in Section 3.3 specified efficient sup-
port for simulation applications stemming from dynamic complex systems, and
in particular the class of asynchronous cellular automata (see for definition of
asynchronous cellular automata Section 5.2). Asynchronous cellular automata
are data intensive applications that easily consume all available physical mem-
ory. In terms of parallel performance, this application class falls in the category
of memory-bounded speedup models (Sun and Ni 1993): the idea is to solve the
largest possible problem limited by memory space. For data intensive simu-
lation applications it is inefficient and even often infeasible to save copies of
the complete state (even with periodic state saving). However, the execution of
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an event in this application class only induces small changes local to the state
vector, thus it is appropriate to save only the updated parts of the state using
the incremental state saving technique.

The incremental state saving mechanism developed and implemented in
the APSIS environment exploits the Markovian behavior of the state evolution.
The parallel simulation of the dynamic complex system is spatially decomposed
into a number of subdomains. Each subdomain is an aggregation of cellular
automata represented by a logical process. The state of the logical process can
be seen as a vector of the states of all the cellular automata it contains. The
state of the logical process can now be written as s = (s(a1), . . . , s(aN )), where
N is the number of aggregated cellular automata in the subdomain.

The execution of an event et
i , 1 ≤ i ≤ N , scheduled at automaton ai for vir-

tual time t , only changes the state of automaton ai by the locality of the tran-
sition rules of the cellular automata. Thus the execution of the event results
in the new state vector s ′ =

(

s(a1), . . . , s ′(ai ), . . . , s(aN )
)

. Instead of saving the
complete state vector, it is sufficient to save the old state s(ai). The incremental
state saving mechanism associates state s(ai ) now with event et

i .
The APSIS environment incorporates copy state saving (CSS) and incre-

mental state saving (ISS). The state saving method can be set with the
apsis_attr_set simulation kernel interface function. With the apsis_-
state_save function a (partial) state can be saved to the state queue. This
function is both used for CCS and ISS. The generic functions apsis_attr_set
and apsis_state_save enable the simulation application to switch dynami-
cally between CSS and ISS. However, it is the responsibility of the simulation
application that with the specific state saving method the proper state infor-
mation is saved with apsis_state_save. If the Time Warp kernel is in CSS
mode, state recovery during rollback is accomplished by restoring the state
vector directly form the state queue. In ISS mode, the simulation kernel recon-
structs the state by restoring each saved state variable in reverse order, until
the last event with a timestamp just before the event that caused the rollback.

Incremental state saving requires less state saving time and memory, at
the cost of state reconstruction. The efficiency of the incremental state saving
method compared to the copy state saving method depends on the rollback
length and the percentage of the state that is modified due to the execution of
an event. The tradeoff between copy and incremental state saving is discussed
in detail in Section 2.4.4.

3.5 Implementation Aspects of the Time Warp
Simulation Kernel

3.5.1 Simulation Kernel and Data Structures
The central activity of the Time Warp simulation kernel is the management of
the input queue, output queue, state queue, and cancel queue data structures.
All synchronization, i.e., forward simulation and rollback, and fossil collection
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operations work on these data structures. Figure 3.4 shows the overall design
of the queue data structures in the simulation kernel.

(*)

(*)

mess

LVT

ts

..

.

input queue output queue state queue cancel queue

+mess-mess state

Figure 3.4: The APSIS Time Warp kernel input, output, state, and cancel
queue data structure.

The input, output, state, and cancel queues are priority queues. A priority
queue is a data structure for maintaining a set of elements, sorted according
to an associated key value. Conceptually the queues are doubly linked lists,
as shown in Fig. 3.4, although the implementation can be a calendar queue
(Brown 1988), a heap (Cherkassky et al. 1996), or another data structure (Rön-
ngren and Ayani 1997), as long as there is a previous–next relation between
the queue elements. The doubly linked list data structure allows for almost ef-
fortless traversal of the queues in both directions, which is essential in forward
simulation and rollback processing.

The input queue is the defining data structure, which maintains the event
messages in timestamp order. The input queue is called defining with respect
to the other queues because during insertion or deletion operations on the in-
put queue, the elements in the input queue are maintained in timestamp order
while the other queues are manipulated according to the changes to the input
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queue. An input queue element has three references to its associated output
messages in the output queue, its saved state changes in the state queue, and
its event retractions in the cancel queue. In this data structure it is possible
that a multiple number of output message, saved state changes, or event re-
tractions are associated with one event execution. On the other hand, if the
execution of an event does not result in any output message, state change, or
event retraction, the respective reference directs to the element of the previous
event. For example in Fig. 3.4, the second and third event message in the input
queue have their cancel queue reference directing to the cancel queue element
of the first event message in the input queue (see references labeled with (*) in
Fig. 3.4).

The LVT points to the current event message being processed. All event
messages received but not yet processed, have their associated output queue,
state queue, and cancel queue references set to nil.

3.5.2 Synchronization
The simulation synchronization operations of the Time Warp kernel are for-
ward simulation (event scheduling and execution), event retraction, and roll-
back. All operations manipulate the queue data structures in one way or an-
other. Forward simulation and event retraction construct the data structures
progressively, and rollback consistently reconstructs the data structures to an
earlier virtual time.

Forward Simulation

Forward simulation consists of event scheduling and execution. The ap-
sis_recv retrieves the next pending event for execution from the input queue.
The operation sets the LVT (see also Fig. 3.4) to the current event timestamp.
If the execution of the event results in one or more state changes, the original
values of the state variables are copied to the state queue. The scheduling of
a new event is accomplished with the apsis_send function, which sends an
event message to the destination LP and stores a negative copy of the event
message in the output queue. If the execution of the event is completed, the
next pending event is selected with apsis_recv. The semantics and logical
“correctness” of simultaneous events are defined and resolved by a tie-breaking
mechanism imposed by the simulation kernel (Mehl 1992; Wieland 1997). Mul-
tiple events scheduled by an identical process for the same simulation time are
executed in a FIFO fashion. For ties which occur as a result of scheduling from
two different processes, priority is given to the event scheduled by the process
with the smallest APSIS process identifier (apsis_pid(void)).

Optimism control (see Section 2.4.5) is also part of forward simulation. The
optimism of the Time Warp protocol is controlled by limiting the execution of
events within a window of virtual time beyond the global virtual time. The time
window can be set with the apsis_attr_set simulation kernel interface. If
the timestamp of the next pending event falls outside the virtual time window,
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the execution of the event is throttled by blocking the apsis_recv function
until the virtual time window is advanced (after a GVT update).

Event Retraction

Although event retraction can be considered to be part of the forward simula-
tion, that is, it is part of the simulation application rather than the “invisible”
simulation protocol, it is discussed separately for clarity.

For the implementation of the event retract function apsis_cancel, we
can identify three situations. First, the LP which retracts the event is also the
originator of the positive event message. Second, the LP which retracts the
event is the destination of the positive event message. And third, the LP which
retracts the event is neither the originator nor the destination of the positive
event message.

In the first situation, with the message descriptor the original message can
be found in the output queue (negative copy). In the second situation, the
original message can be found in the input queue (positive message). In both
situations, a negative copy of the event message is sent to the destination LP
and a positive copy is stored in the cancel queue. The third situation is not
implemented in our scheme, as there is no efficient method to retrieve a copy
of the original message, and from a modeling perspective it is quite unlikely
there is any need to support this situation.

We can give examples of these three event retraction situations in an
individual-based population dynamics simulation (similar as discussed in Sec-
tion 2.4.4). The population dynamics simulation, where predators and preys
struggle for life, is spatially decomposed over a number of subdomains (as-
signed to different logical processes). The predators and preys have a certain
(predefined) range of interaction, that is the distance a predator can see or
smell a prey and hunt it down to eat it. The subdomains have a boundary re-
gion, which width is equal to the range of interaction distance. The first type of
event retraction happens when a predator kills a prey within one subdomain:
all future events scheduled for the prey have to be retracted. The second type
of event retraction occurs when a predator in the boundary region kills a prey
in the boundary region of another subdomain. Since changes in the bound-
ary regions are communicated to neighboring subdomains, positive or negative
copies of the event messages scheduled for the prey are available, and hence
are retracted. The third situation, which is not implemented in the APSIS
simulation kernel, would occur when a predator detects and kills a prey on a
distance that is larger than the predefined range of interaction: this situation
is precluded by the simulation model.

Simulation Kernel Send/Receive Pair

The APSIS interface functions for scheduling, receiving, and retracting events
are handled by the send and receive functions in the simulation kernel. The
simulation kernel send function routes the event message scheduled by the
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apsis_send function call to the destination LP. The event message routing is
optimized such that the delivery of messages at local destination LPs is actu-
ally a storage operation of the event into the input queue. Event messages with
remote destinations are sent by the underlying message passing layer such as
MPI or PVM. The simulation kernel receive function receives the event mes-
sages from the underlying message passing layer and stores the event into the
input queue. The kernel receive function is implicitly called each time the ap-
sis_recv function is called from the simulation application.

With the delivery of an event message, the event is stored into the input
queue. The delivery of a local event message (or internal event) is directly
handled by the send function, and the delivery of a remote event message (or
external event) is processed by the receive function. The effect of input queue
addition depends on the sign of the event message. A positive event message
is inserted into the input queue at the appropriate place according to its time-
stamp. If a negative message (or anti-message) is inserted into the input queue,
the negative message annihilates with the positive message in the input queue,
thus removing the positive message. If the timestamp of the event message (ei-
ther positive or negative) is smaller than the current LVT, a causality error has
occurred and the rollback mechanism is triggered.

Rollback

Rollback is the basic synchronization mechanism to recover from causality er-
rors. First the input queue is rolled back by resetting the LVT to the timestamp
of the straggler event. Next, all side effects are undone by rolling back the out-
put, state, and cancel queues. Rollback of the output queue is accomplished by
sending the anti-messages to annihilate with the premature sent positive event
messages. Similarly, rollback of the cancel queue incorporates sending the pos-
itive message, but an optimization is possible. If both the event retraction and
the scheduling of the original event are rolled back, the positive message in
the cancel queue and the anti-message in the output queue are removed and
annihilated. Neither message needs to be sent to the receiving LP.

The rollback method of the state queue depends on the state saving mode:
CSS or ISS (see Section 3.4.2). If the simulation kernel is in CSS mode, the
rollback is accomplished by copying the saved state vector back in one single
operation. If the simulation kernel is in ISS mode, the rollback of the state
queue consists of running down the state queue and copying back each saved
variable in reverse order.

3.5.3 Fossil Collection and Irrevocable Events
With every GVT update, the simulation kernel reclaims memory resources for
events with timestamps less than GVT and commits irrevocable events for exe-
cution. With fossil collection, the memory resources for the events in the queue
data structures are freed up to the last event with a timestamp smaller than
the current GVT. The irrevocable operations are buffered during simulation
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and are committed and executed if the GVT sweeps past their simulation time.
In Fig. 3.5 the circular I/O buffer is shown, with the two pointers GVT and LVT
indicating the start and the end of the buffered data. During simulation all I/O
is buffered into this circular buffer. If the simulation rolls back, the LVT pointer
is moved back up to the buffered operation with timestamp smaller than the
straggler timestamp, and hence the premature buffered operations are rolled
back. If the GVT value is updated, the buffered events with timestamp smaller
than the GVT are committed and executed, and the GVT pointer of the circular
buffered is moved forward.

GVT LVT GVTLVT

(b)(a)

Figure 3.5: The circular I/O buffer for irrevocable operations. The two pointers
GVT and LVT indicate the start and end of the buffered data. In (b) the LVT
pointer swept past the circular buffer size.

3.5.4 The Global Virtual Time Computation
The APSIS global virtual time algorithm is based on the GVT algorithm pro-
posed by Bauer and Sporrer (1992). The GVT algorithm is an asynchronous
centralized algorithm where the GVT is computed by a central GVT manager
that broadcasts a request to all LPs for the current LVT and while collecting
those values perform a min-reduction. The GVT algorithm assumes error free
communication channels with first-in, first-out behavior.

Let S be the set of logical processes in the simulation, and T bFa
ch (t) the min-

imum of timestamps of messages sent by b but not yet received by a (the tran-
sient messages over a channel). The GVT at any real time t is defined as

GVT(t) = min

(

min
k∈S

LVTk(t), min
a,b∈S

T bFa
ch (t)

)

.

In other words, GVT is the minimum of any LVT and any message that has
already been sent but was not yet received up till now.

The definition of the extended local virtual time ELVT includes the mini-
mum timestamp of transient messages for the logical process:

ELVTa(t) = min

(

LVTa(t), min
b∈S

T bFa
ch (t)

)

.

Using ELVT, we can now express the GVT as:

GVT(t) = min
k∈S

ELVTk(t) .
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To keep account of the transient messages, all messages through a certain
channel are numbered, so we can use the following notation:

• nbFa(t) : serial number of a message sent from b to a at real time t , in-
creasing with each sent message.

• raGb(t) : number of messages received by a from b during time interval
[0, t].

• T bFa
m (n): timestamp of event message m with serial number n.

The minimum timestamp of the messages sent by logical process b to logical
process a during some time interval [t1, t2] is given by

T bFa
min (t1, t2) = min

nbFa(t1)<n≤nbFa(t2)

(

T bFa
m (n)

)

.

We can now rewrite ELVT for real time ta for logical process a, as

ELVTa(ta) = min

(

LVTa(ta), min
b∈S

T bFa
min (tb, ta)

)

. (3.1)

Equation 3.1 states that we can determine ELVTa at real time ta, if we know
LVTa(ta) and the value of T bFa

min during the interval [tb, ta] (with nbFa(tb) =

raGb(ta)) from each logical process b ∈ S that sends messages to a.
The simultaneous reporting problem deals with information messages from

different times t (the time for which to determine GVT). Given Eq. 3.1, we can
determine a lower bound of GVT at real time tb

2 despite the fact that we have
not received any information from logical process a after t a

2 :

GVT(tb
2 ) = min

k∈{a,b}

(

ELVTk(tb
2 )

)

≥ min
(

LVTa(ta
2 ), T bFa

min (tb
1 , tb

2 ), LVTb(tb
2 ), T aFb

min (ta
1 , ta

2 )
)

. (3.2)

In the APSIS GVT algorithm, each logical process k sends an information
message to the GVT manager consisting of its LVTk , r kGa for each incoming
channel, and nkFa and T kFa

min (tk
i−1, tk

i ) for each outgoing channel (ti is the current
time and ti−1 the time of the previous information message). The GVT manager
then applies Eq. 3.2, determining the t1 (“message sent”) times by comparing
naFb and rbGa for each channel (naFb(ta

1 ) ≤ rbGa(tb
2 ) will give a valid t1 time). The

new GVT estimation will be distributed to the logical processes, which in turn
can start their fossil collection and commit irrevocable operations.

3.6 Summary and Discussion
The APSIS simulation environment is designed and implemented to provide
an experimental platform for design and evaluation of the Time Warp simu-
lation protocol. The APSIS environment incorporates a number of extensions
to efficiently support data intensive applications stemming from the research
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field of dynamic complex systems. For ease in flexibility to introduce new pro-
tocol extensions and to realize an efficient interface to the parallel simulator,
we have chosen to incorporate the parallel simulation functionality into a li-
brary instead of a simulation language. Moreover, interface functions to the
library parameters enables knowledgeable users to select the appropriate state
saving method, cancellation strategy, or optimism control attain the best per-
formance with respect to the application class. APSIS is by design a portable
simulation environment, which runs currently on a number of Unix platforms,
such as Solaris, Linux, and BSD/OS, and with various communication libraries,
like PVM, MPI, and the lightweight Communication Kernel (Overeinder et al.
1995). The APSIS application programming interface includes an interface to
the C and C++ programming languages.

Event retraction and incremental state saving are introduced extensions
to the Time Warp simulation protocol to accommodate the APSIS library for
dynamic complex system applications. Event retraction enables the dynamic
creation and deletion of simulation entities. A complication with dynamic dele-
tion of simulation entities is the removal of scheduled events for those entities
in the simulated system. The event retraction function is an API function that
retracts, or cancels, a scheduled event similar to a rollback, but with the dif-
ference that the retract can also be rolled back, resulting in the reschedule
of the original event. The incremental state saving facility provides a mem-
ory and time efficient state saving mechanism that is suited to data intensive
applications which are spatially decomposed over the logical processors. The
incremental state saving mechanism only saves the state changes due to the
execution of an event, and upon rollback the saved variables are copied back in
reverse order to reconstruct the original state vector.

Similar to other PDES libraries mentioned in Section 3.2.2, APSIS is
research-oriented and based on an optimistic protocol. The event-oriented
world view can be efficiently implemented such that minimal overhead is in-
troduced. The APSIS library has efficient data structures to allow for fast and
associative access to the input, output, state, and cancel queues. Together with
other optimizations, such as local message delivery and efficient support to un-
derlying message passing layers, an effective simulation environment for solv-
ing large scale problems is realized. Future enhancements can include adap-
tive optimism control, hybrid state saving, and simulation language support,
for example by Fornax (van Halderen and Overeinder 1998).
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Chapter 4

APSE: Average Parallelism,
Profile, and Shape Evaluation

Main Entry: apse
1 : APSIS 1
2 : a projecting part of a building (as a church) that is usually semicircular
in plan and vaulted

—Merriam-Webster Dictionary

4.1 Introduction
Two measures of particular interest in parallel performance evaluation are
speedup and efficiency. Notwithstanding the importance of these two measures,
they do not reveal how well the available potential parallelism of the applica-
tion is exploited. Nor do they help to understand why the performance may
not be as good as expected. In particular, with the performance analysis and
evaluation of PDES protocols we need a measure to compare the effectiveness
of the different protocols. This can be done by a relative criterion that quali-
tatively compares the effectiveness of the protocols by measuring the speedup
or the turn-around time. However, apart from a ranking of the different pro-
tocols, this does not answer the question how well we perform our task, that
is, to comprehend how much of the potential parallelism is actually realized
and what is the lower bound on the execution time. This lower bound on the
execution time is the ultimate goal that the PDES protocols strive to achieve
or at least to approach.

The potential or inherent parallelism of an application can be quantified as
the average parallelism metric (Eager et al. 1989), which is a non-trivial upper
bound to the asymptotic speedup of the software system (i.e., the speedup of the
application with infinite resources and no synchronization costs). Thus, the av-
erage parallelism allows us to express the ability of a PDES protocol to exploit
the potential parallelism in quantitative terms. For example, a statement that
80% of the available parallelism has been realized, indicates that 20% of the
available parallelism has been wasted due to synchronization overhead. Note
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that synchronization overhead has two components: communication overhead
and PDES protocol overhead. The communication overhead is given by the
communication substrate (hardware and software), while the PDES protocol
overhead is determined by its efficacy to schedule simulation events in causal
order.

In this chapter we propose to obtain the average parallelism of a simulation
application by critical path analysis techniques. In this analysis, the discrete
event simulation execution run is described by a task precedence graph, and
well known techniques from graph theory and timing analysis are applied to
determine a critical path in this graph. Besides the evaluation of the PDES
protocol, the critical path analysis gives insight into the amount of available
parallelism, and allows one to use the results of bottleneck analysis to improve
the potential performance of the simulation application in a parallel environ-
ment.

The critical path analysis methodology is integrated within the APSIS sim-
ulation environment. A new and noteworthy feature is that the critical path
analysis is performed on the task precedence graph that is obtained from a par-
allel execution. This is an important feature for spatially decomposed parallel
simulations, where the decomposition strategy and the mapping of the applica-
tion to the parallel architecture determine the available potential parallelism.

4.2 Characterization of Parallelism in Applica-
tions

The characterization of parallelism in applications can be described on differ-
ent levels. At one extreme, the complete characterization of the parallelism in
an application can be expressed in a data dependency graph (Veen 1986). In a
data dependency graph, the concurrency is described on the level of arithmetic
operations and assignments. Unfortunately, due to the level of detail, it is not
practical to specify or analyze a full data dependency graph for programs of in-
terest. At a less detailed level, portions of an application that are sequential (no
internal parallelism) can be treated as tasks in a task precedence graph (Coff-
man 1976). Task precedence graphs are higher level than data dependency
graphs, and are therefore more manageable.

At the opposite extreme, single parameter characterizations are very high
level descriptions of the parallelism in an application. The sequential fraction,
which is the fraction of the overall execution time that cannot be executed in
parallel, was proposed by Amdahl (1967). Gustafson has argued that the limi-
tation on the parallelism by the sequential fraction can be misleading, since in
many applications, the parallel part of the computation grows with the num-
ber of processors, while the sequential portion does not grow, and hence the
fraction typically decreases (Gustafson 1988).

Another single parameter characterization, the average parallelism, has
been investigated by Eager, Zahorjan, and Lazowska (1989). The average par-
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allelism gives a realistic upper bound to the asymptotic speedup of the parallel
application when an unlimited number of resources are available. In the next
sections, the average parallelism metric is defined formally. From this formal
definition, we describe a method to obtain the average parallelism from the
task precedence graph (also known as an event precedence graph in space-time
diagrams) by critical path analysis.

4.2.1 The Average Parallelism Metric
The average parallelism metric can be defined in different equivalent ways.
The specific definition of the average parallelism depends on the usage of the
metric, that is, for the evaluation of the turnaround time, the speedup, or the
efficiency. The common denominator in the equivalent definitions is the ab-
straction from the parallel hardware and the omission of all influences of sys-
tem and communication overhead.

Definition 4.1 The average parallelism, A, is defined as the average number
of busy processors during the execution of the application, given an unbounded
number of processors and no communication latency and other system overhead.

Other equivalent definitions of the average parallelism measure are:

• The ratio of the total amount of work (expressed in time units as the total
service time) and the theoretical turnaround time (without overhead and
with ample processors allocated).

• The asymptotic speedup figures, if a hypothetical machine contains an
unbounded number of available processors and there is no communication
latency and other system overhead.

By deliberately keeping both the processor availability and the communi-
cation overhead out of the definition, the average parallelism reflects only the
software characterization of parallelism. More precisely, we neglect the per-
formance degradations caused by machine issues (lack of processors, commu-
nication delay and contention) to focus on the software factors of performance
(non-optimality of the algorithm or program and software overhead). Just as
the parallel machine size can be used as the hardware bound on parallelism,
the average parallelism metric can be used as the software bound.

In addition to the average parallelism, there are several other parameters
that provide some information about the available parallelism in the applica-
tion. For example in Fig. 4.1, a graph is shown of the number of busy proces-
sors over the execution time of the application. We will refer to this as the
parallelism profile of the application (Sevcik 1989). From the profile, the shape
vector of the application is defined as the vector p = (p1, p2, p3, . . .), where each
pi denotes the normalized fraction of execution time spent with degree of par-
allelism of i. Following the first alternative definition of Def. 4.1, the average
parallelism can now also be determined by A =

∑

i i · pi .
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Figure 4.1: The parallelism profile of an application and its corresponding
shape.

The simplicity of a single parameter characterization like the average par-
allelism is intuitively appealing. However, the parallelism profile and shape
vector provide more information about how the parallelism is available in the
application. From the parallelism profile and shape vector, additional parame-
ters such as the minimum and maximum parallelism, and the variance of par-
allelism can be determined. These additional parameters are very valuable for
scheduling decisions of how many processors to allocate to an application. De-
pending on the load of the system, the policy can determine the optimal number
of processors allocated to the application while maximizing the speedup or the
efficiency, or makes a trade-off between speedup and efficiency (Sevcik 1989).

By the definition of the average parallelism metric, and the other charac-
terizations like parallelism profile and shape vector, the hardware component
is totally absent. As a consequence, these parallelism characterizations can-
not directly be obtained from the execution of the parallel application under
discussion. As all influences of hardware components are ruled out from the
characterizations, we need to ensure that during the analysis of the parallelism
only the software components of the execution run are included. The first alter-
native equivalent definition of Def. 4.1 indicates that the average parallelism is
ratio of the total service time to the theoretical turnaround time. The theoret-
ical turnaround time is typically the longest weighted path in the task depen-
dency graph. Thus, given a graph representation of the software component of
the parallel execution, we can apply well-known critical path analysis methods
to obtain the average parallelism.

4.2.2 The Space-Time Model
For the analysis of the parallelism in the simulation application, we need a suf-
ficient detailed representation of the execution of the simulation run. From the
previous discussion, it appears that a task precedence graph, or more appro-
priate for discrete event simulation, an event precedence graph or space-time
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diagram, suffices for our analysis. The space-time diagram representation of
the execution of the simulation run is intrinsic to the software component of
the simulation application, that abstracts from the execution mechanism that
drives the discrete event simulation. In this respect, the space-time diagram of
a sequential execution run is identical to the space-time diagram of a parallel
execution run, conservative or optimistic.

The space-time diagram describes the execution run of both sequential and
parallel discrete event simulations that adhere to the process-oriented world
view, such as described in Section 1.2.7 and Section 2.2. For convenience, we
recapitulate the essential characteristics. In process-oriented discrete event
simulation, the system being modeled is viewed as being composed of a set of
physical processes that interact at various points in real time. The simulation
is constructed as a set of logical processes, where each specifies the behavior
of some physical process in the system. All interactions between the physi-
cal processes are modeled by time stamped event messages sent between the
corresponding logical processes.

Given a particular decomposition of the simulation into logical processes,
the execution of events must follow two fundamental precedence constraints,
also known as causality constraints (which are a further specification of the
local causality constraint as defined in Section 2.2).

Definition 4.2 We define the two precedence constraints in terms of predeces-
sors and antecedents:

(a) Event e is the (immediate) predecessor of event e′ if (1) they are scheduled
for the same logical process, and (2) timestamp V (e) < timestamp V (e′),
and (3) there is no other event e′′ for the same logical process such that
V (e) < V (e′′) < V (e′).

(b) Event e is the antecedent of event e′ if the execution of event e causes the
scheduling of event e′. Note that e and e′ may be scheduled for the same
logical process.

The space-time diagram describing the event precedences resulting from
the process-oriented simulation is similar for sequential and parallel execu-
tions. As any discrete event simulation execution mechanism, sequential or
parallel, must obey the causality constraint, the execution of the simulation
application results in one unique and correct event order. An alternative view
is that different execution mechanisms are different ways of “filling-in” the
space-time diagram (Chandy and Sherman 1989). The various execution mech-
anisms differ in their strategy to accomplish the partial ordering of the event
execution as defined by the precedence constraints. In the evaluation of the
various parallel discrete event simulation protocols, we effectively determine
the ability of the protocols to exploit the available parallelism in completing
the space-time diagram as given for a particular simulation run. We can now
use this space-time diagram to derive a protocol independent measure to quan-
tify the effectiveness of the different protocols.
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In the two dimensional space-time diagram, each event in the simulation,
an independent sequential amount of work, is represented as a vertex (see
Fig. 4.2). The two coordinates of each event consist of a spatial coordinate and
a temporal coordinate. The spatial coordinate is the logical process LPi where it
is executed. Thus events placed on the same spatial position (vertically aligned
in Fig. 4.2) occur in one logical process. The temporal coordinate is the simula-
tion time at which the event occurs, the timestamp V (e).

1LP

e1,1

N,2e

eN,1

LPNLP2

type 2 constraint

type 1 constraint

e2,1

0

10

20

40

30

50

Space
. . .

V
irt

ua
l T

im
e

Figure 4.2: Space-time diagram depicting the events (vertices) with their de-
pendency constraints (edges).

The precedence constraints formulated above, are represented by directed
arcs. The dashed arcs in Fig. 4.2 represent the predecessor precedence con-
straint as defined in Def. 4.2(a): if two events e and e′ are scheduled for the
same logical process with timestamps V (e) and V (e′) respectively, and V (e) <

V (e′), then event e must be executed before e′. A continuous arc represents
the exchange of an event message that must obey antecedent precedence con-
straint as defined in Def. 4.2(b): if event e causes the scheduling of event e′,
and consequently V (e) < V (e′), then event e must be executed before event e′.
Notice that a process is allowed to send an event messages to itself.

There are some events in the simulation that have no predecessors; these
events are called initial events (labeled e1,1, e2,1, and eN,1 in Fig. 4.2). The
events without antecedents are called starting events and are prescheduled
before the execution of the simulation starts. The terminal events are the last
scheduled events by their respective LP.

The resulting space-time diagram is a full description of the available par-
allelism in the discrete event simulation. Different analyses are possible, such
as critical path computation, bottleneck analysis, etc. From these analyses,
more high level parameters to characterize the parallelism can be obtained.
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4.2.3 Critical Path Analysis
The first step in the determination of the average parallelism, parallelism pro-
file, and shape vector, is the critical path analysis to determine the longest
path in the space-time diagram. From the precedence constraints we construct
a space-time diagram of the simulation run. The activities between the events
are represented by the directed edges. We can label all activities in the space-
time diagram with a weight T (e1, e2), where e1 is the event that preceded the
activity, and e2 is the event resulting from the activity. If e1 is the immediate
predecessor of e2, then T (e1, e2) expresses the service time for calculation; if e1

is the antecedent of e2, then it expresses the service time for communication.
Note that in this scheme, the event vertices are not labeled with weights, but
are rather instantaneous synchronization points in space-time.

By the construction of the space-time diagram with the weights along the
edges, the hardware component of the system is implicitly modeled as an in-
finite number of identical processors, each of unit speed. The synchronization
between processors has zero overhead and the entire parallel computer is de-
voted to one single task. With these assumptions, the hardware component is
neutral to the critical path analysis such that the resulting metric is a charac-
teristic of the software component. By mapping cost functions to the weighted
graph, the available parallelism on specific hardware platforms can be obtained
for a specific process to processor allocation. For example, the influence of com-
munication costs can be studied, maybe depending on processor distance, or
the consequences of oversubscribing of processes to processors, and hence load
balance or imbalance.

The extended space-time diagram with associated weights to the edges, is
an acyclic directed graph, or program activity graph (PAG), in which a longest
weighted path can be found. This path is called the critical path, and its length
is the minimal time required to complete the execution of the parallel simula-
tion.

With all the edges of the space-time diagram labeled with a weight, we can
associate a critical time with each event.

Definition 4.3 The critical time of an event e, crit(e), is defined by:

crit(e) =

{

0 iff ANCE(e) = ∅
maxe′∈ANCE(e){crit(e′)+ T (e′, e)} otherwise

where the ancestor set is:

ANCE(e) = {e′ ∈ E | e′ is predecessor or antecedent of e}

It is clear that crit(e) is the earliest time the event e can complete execution
under the assumption that no dependencies are violated. Consequently, the
largest value of crit(e) among all the events in the simulation run will give us
the lower bound on the completion time of the simulation run. The method for
finding the crit(e) is essentially a topological sort. That is, each crit(e) can be cal-
culated after all the crit(e′) of its ancestors have been computed. An algorithm
to calculate the critical times in a PAG is presented in Alg. 4.1 in Section 4.3.2.
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Having determined the critical time for each event in a start-finish se-
quence, the critical path can be defined in reverse order:

• e with maxe∈E {crit(e)} is on the critical path;

• if e is on the critical path, then e′ ∈ ANCE(e), resulting in the maximal
critical time according to Def. 4.3, is on the critical path.

This method underlies both the computation of the average parallelism metric
and the path enumeration for bottleneck debugging, that is an optional analy-
sis part of the APSE tool.

4.3 Design and Implementation of APSE
The Average Parallelism, Profile, and Shape Evaluation (APSE) methodology
is designed and implemented as a stand-alone tool. This allows for larger flex-
ibility, and makes the APSE tool generally applicable for the analysis of any
parallel program (see the discussion in Section 4.6).

4.3.1 Conceptual Tool Structure
We designed the APSE tool following the conceptual framework outlined by
McKerrow (1988). In this conceptual framework, the performance measure-
ment tool can be comprised of four sections:

Sensor Section This is the interface between the target process(es) and the
measurement tool. The function of a sensor or probe is to detect events of
interest and/or measure the magnitude of the quantities to be monitored,
and store this data in some internal buffer. When these buffers fill up, it
may become necessary to write their contents to secondary storage.

A software probe is typically a subprogram or a procedure call inserted in
the target process. In the case of a software tool, the sensor section can
be seen as the tools front-end. Sensors can be internally driven, meaning
that the target process triggers the sensor to some accounting action, or
externally driven, meaning that the sensor is triggered by the tool rather
than the target process. An important advantage of internally driven sen-
sors is that the data they collect is synchronized to the internal operations
of the target process.

Transformer Section The transformer section performs essentially two func-
tions. First, the (typically huge amount of) data coming from the probes
is reduced to a subset of relevant data. What data is and is not relevant
depends on the scope and goal of the experiment at hand. The word re-
duce in the preceding sentence may be misleading, for the amount of data
reduction is strongly dependent on the requirements of the subsequent
sections of the tool. The transformer may just store the data without
change.
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The second function of the transformer is to rearrange the data coming
from the probes. The reduced set of data is structured to fit the require-
ments of successive phases of the tool.

Analyzer Section The data stored by the transformer is processed to pro-
duce the final output of the experiment, e.g., tables, graphs, etc. The
analysis to be performed on the condensed and structured sensor data is
determined by the experimental framework. For simple experiments the
analysis may be not needed and can than be skipped (see Fig. 4.3), for
very complex experiments the analysis can be done only after the data of
several experiments is available.

With respect to the analyzer section, we can further classify tools either
as rigid or flexible. A rigid tool has limited and fixed analysis capabilities,
which cannot easily be changed or extended. The methods of Lin (1992)
for computing the most critical path in a program activity graph is an
example of a rigid analysis. On the other hand, the performance mea-
surement environments described by Mink et al. (1990), Mohr (1990), or
Reed et al. (1991, 1994, 1998) provide a generic toolbox of analysis meth-
ods, from which a specific analyzer section can be assembled.

Indicator Section The function of the indicator is to show the results of the
experiment in a convenient way. Depending on the amount of sensor data,
data reduction and the character of the analysis, the indicator may be less
or more complex. In general, the more information must be presented by
the indicator, the more visualization is needed to produce comprehensible
results.

section
Sensor Transformer

section

Indicator
section

Analyzer
section

Figure 4.3: Conceptual structure of a measurement tool.

4.3.2 Overview of APSE
The overall design of the Average Parallelism, Profile and Shape Evaluation
(APSE) tool is organized in according with the conceptual sections as described
in the previous section. The functional structure is shown in Fig. 4.4.
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Figure 4.4: The functional structure of APSE (see for details, the text in Sec-
tion 4.3.2).

The sensor section of the tool is located in a separate module and integrated
with the parallel program. To keep interference (that is, program behavior
perturbation due to monitoring code) as low as possible, we have isolated the
recording of events from the process of analyzing them (see further on this
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section). Thus, the average parallelism analysis is done postmortem, after the
experimental run has finished.

The transformation section comprises the graph assembly module that con-
structs the program activity graph (PAG) from the sensor data. The analyzer
section applies the Program Evaluation and Review Technique (PERT) algo-
rithm to the PAG. Depending on user requests, the average parallelism metric
is computed and optionally the profile and shape of the parallelism is gener-
ated. For performance bottleneck debugging, it is also possible to include the
generation of a table of the most critical paths in the analysis. The indicator
section includes the modules that present the results and provides an interface
to visualization tools. The visualization of complex data sets such as the par-
allelism profile or the critical path in the PAG is not considered to be a part
of APSE. However, an interface to Gnuplot is provided and more elaborate
visualization with for example Tk/Tcl can be easily incorporated.

Sensor Section and Software Probes

The APSE interface with the experimental environment, in this discussion the
APSIS simulation environment, is implemented by the software probes. The
software probes are inserted to the Time Warp kernel (see Fig. 4.5); it is up
to the experimentalist to identify the relevant trace events within the Time
Warp kernel. In our study, the relevant trace events are: start and finish of
a simulation event execution and the scheduling of a new simulation event.
Although the number of software probes is very limited (currently six), it allows
us to construct the PAG for further analysis.

kernel
Time Warp

application
Simulation

substrate
Communication

storage
Secondary

trans.
section

indic.
section

analyzer
sectionAPSE

Figure 4.5: The sensor section of the APSE tool is integrated with the APSIS
Time Warp simulation kernel. The trace data is written to the file system, and
is analyzed off-line by the APSE tool.

The trace data gathered by the software probes is stored in a circular buffer
data structure in main memory. If the circular buffer has reached its capacity,
the trace data is written in a binary form to the file system. The interference of
the periodic file system I/O to the program behavior and consequently the trace
data is limited, as all the Time Warp protocol overhead including APSE buffer
management is outside the traced program area. That is, only the committed
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events in the simulation application are traced and recorded, and all erroneous
events that are rolled back, and other overheads induced by the Time Warp
protocol, are excluded from the trace data. This also implies that the trace
data has to be committed in a similar way as events have to be committed.
Only if the GVT swept past the events, the associated trace data is allowed to
be written to the file system.

PAG Generation

The graph assembly module constructs the PAG from the trace event records in
the input. This graph (see Fig. 4.2) contains two types of dependences among
the events: intra-process and inter-process dependences, as described in Sec-
tion 4.2.2. Every event record from the execution trace is converted into a PAG
vertex, and the causality constraints are the edges in the graph. The graph
is completed by adding two special vertices: the source (denoted by s) and the
sink (denoted by t). The source is connected to all initial events and the sink is
connected to all terminal events.

PERT Algorithm

The program activity graph is annotated by the Program Evaluation and Re-
view Technique (PERT) algorithm. This algorithm annotates each vertex in
the graph with its maximal delay to sink value. The original PERT algorithm
computes for all vertices the maximal delay from source value rather than the
maximal delay to sink, similar to the definition of critical time of an event
(Def. 4.3). However, the path enumeration algorithm, as discussed in the next
section, assumes the graph to be annotated with maximal delay to sink values.
Since the objective is not to obtain the critical time for a specific event, but to
look for the critical path, the choice is arbitrary.

Let crit(e) denote the “max-delay-to-sink” label of event e, and let SUCC(e)
be the set of successor events of e,

SUCC(e) = {e′ ∈ E | e′ has e as predecessor or antecedent}.

Furthermore, assume that each edge between e and e′ in the PAG has a weight
(or length) T (e, e′).

The PERT algorithm in Alg. 4.1 reflects a topological sort on the graph, since
the sink is the start vertex, whose maximal delay to sink value is zero, and for
each vertex in the graph that is not yet annotated, the maximal delay to sink
value depends both on this value for all its successors, and on the weights of the
connecting edges. Upon completion of the PERT algorithm, the maximal delay
to sink value of the source vertex represents the weight of the most critical
path in the graph.

By the construction of the PAG, the PERT algorithm computes the “max-
delay-to-sink” time of the events while it adheres to the precedence constraints
as defined in Section 4.2.2. If the user requested that a path enumeration be
part of the analysis, the successors of each vertex are sorted in non-decreasing
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maximal delay to sink value. This sorting is necessary in order to apply the
path enumeration algorithm later on.

Algorithm 4.1 The PERT algorithm: critical time computation.
{s = source; t = sink;}
∀e ∈ E − {t} : crit(e) := undefined; {initialization}
crit(t) := 0;
repeat {topological sort}

for all e ∈ E do
if crit(e) = undefined ∧ ∀e′ ∈ SUCC(e) : crit(e′) = defined then

crit(e) := maxe′∈SUCC(e){crit(e′)+ T (e, e′)};
end if

end for
until e = s;
{crit(s) represents the length of the most critical path}

Path Enumeration Algorithm

The critical path enumeration algorithm used in APSE finds the K most critical
paths in the annotated PERT PAG (Yen et al. 1989). Path extracting algorithms
are a very important part of parallel performance bottleneck debugging. The
path enumeration algorithm is conceptually a K iterative process. In the ith
iteration, the ith most critical path is expanded in the graph. The algorithm
as presented in Alg. 4.2 uses a table (PATHS) to store the most critical paths,
a dynamic threshold (T ) to be able to prune paths that will not reside in the
paths table, and an overloaded function nextnode:

1. nextnode(e): returns the first vertex in the sorted successor list of e;

2. nextnode(e, e′): returns nil, when e′ is the last vertex in the successor list of
e, or returns the vertex next to e′ in the sorted successor list of e otherwise.

Let crit′(e) denote the “delay-from-source” label of vertex e. This value is easily
computed for each element of any (partial) path, since it is just the sum of all
the weights associated with the edges leading to the element. Therefore, we
have left out the computations of the crit′(e) in the pseudo-code.

Each vertex has its successors sorted in non-increasing maximal delay to
sink value, hence the most critical path can be found by starting at the source,
and always taking the first successor in each vertex successor list, until the
sink is reached.

Path enumeration is realized by creating variants of the most critical path.
Such a variant is realized by making a copy of the current path, and then
applying a process of tracing backward and forward on the copy. A new critical
path is completed when the forward trace arrives at the sink.

The backward trace starts at the sink and traces the path in the direction
of the source, until it arrives at a vertex where an alternative route can be
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taken. Comparing the sum of the two delays crit′(e) and crit(e′) and the weight
T (e, e′) with the threshold provides the answer whether the alternative path is
suitable. The backward trace has two termination conditions:

1. a vertex has been found in the graph from which a variant path can be
followed;

2. no vertex has been found, and the algorithm terminates—this happens
when the backward trace has proceeded all the way to the source.

The forward trace consists of following the first successor of each vertex
every time, until the path is complete again (i.e., the last vertex of the path
equals the sink vertex). The new path that is created this way is inserted in
the paths table.

Algorithm 4.2 The path enumeration algorithm.
T := 0; {initialize threshold}
P := (s = e0, e1, e2, . . . , eq = t), where ei+1 = nextnode(ei );
j := q − 1;
while j > 0 do

insert P to PATHS;
T = minP∈PATHS{crit(P)};

{backward trace}
find largest j, 0 ≤ j < q such that:

nextnode(e j , e j+1) 6= nil and
crit′(e j )+ T (e j , ek)+ crit(ek) > T , where ek = nextnode(e j , e j+1);

{forward trace}
P := (s = e0, e1, e2, . . . , eq = t), where ei is:

0 ≤ i ≤ j : ei as in the existing P ,
i = j + 1 : nextnode(e j , e j+1),
i > j + 1 : nextnode(ei−1);

end while
{PATHS contains the K most critical paths}

Profile and Shape Generation

The parallelism profile is a plot of the degree of parallelism versus time. The
profile can be generated by rearranging and reducing the information from the
PAG. For each activity in the PAG, i.e., an intra-process dependency edge,
two entries are inserted in the profile list: one for the activation of the activ-
ity and one for its termination. When the list is sorted on times of activation
and termination, the parallelism profile can be obtained by counting activation
and termination events: parallelism increases with an activation event and
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decreases with a termination event. From this profile the shape vector is gen-
erated by associating the normalized fraction of execution time spent with a
certain degree of parallelism in a histogram. Given the notation in Def. 4.2.1,
we can compute the following metrics from the shape vector:

Minimum parallelism m = min{i | pi 6= 0}

Maximum parallelism M = max{i | pi 6= 0}

Fraction sequential f = p1

Average parallelism A =
∑M

j=m j · p j

Variance in parallelism V =
∑M

j=m j 2 · p j −
(

∑M
j=m j · p j

)2

The advantage of the presentation of the execution trace as a parallelism
profile over a PAG comes from the compactness of the representation and its
resulting in more comprehensible results. For huge execution traces even visu-
alization will not suffice to provide insight into the trace structure if the PAG
is considered. This is due to both the amount of information contained in the
PAG, and the complexity of the structure of the PAG. Actually, the parallelism
profile can be used complementary to the PAG in order to identify performance
bottlenecks. Periods with a relative small degree of parallelism are readily
recognized and direct the detailed study of the complex PAG to areas where
performance bottlenecks appear.

4.4 Experiments, Validation, and Assessment
In this section we present some experiments to validate the correctness of the
APSE critical path analysis, and to assess the use of critical path analysis
in average parallelism evaluation. The validation and assessment is shown
by two simple simulations: unidirectional and bidirectional message routing
over a ring embedded in a two-dimensional torus topology. In Section 5.5 the
APSE analysis will be applied to a complex problem, namely the Ising spin
simulation.

4.4.1 Unidirectional Ring
The unidirectional ring simulation is realized using the APSIS environment.
To generate an event trace of the parallel simulation, an instrumented version
of the Time Warp simulation library is made available (see also Fig. 4.5). The
event trace of a logical process is buffered in memory, and during the fossil col-
lection phase of committed events, the buffers are flushed to the file system. In
this respect, the event trace represents the sequence of correct events that are
executed in causal order, thus the event in the event trace must be committed
before they are written to file.
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The embedding of the ring into the two-dimensional torus is shown in
Fig. 4.6. From the starting LP 0, the event messages are routed to their east
neighbor for odd rows in the torus, and to their west neighbor for even rows in
the torus. If the message hits one of the east or west boundary LPs, it is routed
to the south neighbor. Note that if the message arrives at the south-west cor-
ner LP, the message is routed south to LP 0, which completes one single round
through the ring. The unidirectional ring simulation routes at every instance
of time one single message through the embedded ring. A parameter deter-
mines the number of times the message is routed through the ring. As at each
instance only one single message is present in the system, and hence only one
LP can be active, we expect an average parallelism of one.
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12 13

9 10

14 15
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Figure 4.6: Ring mapped on two-dimensional torus topology.

The experiments are executed on the Distributed ASCI Supercomputer
(DAS)∗, a 200-node parallel platform composed of four distributed clusters
connected by ATM (Vetter 1995), and where the nodes within each cluster are
connected by a Myrinet System Area Network (SAN) (Boden et al. 1995). All
experiments are performed on one single cluster.

The results of the parallel simulation on four processors of the unidirec-
tional ring routing of five messages are shown in Table 4.1 and Fig. 4.7. From
Table 4.1 we can observe that although we expect an average parallelism A = 1,
we have measured an average parallelism A = 1.34. Similarly remarkable is
the fraction sequential f = 0.79 and fraction maximum parallelism F = 0.02.
This can be explained by Fig. 4.7(a), the parallelism profile, that shows a tran-
sient behavior in the degree of parallelism during the initialization phase of
the simulation. The initialization of the LPs, not the initialization of the sim-
ulation library, is also accounted for in the event trace. The initialization is
not dependent of any event and occurs in parallel. After real time 2000 µsec the
parallelism profile in Fig. 4.7(a) shows a degree of parallelism of 1, as expected.
∗http://www.asci.tudelft.nl/das/das.shtml or http://www.cs.vu.nl/das/
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A = 1.34 f = 0.79
m = 1 F = 0.02
M = 4 σ 2 = 0.51

Table 4.1: Average A, minimum m, and maximum parallelism M, fraction se-
quential f , fraction maximum parallelism F , and variance in average paral-
lelism σ 2 for simulation of five messages over unidirectional ring on four pro-
cessors.
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(a) Parallelism profile of unidirectional
ring simulation.
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(b) Shape of unidirectional ring simula-
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0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 1 2 3

µs
ec

processor
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tional ring simulation.
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Figure 4.7: The parallelism profile, the shape, the program activity graph, and
the critical path of the parallel simulation of the unidirectional ring on four
processors.

The program activity graph in Fig. 4.7(c) depicts the activities and intra-
and inter-dependencies between the events that trigger the activities. From
Fig. 4.7(c) one can see how the event message travels from LP 0 to LP 1, LP 3,
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LP 2, and back to LP 0. The y-axis in the figure shows the progress in real
time, i.e., the real time accounted for the activity by the LP. The critical path
in Fig. 4.7(d) shows the activities and the intra- and inter-dependencies that
are along the critical path in the parallel simulation. The figure shows clearly
how the critical path follows the message routing through the torus. As there is
only one event message in the system, the critical path should follow the event
message through the parallel simulation.

In Table 4.2 and Fig. 4.8 results are presented of the parallel simulation on
sixteen processors of unidirectional ring routing of 100 messages. The average
parallelism and fraction sequential in Table 4.2 are (almost) reflecting the se-
quential behavior of the simulation. The average parallelism A = 1.04 and the
fraction sequential f = 0.98. The effects of the transient behavior in the degree
of parallelism are nearly nullified by the long simulation run, see also the small
peak around 0 in Fig. 4.8(a). In Table 4.2 the maximum parallelism, M, of five
instead of sixteen can be explained by the gauging of the initialization activities
that are relative to the first event message exchange (send or receive). Depend-
ing the duration of the initialization activity and the event inter-dependencies,
the activities will overlap with each other in real time and hence accounts for
the degree of parallelism. This effect can be seen in Fig. 4.7(c).

A = 1.04 f = 0.98
m = 1 F = 0.45 · 10−3

M = 5 σ 2 = 0.9

Table 4.2: Average, minimum, and maximum parallelism, fraction sequential,
fraction maximum parallelism, and variance in average parallelism for simu-
lation of 100 messages over unidirectional ring on sixteen processors.

4.4.2 Bidirectional Ring
The framework of the bidirectional ring experiment is similar to the unidi-
rectional ring simulation. The bidirectional ring through which messages are
routed is embedded into a two-dimensional torus, as shown in Fig. 4.6. The
bidirectional ring differs from the unidirectional ring in that the initiating LP
0 routes two messages to its neighbor: one message to its east neighbor, and
one message to its west neighbor. On arrival of a message, it is forwarded
along the same direction as it was received from, to the neighboring LP. At
every instance the bidirectional ring simulation routes two messages through
the embedded ring, and hence we expect an average parallelism of two.

The results of the APSE analysis of the parallel simulation on four proces-
sors of the bidirectional routing of five messages in both directions are shown
in Table 4.3 and Fig. 4.9. The average parallelism A = 2.30 is larger than the
expected A = 2.0, but again this can be explained by the transient behavior of
the degree of parallelism during initialization of the LPs, see also Fig. 4.9(a).
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(a) Parallelism profile of unidirectional
ring simulation.
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(b) Shape of unidirectional ring simula-
tion.

Figure 4.8: The parallelism profile and the shape of the parallel simulation of
the unidirectional ring on sixteen processors.

The shape of the bidirectional ring in Fig. 4.9(b) shows a peak at degree of par-
allelism of two, but shows also a large percentage of execution time a degree of
parallelism of four. This is due to the initialization phase.

A = 2.30 f = 0.04
m = 1 F = 0.15
M = 4 σ 2 = 0.59

Table 4.3: Average, minimum, and maximum parallelism, fraction sequential,
fraction maximum parallelism, and variance in average parallelism for simu-
lation of five messages over bidirectional ring on four processors.

Interesting to note is the relatively large period of degree of parallelism of
one at execution time 6000 µsec. If two messages pass each other halfway on
their round through the bidirectional ring, the simulation of the two messages
are sequentialized. This is enforced by the timestamps of the event messages.
The forwarding activity of the LPs takes approximately the same amount of
time, as can be seen in Fig 4.9(c) by the vertical segments between message
departure and arrival. However, due to some perturbation in the activity ex-
ecution time (due to underlying operating system activities, virtual memory
management, etc.) one of the two messages lags behind. When the event mes-
sages meet each other halfway, the first message must wait for the second to
arrive before it can be forwarded. The simulation of the lagging event message
accounts for the degree of parallelism of one for a period. Note also the short
period of inactivity of LP 3 in Fig 4.9(c) at 6000 µsec, and how the send and
receive times differ in the figure to compensate for the difference in activity
execution times. In the ideal case the send and receive times overlap with each
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Figure 4.9: The parallelism profile, the shape, the program activity graph, and
the critical path of the parallel simulation of the bidirectional ring on four pro-
cessors.

other as each event activity execution takes the same amount of real time.
Figure 4.9(d) depicts the critical path through the bidirectional ring simula-

tion. In the bidirectional ring simulation the critical path does not necessarily
follow one single event message, but can switch between the event messages.
See for example how the critical path switches between LP 2 and LP 3 during
execution time interval [2000, 6000] µsec.

The results for the parallel simulation on sixteen processors of the bidirec-
tional ring routing of 100 messages are presented in Table 4.4 and Fig. 4.10.
The average parallelism A = 2.0 is in correspondence with the theoretical ex-
pected value. The maximum degree of parallelism is thirteen, which can be
explained in a similar way as for the unidirectional ring study, i.e., gauge ef-
fect.
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A = 2.0 f = 0.07
m = 1 F = 0.9 · 10−4

M = 13 σ 2 = 0.22

Table 4.4: Average, minimum, and maximum parallelism, fraction sequential,
fraction maximum parallelism, and variance in average parallelism for simu-
lation of 100 messages over bidirectional ring on sixteen processors.

The parallelism profile in Fig 4.10(a) shows how after the short initializa-
tion phase, the degree of parallelism is two with many spikes to three and four
due to small perturbations in the event activity execution time. Although the
parallelism profile shows almost black areas between degree of parallelism of
two and four, the contribution to the average parallelism is small as can be
seen in Fig. 4.10(b), where the degree of parallelism of three is 2% and degree
of parallelism of four is 0.3% of the execution time. The relative large period
of degree of parallelism of one at the end of the execution is resulting from the
finalization phase.
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Figure 4.10: The parallelism profile and the shape of the parallel simulation of
the bidirectional ring on sixteen processors.

4.5 Related Work
Critical path analysis has shown to be a comprehensive method to quantify the
inherent parallelism or average parallelism of a parallel program. The critical
path analysis technique, or more generally event tracing, is incorporated in a
wide range of performance evaluation environments such as Pablo (Reed et al.
1993) and Paradyn (Miller et al. 1995). The basic critical path analysis of the
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event trace does not differ for the various analysis tools, but the manner to
incorporate the analysis with the parallel program execution does. Event trac-
ing is not limited to simulation application. Any program can define “events”
such as a function call, interrupt, or trap to a kernel, and record this event
with a timestamp (in this case the real time). Although the APSE performance
analysis is presented in the context of parallel discrete event simulation, any
parallel program can be instrumented for performance analysis with APSE
(Overeinder and Sloot 1995).

With respect to the specific parallel simulation instrumentation for event
trace generation and critical path analysis, we can distinguish between (i) se-
quential versus parallel execution event traces, and (ii) on-line versus off-line
critical path analysis. Sequential execution event trace generation supports
early performance evaluation of the potential parallelism available in the sim-
ulation, even before a parallel program is implemented. On the other hand,
parallel execution event trace generation allows for the computation of a more
realistic bound that takes into account all the overheads associated with the
parallel simulation of the model, except those specific to different simulation
protocols. On-line versus off-line critical path analysis is a practical trade-off
(Hollingsworth 1998). As the computation of the critical path is expensive, off-
line (post mortem) approaches minimize the intrusiveness of the analysis onto
the execution behavior. However, the off-line approach requires memory and
disk space proportional to the number of events and communication operations
performed. Therefore, to make critical path analysis practical for long running
simulations, on-line analysis is necessary.

Berry and Jefferson (1985), and later Salmi et al. (1994), presented an off-
line method for critical path analysis of sequential event traces. The inherent
parallelism computation is included in the modeling process of the (sequential)
simulation to assess the parallel potential. The APSE critical path analysis is
similar, but within the APSIS environment, the event trace is collected from
the parallel simulation execution. The analysis approach of Jha and Bagrodia
(1996) is orthogonal to the previous ones. They describe an Ideal Simulation
Protocol (ISP), based on the concept of critical path, which experimentally com-
putes the best possible execution time for a simulation model on a given paral-
lel architecture. The ISP requires an event trace from a sequential execution to
eliminate protocol specific overheads, that is, the ISP knows the identity of the
next message it is going to execute, thus no rollback or unnecessary blocking.

On-line critical path analysis has been used in a number of parallel simu-
lators. Livny (1985) incorporated an on-line critical path algorithm in the Dis-
tributed System Simulation (DISS)† simulator. In the study it is assumed that
all events have the same execution time, which is defined to be the unit time.
During the distributed simulation, the global optimal execution instance of an
event is computed, and the total events that have been executed is counted.
The inherent parallelism is than defined as the ratio between the total events
executed and the optimal execution instance of the last event in the simula-

†DISS is a predecessor of HLA
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tion. Lin (1992) proposed a critical path analysis algorithm that is integrated
with the sequential simulation. The method described by Lin is similar to the
algorithm proposed by Livny, but the algorithm of Lin can be used to study
load balancing under different event scheduling policies. These results are ex-
tended by Wong et al. (1995) by considering both the inherent parallelism and
the parallel simulation protocol overhead. Lim et al. (1999) developed a set
of performance prediction tools, including a critical path analyzer. In their ap-
proach the sequential simulator informs the analyzer about the execution time,
whereupon the analyzer models the progress of the parallel execution.

Jefferson and Reiher (1991) and Srinivasan and Reynolds (1995) reported
about super-critical speedup of optimistic simulation protocols. Although criti-
cal path analysis establishes a lower bound on the completion times of parallel
discrete event simulations, at least one optimistic protocol can complete in less
than the critical path time in a nontrivial way. For example Time Warp with
lazy cancellation can achieve super-critical speedup, although this is of more
theoretical than practical interest. The parallel simulation using Time Warp
with lazy rollback might include erroneous causal execution of events which
are accepted as the incorrect execution order does not influence the correct re-
sult of the simulation. This incorrect execution order can potentially be shorter
than the (correct) critical path through the simulation, and hence beating the
critical path time.

Other techniques than critical path analysis are also used in performance
evaluation of parallel simulations. Ferscha and Johnson (1996) present an in-
cremental code development process that supports early performance of Time
Warp protocols and several of its optimizations. The set of tools represent a
test bed for a detailed sensitivity analysis of the various Time Warp execution
parameters. The performance engineering activities range from performance
prediction in the early development stages, to measurements of performance
metrics of the preliminary or final program. Liu et al. (1999) propose a Scal-
able Simulation Framework (SSF) to predict the performance of a given model,
using given features of the simulator, without having to run, or even build, the
model. Balakrishnan et al. (1997) present a framework for performance analy-
sis of parallel discrete event simulators which is based on a Workload Specifi-
cation Language (WSL). WSL is a language that allows the characterization of
simulation models using a set of fundamental performance-critical parameters.
The WSL presentation can be translated (using a simulator-specific translator)
to different simulation back-ends. The ultimate goal of this project is to pro-
vide a standard benchmark suite that studies the performance space of the
simulators using realistic models.

4.6 Summary and Discussion
The average parallelism analysis and the associated parallelism characteriza-
tion obtained from the analysis, such as parallelism profile, shape, and critical
path, provides a deeper understanding of the behavior of parallel programs in
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general, and parallel simulations in particular. The APSE framework is an
environment independent, stand-alone parallelism analysis workbench, which
analyzes program traces generated by instrumented message passing libraries
or simulation libraries. The instrumentation of a library is fairly simple as
special APSE monitor functions are provided to record events into a buffer and
to flush the buffer to the file system. For example, for the instrumentation of
the APSIS Time Warp simulation library, we had to add four appropriate calls
at three places: one place to record the start of an event, one place to record
the finish of an event, and finally at one place to omit rollback activities from
the event trace.

The APSE analysis framework has been applied to two fairly simple sim-
ulation problems: unidirectional ring simulation with one message, and bidi-
rectional simulation with two messages. For long running simulations, the
measured average parallelism was in correspondence with the theoretically
expected value. For short runs the average parallelism was higher due to the
transient behavior of the degree of parallelism during LP initialization that
dominates the results. The critical path figure of the unidirectional ring sim-
ulation depicts how the critical times of the events in the parallel simulation
depend on the single event message that is routed through the system. For the
bidirectional ring simulation we see that in the general case where a number
of events are executed in parallel, the critical path meanders through the pro-
gram activity graph and not necessarily follows one single activity through the
system.

The inherent parallelism made available in the software system should not
be a goal itself. Given two different implementations of one simulation ap-
plication, the execution of these simulations can result in different inherent
parallelism measures. This fact does not imply that the implementation with a
higher degree of inherent parallelism will perform better than the implemen-
tation with a lower degree of parallelism. Independently of the ability of the
PDES protocol to exploit the available parallelism, the parallel architecture
must be able to bring this parallelism to expression. An important charac-
terization of the available parallelism is the grain size or granularity of the
parallelism: the amount of computation involved between two synchronization
points. For example, if a high degree of parallelism indicates a fine grain level
of parallelism, it is difficult for a distributed memory parallel architecture to
achieve proper speedup figures. On the other hand, the implementation with
a lower degree, but coarse grain, parallelism can behave well on a distributed
memory parallel architecture and outperform the first implementation. Re-
suming, the performance measures made to evaluate the effectiveness of the
PDES protocol are also influenced by the granularity of the parallelism in re-
lation to the parallel architecture. It is also the responsibility of the parallel
program designer to tailor the granularity of the parallelism to the architec-
ture.

The parallelism evaluation by APSE is also applicable to parallel programs
in general. For example, by instrumentation of communication libraries such
as MPI or PVM, the parallel application generates program traces that can
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be analyzed by the APSE tool. For example, the APSE parallelism evaluation
has been successfully applied in a study of parallel sorting algorithms (van den
Brink 1997).
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Chapter 5

Parallel Asynchronous Cellular
Automata

Monte Carlo Method [Origin: after Count Montgomery de Carlo, Italian
gambler and random-number generator (1792–1838).] A method of jazzing
up the action in certain statistical and number-analytic environments by
setting up a book and inviting bets on the outcome of a computation.

—S. Kelly-Bootle, The Computer Contradictionary

5.1 Introduction
Many fundamental problems from natural sciences can be modeled as a dy-
namic complex system. A dynamic complex system is defined to be a set of
unique elements with well defined microscopic attributes and interactions,
showing emerging macroscopic behavior. This emergent behavior can, in gen-
eral, not be predicted from the individual elements and their interactions. In
many cases, dynamic complex systems cannot be solved by analytical methods,
but require explicit simulation of the system dynamics to obtain insight into
the system. A distinguished computational solving method for a large class of
dynamic complex systems are (synchronous) cellular automata (CA). The CA
model is in itself a set of dynamic systems where space, time, and variables
are discrete. Cellular automata exhibit remarkable self-organization that can
be used in models for real-world systems. For instance, the CA technique has
proven to be useful for direct simulation of fluid flow experiments in both two
and three dimensions. Other applications of CA in natural sciences can be
found in lattice spin models such as the Ising model, or, in biology for example,
in immune deficiency in cancer tissue simulations.

A commonly made assumption is that the update strategy of a CA is syn-
chronous, i.e., the CA system evolves in discrete time. In the asynchronous
cellular automata (ACA) model the synchronous cell update is relaxed to allow
for independent, asynchronous cell updates. The asynchronous update strategy
results in a more generic approach to CA, where also continuous-time models
can be described conveniently (Bersini and Detours 1994; Lumer and Nicolis
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1994).
The APSIS simulation environment is designed to effectively support the

parallel execution of dynamic complex systems, and in particular spatially de-
composed asynchronous cellular automata. The use of PDES to solve this class
of problems is a challenge as the problem sizes in terms of memory and com-
putation time can fill any parallel supercomputer. To validate the design and
assess the practical usability of optimistic simulation methods in ACA mod-
els, we designed and implemented a well-defined and well-understood problem,
namely the Ising spin model. The fairly simple Ising spin model shows a com-
plex behavior that is parameterized by essentially one degree of freedom. The
different behavior characterization of the Ising spin model put also different
requirements to the PDES simulation kernel, and is as such an ideal vehicle
for the validation and assessment of the APSIS environment. For example, the
computational load of the Ising spin model is easily adjusted by the problem
size, and the communication intensity of the simulation application is deter-
mined by a single model parameter. Besides the characteristic computational
load and communication intensity, the Ising spin model also exhibits long-
range correlations for certain model parameter ranges, where these long-range
correlations induce time-dependent (evolution of the) computational behavior.
One of the first questions that is raised is how the PDES protocol behaves with
respect to this class of asynchronous systems. What are the limitations of the
application of Time Warp to spatial decomposed regular problems, and in what
way is the execution behavior influenced by the application parameters that de-
termine the spatial interaction (synchronization) and computational load over
the parallel processes?

The asynchronous cellular automata model will be introduced in Section 5.2,
including the transition from synchronous to asynchronous cellular automata
update strategy. In Section 5.3 the Ising spin model is presented and the Monte
Carlo simulation method is briefly explained. Further, the asynchronous,
continuous-time Ising spin model is introduced. The design and parallel imple-
mentation of the continuous-time Ising spin model is presented in Section 5.4,
and the results of performance and scalability experiments are reported in
Section 5.5.

5.2 Asynchronous Cellular Automata

5.2.1 Cellular Automata
Cellular automata are discrete, decentralized, and spatially extended systems
consisting of large numbers of simple identical components with local connec-
tivity. The meaning of discrete here is, that space, time, and features of an
automaton can have only a finite number of states. The rational of cellular au-
tomata is not to try to describe a dynamic complex system from a global point
of view as it is described using for instance differential equations, but model-
ing this system starting from the elementary dynamics of its interacting parts.
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In other words, not to describe a complex system with complex equations, but
let the complexity emerge by interaction of simple individuals following simple
rules. In this way, a physical process may be naturally represented as a compu-
tational process and directly simulated on a computer. The original concept of
cellular automata was introduced by von Neumann and Ulam to model biolog-
ical reproduction and crystal growth respectively (von Neumann 1966; Ulam
1970). Since then it has been applied to model a wide variety of (complex) sys-
tems, in particular physical systems containing many discrete elements with
local interactions. Cellular automata have been used to model fluid flow, galaxy
formation, biological pattern formation, avalanches, traffic jams, parallel com-
puters, earthquakes, and many more. In these examples, simple microscopic
rules lead to macroscopic emergent behavior.

The locality in the cellular automata rules facilitate parallel implementa-
tions based on domain decomposition. The locality combined with the inherent
parallelism of cellular automata make the design and development of high-
performance software environments possible on parallel architectures. These
environments exploit the inherent parallelism of the CA model for efficient
simulation of complex systems modeled by a large number of simple elements
with local interactions. By means of these environments, cellular automata
have been used recently to solve complex problems in many fields of science,
engineering, computer science, and economy. In particular, parallel cellular
automata models are successfully used in fluid dynamics, molecular dynamics,
biology, genetics, chemistry, road traffic flow, cryptography, image processing,
environmental modeling, and finance (Talia and Sloot 1999).

5.2.2 Asynchronous Cellular Automata
In the previous section, we have seen the dualistic functionality of cellular au-
tomata in modeling and simulation. From a modelers perspective, a CA model
allows the formulation of a dynamic complex system (DCS) application in sim-
ple rules. From a computer simulation perspective, a CA model provides an
execution mechanism that evaluates the temporal dynamic behavior of a DCS
given these simple rules. An important characteristic of the CA execution
mechanism is the particular update scheme that applies the rules iteratively
to the individual cells of the CA. The different update schemes impose a dis-
tinct temporal behavior on the model. Thus we must select the proper update
mechanism that aligns with the dynamics of the model.

The update mechanism of CAs is described as being synchronously in par-
allel. However, for certain classes of DCS, the temporal dynamic behavior is
asynchronous. In particular, systems with heterogeneous spatial and temporal
behavior are, in general, most exactly mapped to asynchronous models (Bersini
and Detours 1994; Lumer and Nicolis 1994). In case asynchronous models are
solved by CA, the asynchronous temporal behavior must be captured by the
update mechanism. This class of CA is called asynchronous cellular automata
(ACA) (Ingerson and Buvel 1984; Lubachevsky 1987; Overeinder et al. 1992;
Overeinder and Sloot 1993; Sloot and Overeinder 1999). The ACA model incor-
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porates asynchronous cell updates, which are independent of the other cells,
and allow for a more general approach to CA. With these qualifications, the
ACA is able to solve more complicated problems, closer to reality.

Dynamic systems with asynchronous updates can be forced to behave in
a highly inhomogeneous fashion. For instance in a random iteration model
it is assumed that each cell has a certain probability of obtaining a new
state and that cells iterate independently. As an example one can think
of the continuous-time probabilistic dynamic model for an Ising spin sys-
tem (Lubachevsky 1988).

5.2.3 The Asynchronous Cellular Automata Model
The model for an asynchronous cellular automata is given by its constituents:
the cellular automata, the definition of the neighborhood, the transition rules,
and—this is exclusively for asynchronous cellular automata—a time evolution
function. We define a deterministic asynchronous cellular automata by

Z = (I d , N , V, v0, f, F, T ) ,

where:

• I d is the set of d-tuple integers, called an array of the cellular space. An
element of I d represents the coordinate of a cell or a cell at that coordi-
nate. The positive integer d is called the dimension of the cellular space.

• N is an n-tuple of different elements of I d , called the neighborhood index.
With N = (n1, . . . , nn) and given a cell a, an element of the set N (a) =

{(a+n1), . . . , (a+nn)} is called a neighborhood cell of a, and a is the center
cell of those neighborhood cells. The set consisting of elements of N is
simply called the neighborhood.

• The cellular space is homogeneous. Thus for all cells, V is a nonempty
finite set, called a state set.

• The state set V has an element v0 in which the cell is at rest, called the
quiescent state.

• The local function f is a mapping from V n to V and satisfies the specific
property f (v0, . . . , v0) = v0.

• The next state of a is given by st(a) = F(a, N , f, t), where f is instanta-
neous applied to the neighborhood N of a at time t .

• The time of the next state change evaluation of a is described by t ′ =
T (a, N , t), where t ′ > t .

A nondeterministic asynchronous cellular automata can be obtained by in-
troducing a random experiment and defining a random variable on the sample
space of the experiment. The nondeterministic local function f is augmented
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with ξ , which is a realization of the random variable. The local function can be
written as fξ , where one can think of fξ as a tabulated function depending on
ξ , or if the random variable is discrete, ξ can be considered as an argument to
the function.

Similarly, the time evolution function can be written as Tξ , where Tξ can be a
tabulated function depending on ξ , or, for both continuous and discrete random
variables, ξ can be considered as an argument to function Tξ . The use of ξ for
continuous random variables is valid since time is continuous in asynchronous
cellular automata.

A more general system can be modeled with an asynchronous cellular au-
tomata where the transition rule operates on the active cell and its neighbor-
hood (Priese 1978; Lubachevsky 1988). We can write the local transition func-
tion f as a mapping from V n to V n and the next state is given by st(N (a)) =

F(a, N , f, t).
The concurrent update of the neighborhood N (a) of cellular automaton a

introduces ambiguity if two distinct neighbors a and a ′ decide to change their
overlapping neighborhoods N (a) and N (a′) at the same simulation time. If
two events with the same timestamp are scheduled for the same cellular au-
tomaton, the feature of instantaneous update that is characteristic to discrete
event simulation, does not preclude this ambiguity in update order. Priese in-
dicates how one may devise a computation and construction universal, concur-
rent, asynchronous cellular automaton where no overlapping can possibly oc-
cur. Another practical solution is to prohibit coincidence of update time in pairs
of different cells, which is part of the predictability requirements as stated by
Misra (1986), or to provide tie-breaking rules for simultaneous event updates
(Wieland 1997).

5.2.4 Parallel Simulation of Cellular Automata Models
The parallelization of a CA, both for synchronous and asynchronous models, is
realized by spatial decomposition. That is, the individual cells of the CA are
aggregated into sub-lattices, which are mapped to the parallel processors. As
we will see, parallel synchronization between the sub-lattices is very different
for synchronous and asynchronous CA models.

Parallel Synchronous Cellular Automata Simulation

Similar to the sequential execution of synchronous CA, the cells in a paral-
lel synchronous CA simulation undergo simultaneous state transitions under
direction of a global clock. All cells must finish their state transition computa-
tions before any cell can start simulating the next clock tick.

The parallelization of the discrete-time simulation is achieved by imitating
the synchronous behavior of the simulation. The simulation is arranged into a
sequence of rounds, with one round corresponding to one clock tick. Between
successive rounds, a global synchronization of all cells indicates that the cells
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have finished their state change at time step t and the new time step t+1t can
be started.

Generally, the simulation proceeds in two phases, a computation and state
update phase, and a communication phase. The progress of time in this time-
driven simulation is illustrated in Fig. 5.1.

t

t t

t

∆tt+

∆tt+ ∆tt+

∆tt+

synchronization/
communication

Figure 5.1: Time-driven simulation of a synchronous CA model, where compu-
tation and communication phases succeed each other.

Parallel Asynchronous Cellular Automata Simulation

In parallel ACA simulation, state transitions (further called events) are not
synchronized by a global clock, but rather occur at irregular time intervals.
In these simulations few events occur at any single point in simulated time
and therefore parallelization techniques based on synchronous execution us-
ing a global simulation clock perform poorly. Concurrent execution of events
at different points in simulated time is required, but this introduces severe
synchronization problems. The progress of time in event-driven simulation is
illustrated in Fig. 5.2.

The absence of a global clock in asynchronous execution mechanisms neces-
sitates parallel discrete event simulation algorithms to ensure that cause-and-
effect relationships are correctly reproduced by the simulator.

To summarize, the parallel synchronous execution mechanism for discrete-time
models mimics the sequential synchronous execution mechanism by interleav-
ing a computation and state update phase with a synchronization and commu-
nication phase. The parallel execution mechanism is fairly simple and induces
a minimum of overhead on the computation. The parallel asynchronous exe-
cution mechanism for discrete event models, in our discussion the optimistic
Time Warp simulation method, is more expensive than its sequential counter-
part. The synchronization mechanism in optimistic simulation requires extra
administration, such as state saving and rollback. Despite this overhead, op-
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Figure 5.2: Progress of simulation time in event-driven simulation. As the cells
evolve asynchronously in time, the simulation time of the individual cells are
different.

timistic simulation is an efficient parallel execution mechanism for discrete
event models.

5.3 Ising Spin Systems
The Ising spin model is a model of a system of interacting variables in statis-
tical physics. The model was proposed by Wilhelm Lenz and investigated by
his graduate student, Ernst Ising, to study the phase transition from a para-
magnet to a ferromagnet (Brush 1967). A variant of the Ising spin model that
incorporates the time evolution of the physical system is a prototypical exam-
ple how asynchronous cellular automata can be used to simulate asynchronous
temporal behavior.

A key feature in the theory of magnetism is the electron’s spin and the as-
sociated magnetic moment. Ferromagnetism arises when a collection of such
spins conspire so that all of their magnetic moments align in the same direc-
tion, yielding a total magnetic moment that is macroscopic in size. As we are
interested how macroscopic ferromagnetism arises, we need to understand how
the microscopic interaction between spins gives rise to this overall alignment.
Furthermore, we would like to study how the magnetic properties depend on
temperature, as systems generally loose their magnetism at high tempera-
tures.

5.3.1 The Ising Spin Model

To introduce the Ising model, consider a lattice containing N sites and assume
that each lattice site i has associated with it a number si , where si = +1 for
an “up” spin and si = −1 for a “down” spin. A particular configuration or
microstate of the lattice is specified by the set of variables {s1, s2, . . . , sN } for all
lattice sites (see Fig. 5.3).
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Figure 5.3: Schematic spin model for an Ising spin system.

The macroscopic properties of a system are determined by the nature of the
accessible microstates. Hence, it is necessary to know the dependence of the
energy on the configuration of spins. The total energy of the Ising spin model
is given by

E = −J
N

∑

i, j=nn(i)

si s j − µ0 H
N

∑

i=1

si , (5.1)

where si = ±1, J is the measure of the strength of the interaction between
spins, and the first sum is over all pairs of spins that are nearest neighbors
(see Fig. 5.4). The second term in Eq. 5.1 is the energy of interaction of the
magnetic moment, µ0, with an external magnetic field, H .

or or

E = +JE = -J

Figure 5.4: The interaction energy between nearest neighbor spins in the ab-
sence of an external magnetic field.

If J > 0, then the states ↑↑ and ↓↓ are energetically favored in comparison
to the states ↑↓ and ↓↑. Hence for J > 0, we expect that the state of the lowest
total energy is ferromagnetic, i.e., the spins all point to the same direction. If
J < 0, the states ↑↓ and ↓↑ are favored and the state of the lowest energy
is expected to be paramagnetic, i.e., alternate spins are aligned. If we add a
magnetic field to the system, the spins will tend to orient themselves parallel
to H , since this lowers the energy.

The average of the physical quantities in the system, such as energy E or
magnetization M, can be computed in two ways: the time average and the
statistical average. The time average of physical quantities are measured over
a time interval sufficiently long to allow the system to sample a large number of
microstates. Although time average is conceptually simple, it is convenient to
formulate statistical averages at a given instant of time. In this interpretation,



5.3 Ising Spin Systems 111

all realizable system configurations describe an ensemble of identical systems.
Then the ensemble average of the mean energy E is given by

〈E〉 =
m

∑

s=1

Es Ps ,

where Ps is the probability to find the system in microstate s, and m is the
number of microstates.

Another physical quantity of interest is the magnetization of the system.
The total magnetization M for a system of N spins is given by

M =
N

∑

i=1

si .

In our study of the Ising spin system, we are interested in the equilibrium
quantity 〈M〉, i.e., the ensemble average of the mean magnetization M.

Besides the mean energy, another thermal quantity of interest is specific
heat or heat capacity Cv. The heat capacity Cv can be determined by the sta-
tistical fluctuation of the total energy in the ensemble:

Cv =
1

kT 2

(

〈E2〉 − 〈E〉2
)

.

And in analogy to the heat capacity, the magnetic susceptibility χ is related to
the fluctuations of the magnetization:

χ =
1

kT

(

〈M2〉 − 〈M〉2
)

.

For the Ising model the dependence of the energy on the spin configuration
(Eq. 5.1) is not sufficient to determine the time-dependent properties of the sys-
tem. That is, the relation Eq. 5.1 does not tell us how the system changes from
one spin configuration to another, therefore we have to introduce the dynamics
separately.

5.3.2 The Dynamics in the Ising Spin Model
Physical systems are generally not isolated, but are part of a larger environ-
ment. In this respect, the systems exchange energy with their environment.
As the system is relatively small compared to the environment, any change in
the energy of the smaller system does not have an effect on the temperature
of the environment. The environment acts as a heat reservoir or heat bath at
a fixed temperature T . From the perspective of the small system under study,
it is placed in a heat bath and it reaches thermal equilibrium by exchanging
energy with the environment until the system attains the temperature of the
bath.
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A fundamental result from statistical mechanics is that for a system in equi-
librium with a heat bath, the probability of finding the system in a particular
microstate is proportional to the Boltzmann distribution (Reif 1965)

Ps ∼ e−βEs ,

where β = 1/kBT , kB is Boltzmann’s constant, Es is the energy of microstate s,
and Ps is the probability of finding the system in microstate s.

The Metropolis Algorithm

To introduce the dynamics that describe the system changes from one configu-
ration to another, we need an efficient method to obtain a representative sam-
ple of the total number of microstates, while the temperature T of the system
is fixed. The determination of the equilibrium quantities is time independent,
that is the computation of these quantities does not depend on simulation time.
As a result, we can apply Monte Carlo simulation methods to solve the dynam-
ics of the system. The well-known Metropolis algorithm uses the Boltzmann
distribution to effectively explore the set of possible configurations at a fixed
temperature T , see for instance Binder and Heermann (1992). The Metropolis
algorithm samples a representative set of microstates by using an importance
sampling method to generate microstates according a probability function

πs =
e−βEs

∑m
s=1 e−βEs

.

This choice of πs implies that the ensemble average for the mean energy and
mean magnetization can be written as

〈E〉 =
1

m

m
∑

s=1

Es and 〈M〉 =
1

m

m
∑

s=1

Ms .

The resulting Metropolis algorithm samples the microstates according to
the Boltzmann probability. First, the algorithm makes a random trial change
(a spin flip) in the microstate. Then the energy difference 1E is computed. The
trial is accepted with probability e−β1E (note that for 1E ≤ 0 the probability
is equal to or larger than one and the trial is always accepted). After the trial,
accepted or not accepted, the physical quantities are determined, and the next
iteration of the Metropolis algorithm can be started.

The number of Monte Carlo steps per spin (or in general per particle) plays
an important role in Monte Carlo simulations. On the average, the simulation
attempts to change the state of each particle once during each Monte Carlo
step per particle. We will refer to the number of Monte Carlo steps per particle
as the “time,” even though this time has no obvious direct relation to physical
time. We can view each Monte Carlo time step as one interaction with the heat
bath. The effect of this interaction varies according to the temperature T , since
T enters through the Boltzmann probability for flipping a spin.
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Figure 5.5: Ising spin temperature dependence of the mean magnetization and
specific heat.

The temperature dependency of the physical quantities 〈M〉 and Cv are
shown in figures Fig. 5.5(a) and Fig. 5.5(b) respectively. For temperature T = 0,
we know that the spins are perfectly aligned in either direction, thus the mean
magnetization per spin is ±1. As T increases, we see in Fig. 5.5(a) that 〈M〉
decreases continuously until T = Tc, at which 〈M〉 drops to 0. This Tc is known
as the critical temperature and separates the ferromagnetic phase T < Tc from
the the paramagnetic phase T > Tc. The singularity associated with the crit-
ical temperature Tc is also apparent in Fig. 5.5(b). The heat capacity at the
transition is related with the large energy fluctuations found near the criti-
cal temperature. The peak becomes sharper for larger systems but does not
diverge because the lattice has finite sizes (singularities are only found in an
infinite system).

Continuous-Time Ising Spin System

The standard Ising spin model represents a certain discrete-time model, as
Monte Carlo steps are regarded to be time steps. However, the discrete evolu-
tion of the Ising spin configurations is considered an artifact. Glauber (1963)
introduced continuous-time probabilistic dynamics for the Ising system to rep-
resent the time evolution of the physical system.

The Ising spin model with continuous-time probabilistic dynamics cannot
be solved by Monte Carlo simulation, since time has no explicit implication on
the evolution of the system in the Monte Carlo execution model. To capture
the asynchronous continuous-time dynamics correctly, the problem is mapped
to the ACA model and is executed by event-driven simulation.

In the continuous-time Ising spin model, a spin is allowed to change the
state, a so-called spin flip, at random times. The attempted state change ar-
rivals for a particular spin form a Poisson process. The Poisson arrival pro-
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cesses for different spins are independent, however, the arrival rate is the
same for each spin. Similar to the Monte Carlo simulation, the attempted
spin flip, or trial, is realized by calculating the energy difference 1E between
the new configuration and the old configuration. The spin flip is accepted with
the Boltzmann probability e−β1E .

The discrete-time and continuous-time models are similar. They have the
same distribution of the physical equilibrium quantities and both produce the
same random sequences of configurations. The difference between the two
models is the time scale at which the configurations are produced: in discrete-
time, the time interval between trials is equal, and in continuous-time, the
time intervals are random exponentially distributed.

5.4 Optimistic Simulation of Continuous-Time
Ising Spin Systems

A parallel model of the continuous-time Ising spin system is designed and im-
plemented with use of the APSIS simulation environment. For the design
and implementation of the parallel model a number of issues are important:
Metropolis algorithm, simulation time advancement, random number genera-
tion, and the spatial decomposition parallelization strategy. Both the Metropo-
lis algorithm and the time advancement (Poisson arrival process) require a
pseudo-random number generator, which has to meet certain requirements to
preclude undesired correlations if the pseudo-random generator is used in par-
allel processing. Spatial decomposition has consequences for the embedding of
the parallel model in the APSIS simulation environment.

The algorithm that computes the dynamics of the Ising spin system at a
temperature is the Metropolis algorithm, as discussed in the previous section.
For each successful attempt, thus actual spin flip, the energy quantities E , 〈E〉,
and 〈E2〉, and magnetic quantities M, 〈M〉, and 〈M2〉 are recomputed. Note that
〈E〉 and 〈M〉 are the ensemble means, thus not the mean energy of magnetiza-
tion of the system at that simulation time, but rather the mean value of all
ensemble configurations probed by the Metropolis algorithm up to the current
simulation time. From the energy and magnetization values we can compute
the specific heat Cv and magnetic susceptibility χ . The values E , 〈E〉, 〈E2〉,
M, 〈M〉, and 〈M2〉 are typically values that are state saved by the optimistic
simulation protocol.

The trials to update a spin in the continuous-time Ising spin system oc-
cur at random times. The interarrival times of the trials for a particular spin
are independent and exponentially distributed, thus forming a Poisson arrival
process with rate λ. In the discrete event simulation, upon the execution of
a trial event at simulation time t , the spin flip is accepted according to the
Metropolis algorithm, and the next trial event is scheduled at simulation time
t ′ = t − 1/λ log U , where U is a uniform distributed random variable in the
interval (0, 1].



5.4 Optimistic Simulation of Continuous-Time Ising Spin Systems 115

In the PDES implementation of the Ising spin model we have two choices
to schedule the trial events for the spin updates. With spatial decomposition
of the Ising spin model, we aggregate a large number of spins into one sub-
lattice and assign this sub-lattice to one LP. For example, the two-dimensional
Ising spin system of size 128 × 128 is partitioned in eight sub-lattices of size
32 × 64. With this decomposition, each LP simulates the dynamics of 32 · 64 =
2048 spins. As each spin generates its own Poisson stream with rate λ, the LP
can schedule for each individual spin a trial event. The execution of a trial
event at a spin schedules a new future trial event for that particular spin. In
this approach the number of events pending for execution at an LP is equal
to the size of the sub-lattice, e.g., with the 32 × 64 sub-lattice the LP has 2048
events scheduled for future execution. However, we can do better since the
Poisson asynchrony in the aggregated algorithm is a special case: the sum of
k independent Poisson streams with rate λ each, is a Poisson stream with rate
λk. In the event scheduling algorithm, k is the size of the sub-lattices. In the
second approach, we neither maintain individual Poisson streams, nor future
trial events for individual spins. Instead, a single cumulative Poisson stream
is simulated, and spins are delegated randomly to meet these trial events.

In parallel simulation, and in particular parallel Monte Carlo simulation,
special care should be taken with the generation of random numbers. Both the
Metropolis algorithm and the Poisson stream need a uniform random variable
for their operation. For sequential architectures, good random number gener-
ators exist. However, it is not at all trivial to find high-quality random number
generators for parallel architectures. It should be noted that highly correlated
and statistically dependent parallel random number generators originating
from bad parallelization or distributed strategies may destroy or dramatically
forge simulation results.

There are two basic parallelization techniques to produce random numbers.
The first approach assigns different random number generators to different
processors, and the second approach assigns different substreams of one large
random number generator to different processors. The first approach suffers
form intrinsically bad scalability (this approach requires thousands of differ-
ent high-quality random number generators on massively parallel architec-
tures such as the ASCI Option Red or ASCI Option Blue systems; Dyadkin
and Hamilton (2000) presented approximately 2100 good 128-bit multipliers
for congruential pseudo-random number generators). Additionally, there might
also be unknown correlations between the different random number generators
we use. The second approach can be controlled better, although its risks should
not be forgotten.

There are two methods for splitting a given stream of random numbers into
suitable parallel streams (Hellekalek 1998). The first method, the “leap-frog
technique”, assigns the substream (xkn+i)n≥0 to the ith processor, 0 ≤ i ≤ k − 1.
In other words, we use substreams of lag k of the original sequence (xn)n≥0,
see Table. 5.1(a). The second method, the “splitting technique”, partitions the
original sequence into k (very long) consecutive blocks, see Table. 5.1(b). Each
of the k processors is assigned a different block, where every block is defined by
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a unique seed. This approach is very efficient way to assign different streams
of random numbers to different processors.

p0 p1 p2 p3

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11
...

...
...

...

(a) The leap-frog technique.

p0 p1 p2 p3

x0 xL x2L x3L

x1 xL+1 x2L+1 x3L+1
...

...
...

...

xL−1 x2L−1 x3L−1 x4L−1

(b) The splitting technique.

Table 5.1: Parallel random number generation: leap-frog and splitting.

The Mersenne Twister MT19937 random number generator has an ex-
tremely long period of 219937− 1 and an extensive theoretical background (Mat-
sumoto and Nishimura 1998). Due to its long period, we can choose the initial
value, the seed, randomly and obtain as many substreams as we need. It is
highly improbable that two substreams will overlap. Other solutions are of-
fered by parallel random number generator libraries such as the PRNG library
(Entacher et al. 1998) or the SPRNG library (Ceperley et al. 1999). These
libraries provide implementations of various parallel random number genera-
tors. The user can initialize the parallel random number generator by specify-
ing all the parameters to the parallel random number generator, including the
splitting method and the number of parallel streams.

An additional complicating factor in optimistic PDES is that due to the
rollback synchronization, the sample path generated according to the desired
statistics can be altered, unless some precautions are taken (Tsitsiklis 1989).
In particular, if part of the simulation is performed for a second time, due to
a rollback, one should use the same random numbers that were used the first
time. Suppose that the dynamics of an LP has been formulated so that the
statistics of the random variable xi corresponding to the ith event has a pre-
scribed distribution depending only on i . We can then generate random vari-
ables x0, x1, . . . and the the value xi will be the one to be used for the simulation
of the ith event, no matter how many times the ith event has to be simulated
(due to rollbacks) and even if different simulations of the ith event corresponds
to different simulation times.

To make random number generators rollback proof, the APSIS environment
encapsulates the random number generators into the simulation kernel. For
each ith event, the corresponding random variable xi is generated once and
stored in a data structure by the simulation kernel. Upon rollback from the kth
event to the jth event, the next random variables xi , j ≤ i ≤ k, are retrieved
from the data structure before new random variables are generated. This can
be efficiently implemented in a circular buffer (see Section 3.5.3, Fig. 3.5). Be-
sides, the reuse of random variables is profitable as random number generation
is relative expensive.
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The resulting continuous-time Ising spin model is parallelized by spatial
decomposition. The Ising spin lattice is partitioned into sub-lattices, and the
sub-lattices are mapped onto parallel processors. To minimize the communi-
cation between sub-lattices, local copies of the neighbor boundaries are stored
locally (see Fig. 5.6). By maintaining local copies of neighbor boundaries, spin
values are only communicated when they are actually changed, rather than
when they are only referenced. A spin flip along the boundary is communi-
cated to the neighbors by an event message. The causal order of the event
messages, and thus the spin updates, are guaranteed by the optimistic simula-
tion mechanism.

PE 2PE 1

PE 3

a a’
b’

c

b

c’

c’

Figure 5.6: Spatial decomposition of the Ising spin lattice. The grey areas are
local copies of neighbor boundary strips. For example, processor PE 2 has a
local copy of spin “a” owned by processor PE 1. Processors PE 2 and PE 3 both
own a copy of spin “c”. The arrows in the figure indicate the event messages
sent upon a spin flip.

Asynchronous cellular automata, and thus also the Ising spin model, put
efficient memory management requirements on the original formulation of the
Time Warp method. The state vector of a spatial decomposed ACA can be arbi-
trarily large, that is, all the cells in the sub-lattice are part of the state vector.
Hence, the incremental state saving method of the APSIS environment is used
during the simulation of the Ising spin model. Although incremental state sav-
ing requires less state saving time and memory, there is an increased cost of
state reconstruction. In general, the number of rolled back events is a fraction
of the number of events executed during forward simulation. In this respect,
the state recovery overhead of incremental state saving and copy state saving
are in the ratio of 102 bytes to an order of 106 bytes, therefore incremental state
saving is favorable in spatial decomposed ACA applications.
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5.5 Parallel Performance and Scalability
A series of experiments were executed, for different problem sizes and Ising
spin parameter settings, to get insight into the efficiency and scalability be-
havior of Time Warp. The experiments with the parallel Ising spin simulation
were performed on the Distributed ASCI Supercomputer (DAS)∗. (Note that
ASCI stands for Advanced School for Computing and Imaging—a Dutch re-
search school.) The DAS consists of four wide-area distributed clusters of total
200 Pentium Pro nodes. ATM is used to realize the wide-area interconnection
between the clusters, while the Pentium Pro nodes within a cluster are con-
nected with Myrinet system area network technology. The experiments are
performed within one single cluster, thus all communication is via the 1.28
Gbit/s Myrinet. The communication layer is an efficient implementation of
PVM on top of Panda (Ruhl et al. 1996). Panda is a virtual machine designed
to support portable implementations of parallel programming systems. The ef-
ficient communication primitives and thread support in Panda allows for low
latency, high throughput communication performance over the Myrinet net-
work. The measured Panda/PVM (null message) latency is ±17 µsec, and the
throughput ±60 MB/s.† For random number generation, we make use of the
Mersenne Twister MT19937 random number generator, where each LP initial-
izes the random number generator with a different seed to get parallel random
number substreams.

5.5.1 Relative Parallel Performance and Scalability
In the first series of experiments, we study the relative efficiency and scalability
of the parallel Ising spin simulation. This is done by comparing the execution
time of the parallel simulation on one processor, Tp(1), with the execution time
on different number of processors, Tp(P). The relative efficiency is now defined
as

E =
Tp(1)

Tp(P) · P
.

The parameters to the Ising spin experiment are the lattice size L × L, the
temperature T , the number of simulation steps, and the number of processors.
The lattice size L × L and the number of processors determine the granular-
ity of the computation, or the computation to communication ratio. Given the
decomposition shown in Fig. 5.6, the boundary lattice points are potentially
communicated to the neighboring LPs. The ratio of boundary lattice points to
the total number of local lattice points is 4/M, where M × M is the sub-lattice
size after decomposition. The temperature T of the Ising spin system deter-
mines also in part the granularity of the LPs: as the temperature increases,
the behavior of the system becomes more dynamic and hence more communica-
tion occurs between the nodes. The temperature of the system also influences
∗http://www.asci.tudelft.nl/das/das.shtml or http://www.cs.vu.nl/das/
†Performance experiments with MPI are presented by al Mourabit (2000).
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the computational behavior of the simulation in a more subtle way, which is
presented in Chapter 6.

The simulation time is denoted by a derivative of Monte Carlo time steps. A
Monte Carlo time step embodies L × L spin update attempts such that all the
lattice points in the system have potentially got the opportunity to change their
state. In the continuous-time Ising spin simulation we still use the notion of
Monte Carlo steps to specify the duration of the simulation, as it conveniently
indicates both the statistical evolution of the system and the expected amount
of computational work. Of course, it has no (direct) relation to the simulated
time, as simulation time progress is determined by the aggregated Poisson ar-
rival process.

APSE Analysis

The influence of temperature and lattice size on the average parallelism in-
herent to the Ising spin simulation is studied by use of the APSE analysis
framework (see Chapter 4). The APSE analysis allows one to study the scal-
ability behavior of the simulation application without any assumption on the
simulation protocol, or stated differently, with an ideal, omniscient simulation
protocol. The results from the APSE analysis supports the interpretation of the
experimental results in the next section. For example, if the APSE analysis of
a simulation application results in a limited average parallelism, this should
be attributed to the bounded inherent parallelism of the simulation applica-
tion software, rather than the inability of the simulation protocol to exploit the
available parallelism.

The dependency of the average parallelism on the Ising spin temperature
is shown in Fig 5.7 for lattice sizes L = 32 and L = 64. From the figures
we learn that the average parallelism decreases for increasing temperature.
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Figure 5.7: APSE average parallelism versus temperature analysis.



120 Parallel Asynchronous Cellular Automata

This can be explained by the higher rate of successful spin flips for higher
temperatures. Spin flips on the sub-lattice boundaries must be synchronized
with the neighboring sub-lattices, resulting in sequentialization of (part of) the
spin flip trials.

The impact of lattice size on the sequentialization of boundary spin flips ap-
pears also from the figures for lattice sizes L = 32 and L = 64. The average
parallelism is smaller for smaller lattice size L, and vice versa. For constant
temperature, the ratio of boundary spin flips is larger for small lattice sizes
than for large lattice sizes. Hence, for small lattice sizes the ratio of sequen-
tialized spin flips is larger, which depresses the average parallelism.

Figure 5.8 depicts how the average parallelism scales with the number of
processors for the temperatures T = 1.0, Tc, and 3.0. The average parallelism
figures show the temperature and lattice size dependency as the number of
processors increase. Again, low temperature and large lattice size enhance the
average parallelism in the Ising spin simulation.
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Figure 5.8: APSE average parallelism versus number of processors analysis.

Experiments

Figures 5.9 and 5.10 show the relation between execution time and the number
of processors for fixed problem sizes 128 × 128 and 256 × 256. The number of
Monte Carlo steps for each experiment is 12000 for lattice size 128 × 128, and
3000 steps for lattice size 256×256. In this way approximately the same number
of events are executed for both system sizes. From these figures we can see that
the parallel Ising spin simulation for T = 1.0 scales almost linearly up to 10
processors, but eventually drops to a relative efficiency of 0.78 for 24 processors
with lattice size 128× 128, and to a relative efficiency of 0.72 for 24 processors
with lattice size 256 × 256. For temperature T = 3.0 the relative efficiency de-
creases gradually to 0.49 for 24 processors with lattice size 128×128, and to 0.62
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Figure 5.9: Scalability and relative performance of parallel Ising spin simula-
tion.
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Figure 5.10: Scalability and relative performance of parallel Ising spin simula-
tion.

for 24 processors with lattice size 256×256. The decreasing efficiency is mainly
due to the increased costs to synchronize the parallel processes. With the in-
crease in the number of processors, the time period necessary to synchronize
the parallel simulation processes also increases. A minimal memory manage-
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ment requirement in optimistic simulation is the limitation of optimism, and
hence the maximum rollback length (this is described further on in this sec-
tion). For lattice size 256 × 256, the decrease in efficiency flattens at P = 16
for T = 1.0 and Tc, and at P = 10 for T = 3.0, since the rollback lengths in
these regimes approach the maximum rollback length. Additional increase of
the number of processors does not further increase the rollback lengths.

Temperature T = Tc ≈ 2.269 is a special case. If we consider Fig. 5.9 and
Fig. 5.10 separately, we see different scaling behavior for T = Tc compared with
T = 1.0 and T = 3.0. For lattice size 128× 128 (Fig. 5.9), T = Tc scales more or
less within the bounds of T = 1.0 and T = 3.0, which is expected as synchro-
nization costs increases with the temperature and the number of processors.
However, for lattice size 256× 256 (Fig. 5.10), the scalability behavior (i.e., the
execution time and efficiency versus the number of processors) for T = Tc is not
bounded by T = 1.0 and T = 3.0. Up to 10 processors, the Ising spin scaling
behavior can be explained by increased communication and synchronization
costs due to the dynamics (or temperature) of the Ising spin system, but for 12
processors and more, another factor determines the execution time behavior—
which is discussed further on. In Fig. 5.10(a) the execution time increases from
12 to 16 processors for T = Tc, resulting in execution times larger than for
T = 3.0.

The influence of the temperature, the lattice size, and the number of proces-
sors on the execution behavior of the parallel simulation processes is further
investigated. Figure 5.11 shows the rollback percentage of the total amount
of executed events for the lattice size 128 × 128 and 256 × 256. The rollback
percentage is an expression of the amount of synchronization errors due to op-
timistic execution of events. As such, it is a relative indication of the increased
execution time due to event execution order dependencies and simulation pro-
tocol overhead. If we consider Fig. 5.11(a), the rollback percentages for lattice
size 128 × 128, we find a correspondence between the increase of the rollback
percentage and the decrease in relative performance as shown in Fig. 5.9(b).
Moreover, in Fig. 5.11(b) we see the same anomalous rollback percentage be-
havior for T = Tc as in the relative efficiency in Fig. 5.10(b). The increase in ex-
ecution time for T = Tc in the trajectory from 12 to 16 processors in Fig. 5.10(a)
can also be found in the strong increase of rollback percentage for T = Tc in
the trajectory from 12 to 16 processors in Fig. 5.11(b). Hence, there is a strong
relation between the rollback behavior and the execution time (and the derived
relative performance).

To understand the anomalous performance behavior of the Ising spin sim-
ulation with lattice size 256× 256 at temperature T = Tc, a detailed execution
trace of the event rate is monitored. The event rate is the number of events
that are committed per second, and in this respect a measure for progress.
During normal operation, the Ising spin model simulation reaches an event
rate of around 19 000 events per second (see Fig. 5.12(a)). If we look in more
detail to Fig. 5.12(a), we can identify four serious glitches in the event rate,
around execution time 20, 48, 58, and 88, which indicate periods of resynchro-
nization of the parallel simulation. In these periods, the event rate drops to
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Figure 5.11: Event rollback percentages for lattice sizes 128×128 and 256×256.
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Figure 5.12: Simulation progress (event rate) during execution. The curve is
smoothed by taking the exponential weighted moving average (EWMA), as the
EWMA follows the dynamic behavior accurately and can be efficiently com-
puted.

10% of the steady state performance (about 2000 events per second). In partic-
ular the period centered around 88 (see Fig. 5.12(b)) takes about 10 seconds to
resynchronize and weights heavily upon the parallel performance.

The periods of resynchronization are a typical example of thrashing, where
most of the time is spent on simulation rollback instead of forward simulation.
While one simulation process rolls back, another process advances in simu-
lation time. When the rollback is completed, the simulation process restarts
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with event execution and as a result sends event messages to neighboring pro-
cesses. These event messages arrive in the simulation past of the neighboring
processes, and trigger a rollback, etc., etc., until the simulation processes are
in synchrony. The thrashing behavior is a combination of a number of factors:
number of processors, lattice size, event granularity, and temperature (syn-
chronization frequency).

To shorten these periods of resynchronization, the optimism of the protocol
must be throttled, that is, the simulation execution mechanism should not ex-
ecute events that lie in the remote future as it is likely that these events have
to be rolled back eventually. The progress of the individual simulation process
should be bound to a limited simulation time window (see Section 2.4.5). In
this way, the processes are forced to synchronize with each other in a short
time frame, after which the simulation can continue as before. A key problem
with Bounded or Moving Time Window optimism control is the determination
of the appropriate size of the virtual time window. A narrow time window lim-
its the rollbacks, but also the amount of parallelism. A time window that is
too large, can potentially exploit more parallelism, but the rollbacks increase
as well.

Another performance consideration in the determination of the appropri-
ate virtual time window size is the sequential simulation performance and its
relation to the GVT computation frequency (or progress rate). A narrow time
window does not only limit the amount of parallelism, but can also limit the
sequential event rate due to a slow GVT progress rate. As the sequential sim-
ulation process proceeds faster in simulation time (that is the progress of the
LVT) than the progress of the GVT, the sequential simulation process will even-
tually reach the upper time window boundary, and will block until the next
GVT progress update. The influence of virtual time window size on the se-
quential Ising spin simulation performance in APSIS is presented in Table 5.2
and Table 5.3. In the experiments, a new GVT update computation is started
every 50 msec. The first columns of Tables 5.2 and 5.3 show the sequential
simulation execution times with unbounded time window for the three temper-
atures T = 1.0, T = Tc, and T = 3.0. As one can see, the execution time of the
sequential simulation increases with the temperature. This can be explained
by the dynamics of the simulation: the higher the temperature, the higher the
dynamics of the Ising spin system, and hence the higher the computational
costs.

VTW =∞ VTW = 3000 VTW = 2000
T = 1.0 1146 1645 (1.44) 2463 (2.15)
T = 2.269 1232 1645 (1.34) 2464 (2)
T = 3.0 1340 1645 (1.23) 2464 (1.84)

Table 5.2: Single processor execution time (in seconds) for Ising spin lattice size
128 × 128 and 3000 Monte Carlo steps. The slow down factor due to bounded
virtual time window size is in parentheses.
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VTW =∞ VTW = 3000 VTW = 2000
T = 1.0 4596 6578 (1.43) 9868 (2.15)
T = 2.269 4919 6577 (1.34) 9866 (2.01)
T = 3.0 5339 6579 (1.23) 9868 (1.85)

Table 5.3: Single processor execution time (in seconds) for Ising spin lattice size
256 × 256 and 3000 Monte Carlo steps. The slow down factor due to bounded
virtual time window size is in parentheses.

The influence of the bounded virtual time window size, and hence the GVT
update rate, is apparent from the second and third columns in Table 5.2 and
Table 5.3. Ideally, for infinite GVT update rate, the time window size does not
limit the sequential simulation performance as long as there is at least one
pending event within the boundaries of the time window. In practice however,
the GVT update rate is finite, and together with the time window size it limits
the potential event execution rate, and hence determines the execution time.
As one can see from Tables 5.2 and 5.3, the sequential execution time for vir-
tual time window sizes VTW = 3000 and VTW = 2000 are determined by the
time window size and not by the temperature of the Ising spin system (as with
window size VTW = ∞). The interdependency between virtual time window
size and GVT update rate adds another dimension to the determination of the
appropriate time window size.

The effect of the bounded virtual time window on the simulation execution
time can be clearly seen in Fig. 5.13. All the Ising spin experiments discussed
before are performed with a virtual time window of 3000. In the APSIS en-
vironment, the virtual time window is also used as a memory management
mechanism. If no virtual time window is used, arbitrary long rollbacks can
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Figure 5.13: Log-log plot of the execution times of parallel Ising spin for differ-
ent virtual time windows.
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occur whose history (i.e., event queue, output queue, etc.) consumes all (vir-
tual) memory. Hence, for memory management purposes the time window
should be bounded, and experimentally a time window size of 3000 showed
to be an appropriate starting value. (For a discussion on optimal virtual time
window sizes, see Section 6.4.3.) The execution time figures for the virtual
time window size VTW = 3000 in Fig. 5.13 are the same results as presented
in Fig. 5.9(a) and Fig. 5.10(a) at temperature T = Tc. For virtual time window
size VTW = 2000, the sequential simulation execution time (single processor
execution) is about 3000 seconds longer than for VTW = 3000 (for both lattice
sizes). The relative distance between the execution times for VTW = 2000 and
VTW = 3000 remains constant for 2, 4, and 6 processors. In this region the exe-
cution time difference is predominantly determined by the virtual time window
and its effect on the simulation event rate (see also previous discussion). How-
ever, where the execution times for VTW = 3000 start to deviate from linear
scaling behavior (at 8, 10, 12, and 16 processors) due to excessive rollback be-
havior, the execution times for VTW = 2000 continues to scale linearly with
the number of processors up to 12 processors for lattice size 128 × 128, and
up to 16 processors for lattice size 256 × 256. The most prominent property of
the figures is the crossover point in Fig. 5.13(b), between the execution times
for VTW = 2000 and VTW = 3000. For 12 processors, the execution times for
both virtual time window sizes are almost the same, but for 16 processors, the
execution time for VTW = 2000 is significantly shorter.

The results presented in Fig. 5.13 show the potential of virtual time window
management to control excessive rollback behavior, i.e., thrashing. However,
the determination of an appropriate time window size is far from trivial, as it
depends on various system parameters (i.e., number of processors) and appli-
cation parameters (i.e., in Ising spin for example lattice size or temperature).

5.5.2 Absolute Parallel Performance and Scalability
In the second series of experiments, we study the absolute efficiency of the par-
allel Ising spin simulation compared to the best-known sequential Ising spin
simulation for different temperatures, problem sizes, and event granularity
(that is, the amount of work per event). The sequential continuous-time Ising
spin simulation is basically a Monte Carlo simulation extended with a Pois-
son arrival process to incorporate time evolution into the model. The Monte
Carlo simulation execution mechanism is a lightweight process compared to
sequential discrete event simulation execution mechanism. With Monte Carlo
simulation there is nearly no overhead involved in the execution of the spin
flip trials: a random spin is selected and a trial is executed. With discrete
event simulation, a trial is an event that must be scheduled for future execu-
tion, that is, inserted into the event list (in general a priority queue). Later, if
the scheduled trial is the next pending event, the event is dequeued and the
trial is executed. Parallel discrete event simulation includes, besides the event
list management overhead, also the state saving and rollback overhead as de-
scribed in the previous section. The absolute efficiency figures include all these
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extra overhead costs compared to the sequential Monte Carlo simulation.
The experiments to assess the absolute performance, quantify the overhead

induced by the APSIS parallel simulation protocol. An interesting perspective
to approach the quantitative overhead evaluation is to relate this overhead
with the so-called event granularity. The event granularity is defined as the
amount of work per event (or trial in this discussion) and is in our study the
amount of extra computational work in terms of a sinus and an exponential
evaluation. The results for event granularity 0 are for the basic Ising spin
system. The results for increasing event granularities give an indication how a
similar problem scales as the amount of computational work to evaluate a trial
(or state change) increases. Note that extra computational work is assigned to
each trial, successful or not successful.

The absolute efficiency is defined as

E =
Ts

Tp(P) · P
,

where Ts is the execution time of the sequential Monte Carlo Ising spin simu-
lation, and Tp(P) is the execution time of the parallel Ising spin simulation on
P processors.

The absolute efficiency experiment results for Ising spin simulations with
temperatures T = 1.0, T = Tc, and T = 3.0 are presented in Fig. 5.14.
The absolute efficiency figures show the performance for different number
of processors with scaled problem size, i.e., the lattice size is scaled with the
number of processors such that the amount of local work at a processor re-
mains constant. The lattice sizes for P = 4, 8, 12, 16, 24 are the square of
L = 91, 128, 158, 181, 222 respectively. The performance figures for P = 1, that
is the parallel simulation executed on one processor, is included as an upper
boundary to the performance figures for other values of P. All results pre-
sented in the figures are the means of six experiments. The figures indicate
that the parallel performance depends on the event granularity and Ising spin
temperature. The event granularity determines the PDES protocol overhead
ratio, apart from synchronization errors. The temperature T of the Ising spin
system determines the computation/communication ratio: as the temperature
increases, the behavior of the system becomes more dynamic and hence more
communication occurs between the processors.

For low temperature T = 1.0, the absolute efficiency starts at 0.12 for work/-
trial is 0. Around work/trial is 20, the absolute efficiency starts to diverge for
the different number of processors, and eventually varies from 0.71 for P = 4
to 0.54 for P = 24 at work/trial is 50. For critical temperature T = Tc, we see
in Fig. 5.14(b) that the point of divergence has moved from 20 to 15. However,
at work/trial is 30, the performance figures per processor converge and end
up in the range of [0.63 − 0.66]. Finally for high temperature T = 3.0, the
point of divergence moved down to the range [4 − 8], see Fig. 5.14(c). Also for
high temperature, the performance figures converge and end up in the range
of [0.56− 0.6].
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(c) Temperature T = 3.0.

Figure 5.14: Absolute efficiency versus event granularity (work/trial) for par-
allel Ising spin simulations with temperatures T = 1.0, Tc, and 3.0 on 1, 4, 8,
12, 16, and 24 processors, with scaled problem size.

To understand Fig. 5.14, the relation between execution time, temperature
and rollback behavior must become clear. Figure 5.15 shows the parallel Ising
spin simulation execution times for the three temperatures. In Fig. 5.15(a),
the execution times for low temperature T = 1.0 are almost constant up to a
work/trial of 20, which is to be expected with a scaled problem size. However,
after this point, the execution times for larger number of processors starts to
increase faster than for smaller number of processors. This is due to increas-
ing synchronization costs of the Time Warp protocol for increasing number of
processors. For critical temperature T = Tc and high temperature T = 3.0,
we see an interesting transient execution time behavior in Fig. 5.15(b) and
Fig. 5.15(c). At work/trial is 0, the execution times increase with the number
of processors. For the critical and high temperature, there is more communi-
cation, and hence more synchronization overhead. As the work/trial increases,
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Figure 5.15: Parallel Ising spin simulation execution times for temperatures
T = 1.0, Tc, and 3.0 on 1, 4, 8, 12, 16, and 24 processors, with scaled problem
size.

the execution times converge to each other. For this magnitude of work/trial,
the increased synchronization costs for larger number of processors are com-
pensated by the larger event granularity.

The interesting transient execution time behavior is most prominent for in-
termediate temperatures around T = Tc, see Fig. 5.15(b). Here, the execution
times for P = 16 and P = 24 even decrease with increasing work/trial up to
10. Apparently, two factors determine the execution time: one factor increases,
and the other factor decreases for larger work/trial values. The factor that
increases the execution time is of course the amount of work per trial, so we
expect to see an increase in execution time for increasing work/trial. The sec-
ond factor that decreases with work/trial is the rollback ratio, i.e., the ratio of
events that are rolled back to the total number of executed events (rolled back
or committed). In Fig. 5.16(a), the rollback ratio versus the work/trial are de-
picted for the three temperatures T = 1.0, Tc, and 3.0. For low temperature
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Figure 5.16: Influence of event rollback ratio and virtual time window on the
execution time for 24 processors.

T = 1.0, the rollback ratio fluctuates significantly; the large variance can be
explained by the infrequent synchronization which can actuate large cascaded
rollbacks. For the intermediate and high temperatures, the rollback ratio falls
off smoothly for increasing work/trial. Consequently, the synchronization over-
head decreases. Thus, the increasing work per trial and the decreasing roll-
back ratio compete with each other, where the rollback ratio dominates for
small values of work/trial, and the work per trial dominates for larger values
of work/trial.

The crossover point, where the rollback ratio and work/trial are in balance,
is partly determined by the virtual time window size. As the virtual time win-
dow size determines the amount of optimism, it also indirectly determines the
rollback length and frequency. In Fig. 5.16(b), we see how the crossover point
moves from work/trial is 12 to 6 for VTW = 2750 to 3250.

5.6 Summary and Discussion
An important subclass of dynamic complex systems, namely asynchronous cel-
lular automata, has been used to rigorously evaluate the APSIS simulation
environment. The specific asynchronous cellular automata used in our exper-
iments is the continuous-time Ising spin model. The Ising spin model is a
well-defined and understood problem, and shows a complex behavior that is
essentially parameterized by the Ising spin temperature. The spatial decom-
position of the Ising spin model over the parallel processors put severe memory
constraints upon the APSIS environment, necessitating the use of incremental
state saving.
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The average parallelism analysis within the APSE framework exhibits the
dependency of the average parallelism on the Ising spin temperature and the
lattice size. Increasing temperatures results in (slowly) decreasing average
parallelism, and increasing lattice sizes incorporate larger average parallelism.
The APSE average parallelism analysis is consistent with our experiments, ex-
cept around the critical temperature Tc. The parallel Ising spin simulation
execution times around the critical temperature are larger than the execution
times for temperature T = 3.0. Detailed study of the event rate showed that
thrashing behavior of the parallel simulation occurs around the critical tem-
perature, resulting in a simulation progress drop of 90%.

The absolute efficiency study compares the performance of the (parallel)
discrete event simulation with the sequential Monte Carlo simulation imple-
mentation of the Ising spin model. The absolute efficiency is also a measure
of the amount of overhead introduced by the (parallel) discrete event simula-
tion compared to the relatively simple Monte Carlo simulation. In this respect,
the event granularity is an important quantity as it determines the (parallel)
discrete event simulation protocol overhead. The experimental results show
a subtle interplay between the increased execution time for increasing event
granularity, and decreasing rollback ratio and thus decreasing PDES overhead.

The application of optimistic parallel discrete event simulation methods
such as Time Warp to asynchronous cellular automata is in potential a vi-
able approach to parallelize the simulation. However, two essential extensions
to the Time Warp method have to be included: incremental state saving and
optimism control (throttling). The results show that given a fast communica-
tion network such as Myrinet, the Time Warp optimistic simulation method
achieves good scalable performance. In particular, low communication laten-
cies are essential to achieve performance, as the event messages are small.

The most promising approach to effective optimism control is the design
and implementation of an adaptive mechanism. That is, the parallel simula-
tion kernel determines the optimal virtual time window size using local state
variables, such as event rate, rollback ratio, and communication statistics. A
future research challenge is to devise a forecast method that exploits the lo-
cal state variables for adaptive virtual time window control. The formulation
of simple though applicable metrics to control the amount of optimism in the
Time Warp method determines the success of the mechanism.
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Chapter 6

Self-Organized Critical Behavior
in Time Warp

We call things we don’t understand complex, but that means we haven’t
found a good way of thinking about them.

—Tsutomu Shimomura

6.1 Self-Organized Criticality
Spatially extended dynamical systems, that is, systems with both temporal
and spatial degrees of freedom, are common in physics, biology, and economics.
The spatiotemporal behavior of these dynamic complex systems has been stud-
ied extensively, but there is still little understanding. In particular, two phe-
nomena require some unifying underlying explanation, namely the temporal
effect known as 1/ f noise, and the emergence of spatial structures with scale-
invariant, self-similar (fractal) properties.

Most of the time, equilibrium systems with short-range interactions, exhibit
exponentially decaying correlations. Infinite correlations, i.e., scale invariance,
can be achieved by fine-tuning some parameters (e.g., temperature) to a criti-
cal value. An example of such a system is the Ising spin model presented in
Chapter 5.

Besides systems exhibiting critical behavior, a large class of non-equilibri-
um locally interacting, nonlinear systems spontaneously develop scale invari-
ance. Such composite systems with many interacting degrees of freedom may
evolve to a critical state in which minor events may trigger a chain reaction
that can affect an arbitrarily large number of constituents of the system. This
state is called self-organized criticality (SOC) (Bak et al. 1988). The probability
of spontaneously generated structures or events, further called avalanches, of
many different sizes s show a power-law distribution

P(s) ∼ s−τ ,

where τ is a critical exponent and most other observables of the system have
no intrinsic time or length scale. This implies that we expect to observe scale
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invariance, or power-law scaling, in the system. The absence of intrinsic length
scale is attributed to SOC, where avalanches of all sizes contribute to keep the
system perpetually in a critical state. This critical state is robust with respect
to any small change in the rules of the system. The size of an avalanche can
be defined in different ways. It can be measured by the number of relaxation
steps needed for the chain reaction to stop or the total number of sites involved
in the avalanche.

Many naturally occurring systems exhibit this kind of scaling- or self-
similar behavior, examples are earthquakes, stock markets, and ecosys-
tems (Turcotte 1999). The concept of SOC is developed to explain the behav-
ior of such systems. Self-organized critical behavior was first investigated for
sandpile models (Bak et al. 1988). In this cellular automata model, a particle is
dropped onto a randomly selected lattice point. When a lattice point accumu-
lates four particles, they are redistributed to the four adjacent lattice points,
or in case of edge lattice points they are lost from the grid. Redistributions can
lead to further instabilities and avalanches of particles in which many parti-
cles may be lost from the edges of the lattice. The average number of particles
per lattice point is the density that fluctuates about a quasi-equilibrium value.
One measure of the avalanche size is given by the number of particles lost by
the lattice during a sequence of redistributions, or alternatively can be given by
the number of lattice points that participate in the redistribution. Figure 6.1
shows the distribution of the avalanche sizes, including the power-law fitted to
the distribution.
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Figure 6.1: Avalanche size distribution in the sandpile model on a 100 × 100
lattice. The exponent of the fitted line is −1.06.

In this chapter a highly speculative conjecture is made, that the Time Warp
dynamics can be characterized by self-organized criticality. The spatiotemporal
behavior of the Time Warp method is investigated on the basis of the Ising
spin model. The influence of temperature and various finite-size scaling effects
such as lattice size, number of processors, and virtual time window size are
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studied. If the conjecture is true, yet another hint is given that also problems
in the field of parallel computing display behavior as is found in other complex
systems (Macready et al. 1996; Schoneveld et al. 1997; Yuan et al. 2000).

6.2 Self-Organized Criticality in Time Warp
Dynamics

6.2.1 Slowly Driven, Interaction-Dominated Threshold
Systems

Self-organized critical behavior is found in slowly driven, interaction-domi-
nated threshold systems (SDIDT); if an SDIDT system exhibits power-laws
without any apparent tuning then it is said to exhibit self-organized critical-
ity (Jensen 1998). Interesting behavior arises because many degrees of freedom
are interacting. In addition, the dynamics of the system must be dominated by
the mutual interaction between these degrees of freedom, rather than by the
intrinsic dynamics of the individual degrees of freedom.

An important characteristic of systems exhibiting SOC behavior is a separa-
tion of time scales. As stated before, it is required that such systems are slowly
driven, that is perturbations occur on a much larger time scale than the diffu-
sion or relaxation dynamics. The critical state in SOC systems is furthermore
characterized by a stationary state where the driving forces balance the cas-
cades. For example in the sandpile model, adding sand causes on the one hand
the pile to grow, on the other hand avalanches. The dynamically stationary
state is obtained at the “critical point” where these two effects exactly balance.

A highly speculative analogy could be made with Time Warp: adding events
causes on the one hand the event rate to grow, on the other hand rollbacks
to occur. Our experiments show that in Time Warp, the event rate eventually
reaches a kind of stationary state with superimposed rollback cascade effects
(see Fig. 6.2). We define two time scales in Time Warp: simulation time and
protocol time. The simulation time in Time Warp is updated by the rate at
which the system is driven. This driving rate is determined by the dynamics of
the simulation. The protocol time, needed to process a rollback, is determined
by machine specific parameters. A difference between conventional SOC sys-
tems and Time Warp is that there is no explicit separation of time scales: asyn-
chronous updates and rollbacks may intervene. Also, rollbacks take place on
separate processors instead of an entire lattice of sites.

The Ising spin model, presented in Section 5.3.1, is a critical system, that is
for a certain parameter regime the system exhibits scale invariant structures.
This makes the Ising spin system an ideal simulation model to study the influ-
ence of spatial correlation on the dynamical behavior of the Time Warp proto-
col. The many degrees of freedom that are interacting show emergent behavior,
e.g., magnetization, as the temperature of the Ising spin system approaches T +c
(i.e., approach Tc form high temperature T ). This emergent behavior is the re-
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Figure 6.2: Event rate of one of the logical processes in a PDES Ising simula-
tion, with number of processors P = 6 and Ising temperature T = 1.0.

sult of the correlation length in the system that diverges as the temperature
approach Tc, and is even infinite at Tc.

To understand when “relaxation” in Time Warp occurs, we first have to ex-
plain how events are processed and can give rise to rollbacks in the Ising spin
model. Events in the Ising spin model are attempts to flip a spin in the lattice.
An attempted spin flip is accepted according to the Boltzmann probability dis-
tribution. Hence, not every event results in a spin flip, or equivalently in a state
change. The parallel Ising spin simulation exploits the inherent parallelism
by spatial domain decomposition. Each logical process in the parallel simu-
lation represents a subdomain of the spin lattice. Events on the subdomain
boundaries that result in a spin flip are communicated with the neighboring
subdomain, i.e., logical process, by way of an event message.

The so-called relaxation in Time Warp occurs whenever the following three
conditions are satisfied (threshold):

• if accepted event and;

• boundary event and;

• ∃ i ∈ neighborhood(local) : LVT local < LVT i ;

where LVT local is the simulation time on the local processor and LVT i is the
simulation time on a neighboring processor i . For Ising spin simulations, sim-
ulation time and protocol time separate at low temperatures, when there are
not that many spin flips, i.e., when the acceptance ratio of the Metropolis algo-
rithm is low. For high temperatures many spin flips are accepted, and updates
and rollbacks occur at comparable time scales.
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6.2.2 Physical and Computational Critical Behavior
It is very important to note that, in fact, we are confronted with two kinds of
critical behavior. The critical behavior of the first kind is a result of the Ising
spin phase transition at the critical temperature Tc. At the Ising spin phase
transition, long-range spin correlations occur, that might influence the Time
Warp dynamics. We call this critical behavior of the first kind the physical
critical behavior. The tendency to be correlated can be measured using the
correlation function

C(r) = 〈s0sr 〉 ,

where sr is a spin that is located r lattice sites away from s0. Some results
for the correlation function are shown in Fig. 6.3, which shows C(r) at several
different temperatures. The important feature in the figure is not the average
value of C(r), but rather the amount that C(r) increases above this average
value as r becomes small. At low temperatures, C(r) increases slightly at short
distances, however the enhancement is very small. The correlation function at
T = Tc ≈ 2.27 differs from the low temperature behavior in two ways. First,
the relative alignment at short distances is much larger than the value at large
r . Second, the correlations are now long-range as C(r) approaches the r → ∞
limit very slowly as r is increased. As the temperature is increased further
to temperatures above Tc, the correlations become smaller in magnitude and
again extend over only a few lattice spacings.
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Figure 6.3: Ising spin correlation functions at several temperatures.

The critical behavior of the second kind is inferred from the dynamical be-
havior of the Time Warp protocol. We expect that in the low temperature Ising
regime the Time Warp dynamics reaches a self-organized critical state, which
we call computational critical behavior.
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The average rollback length and rollback length distribution is studied at
different temperatures in order to determine the influence of the Ising spin
phase transition on the Time Warp protocol. It is expected that around the
Ising spin phase transition, the long-range spin correlations increase the av-
erage rollback sizes. It is well known that these long-range correlations result
in moving islands of actively flipping spins, located in a sea of inactive spins.
This separation of activity can trigger very large rollbacks whenever an active
island moves over a processor boundary.

We are interested in rollback length distributions in order to do a first order
check of SOC in Time Warp dynamics. Remember that for SOC systems it is
well known that many observables scale as power-laws.

6.3 A First Indication of Self-Organized Criti-
cality in Time Warp

A series of experiments are executed using the APSIS parallel simulation envi-
ronment (Chapter 3) on the Distributed ASCI Supercomputer (DAS), see Sec-
tion 5.5 for a description of the DAS supercomputer. The Ising spin simulation
model used in the experiments is described in Section 5.4. We experiment with
two different grid decompositions for the parallel simulation of the Ising dy-
namics on a L × L square lattice: a one-dimensional “slice” decomposition and
a two-dimensional “box” decomposition. Both decompositions are constructed
to assure optimal load balance. For all parameter instances of the simulation
experiments we measure the average rollback length and rollback length dis-
tributions.

For the first series of experiments in this section we have fixed the lattice
size to L = 220, the number of processors to P = 12, and the virtual time win-
dow (VTW) to 3000, using a “sliced” 1D decomposition. In Fig. 6.4 the average
rollback lengths are shown for the temperature range [0.1–2.7]. Ideally, roll-
back avalanches are measured instantaneously over the system, that is over all
processors used by the parallel simulation. However, instantaneous measure-
ment requires freezing the forward simulation, and allowing only rollbacks to
occur. This would fundamentally alter the dynamics of the Time Warp proto-
col, and is therefore unacceptably intrusive. Hence, each processor records the
local rollbacks for analysis. The rollback lengths are averaged over time for
all processors. The results of three different runs are depicted in the figure.
Close to the Ising phase transition (Tc ≈ 2.27 for infinite lattices), the expected
peak in the average rollback length can be observed. From this figure, three
different regimes can be identified: the physical sub-critical phase (< Tc), the
physical critical phase (≈ Tc) and the physical super-critical phase (> Tc).

The different phases influence the rollback length distributions. In the
physical sub-critical temperature regime [0.1–1.4], power-law scaling is found
(see Fig. 6.5), i.e., the Time Warp dynamics appear to be in a computational crit-
ical regime. As the temperature approaches the physical super-critical regime
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a transition to exponential scaling can be observed (see Fig. 6.6). Close to the
critical temperature, length distributions with “fat tails” (power-law distribu-
tions with exponential cutoff) develop due to the emergence of long-range spin
correlations.

The scaling exponent α in the physical sub-critical regime seems to be uni-

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 Tc 2.5 3

<
ro

llb
ac

k 
le

ng
th

>

T

exp 1
exp 2
exp 3

Figure 6.4: Average rollback length for different temperatures. For each tem-
perature, the results of 3 experiments are shown. Using the simulation param-
eters L = 220, P = 12, and VTW = 3000, and a 1D decomposition.
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140 Self-Organized Critical Behavior in Time Warp

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

P
(r

ol
lb

ac
k 

le
ng

th
)

rollback length

T = 1.5
T = 1.7
T = 2.0
T = 2.2
T = 2.4
T = 2.7

Figure 6.6: Rollback distribution for temperatures in the range 1.5–2.7. Using
the parameters L = 220, P = 12, and VTW = 3000, and a 1D decomposition.

versal for all temperatures in this regime. From the experimental data a
power-law with exponent α = −1.21 is fitted (linear fit of the logarithmic val-
ues). Because the rollback length distribution obeys power-law scaling, we
conjecture that the rollback dynamics are in a SOC regime.

The fact that the distributions in Fig. 6.5 begin to deviate from a power-law
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Figure 6.7: Average rollback length for different temperatures. For each
temperature, the results of 3 experiments are shown. Using the parameters
L = 220, P = 12, and VTW = 3000, and a 2D decomposition.
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at large rollback lengths is a finite size effect, which is further investigated
in Section 6.4. At small rollback lengths, the curve deviates from a straight
line because discreteness effects of the rollback lengths come into play. As
the rollback cascades approach the size of what is assumed to be the size of
a real-world system’s component particle, in our study an event, it becomes
impossible for the fractal pattern to repeat at this scale (Bak et al. 1988; Brunk
2000; Frette et al. 1996).

For the 2D decomposition we repeat the same set of experiments as for the
1D case, again with L = 220 and P = 12. As for the 1D case, we observe a peak
in the average rollback lengths around Tc (see Fig. 6.7). Again a transition from
power-law scaling to exponential scaling is observed (see Figs. 6.8 and 6.9). In
the physical sub-critical regime we find α = −1.25, slightly larger than in the
1D case. This tendency is in accordance with the expectation that slightly
shorter distances between processor partitions enable a faster propagation of
cascading rollbacks.

In the next series of experiments, different parameters are varied. Note
that two different processes intervene: the Ising simulation process and the
Time Warp process. An important parameter for both processes is the lattice
size. Due to finite size effects, increasing the lattice sizes causes the Ising spin
phase transition point Tc to shift. For the Time Warp process, the probability
to select a boundary cell decreases for increasing lattice sizes. If the number of
processors is increased and the lattice size is kept fixed, the probability to select
a boundary cell increases. Therefore we experiment with different numbers
of processors. The virtual time window is a very important parameter that
determines the maximum length of the rollbacks. This parameter is studied in
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Figure 6.8: Rollback distribution for temperatures in the range 0.1–1.5, fitted
exponent has value −1.25 (±0.02). Using the parameters L = 220, P = 12, and
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Figure 6.9: Rollback distribution for temperatures in the range 1.6–2.7. Using
the parameters L = 220, P = 12, and VTW = 3000, and a 2D decomposition.

the last series of experiments.

6.4 Finite-Size Scaling Effects

6.4.1 Influence of lattice size
Because the peak in the average rollback appears close to Tc, we expect that
this peak is related to the long-range correlations of the Ising phase transition.
To support this hypothesis we have conducted a number of experiments with
increasing lattice sizes in order to study the presence of finite size effects. For
finite lattices, the critical temperature Tc shifts with increasing lattice sizes.

Due to limited computer and time resources we did not extract any critical
exponents from the generated data; a more detailed study of this phenomenon
is therefore necessary. To simulate an Ising spin system on one specific T ≈ Tc,
more than 2 days (see Fig. 6.11) of computing time on 12 Pentium II (at 200
MHz) nodes is needed; this gives an indication on the total amount of computer
time required to run these experiments. Figure 6.10 shows the results for vary-
ing lattice size experiments (using L = {110, 220, 440, 880} and P = 12). A shift
towards Tc is observed for increasing lattice sizes.

Furthermore we find that for all lattice sizes in the SOC regime α ≈ −1.21
for 1D decompositions and α ≈ −1.25 for 2D decompositions. For 2D decompo-
sition the rollback distributions are shown for T = 1.0 in Fig. 6.12.
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6.4.2 Varying the Number of Processors

To study the influence of the number of processors on the rollback length dis-
tribution in the SOC or computational critical regime, a series of experiments
with P = {4, 8, 12, 24} using a 2D decomposition has been performed. The lat-
tice size has been fixed to L = 220. The rollback distributions of Ising spin
simulations at T = 1.0 are shown in Fig. 6.13. Similar results are seen for
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Figure 6.12: Rollback distributions for L = {110, 220, 440, 880} at T = 1.0 using
the parameters P = 12, VTW = 3000, and a 2D decomposition.
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Figure 6.13: Rollback distributions for P = {4, 8, 12, 24} at T = 1.0 using the
parameters L = 220, VTW = 3000, and a 2D decomposition.

other temperatures T in the SOC regime. The results indicate that for increas-
ing P the rollback length distributions converge. Again, the scaling exponent
α is not influenced by increasing P.

The average rollback lengths for different processors in the range T = [0.1−
2.7] are shown in Fig. 6.15. For 8, 12 and 24 processors, again, a peak around
Tc can be distinguished. For P = 4, this peak is not present. Apparently, the
critical Ising spin dynamics does not reduce the performance of the Time Warp
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protocol if only 4 processors are used.
In the low temperature regime the average rollback length increases with

the number of processors. From Fig. 6.13 we observe that the rollback length
cutoff size increases with P. Therefore it is expected that the average rollback
lengths must increase with P in the low T regime (see Fig. 6.15).

This is not valid anymore in the high T regime, where the rollback length
distributions approximately collapse (see Fig. 6.14) to the same exponentially
decreasing distribution. As a direct consequence, the average rollback lengths
will collapse (see Fig. 6.15). In the high T regime the rollback lengths are not
influenced by P as in the low T regime. The processors are synchronized fre-
quently in this regime, due to a high acceptance ratio of flipped spins. There-
fore, there is hardly any real time to build large simulation time differences
between the processors, resulting in only small rollback lengths.

It is interesting to compare the runtimes for different P in the same tem-
perature range. The results are presented in Fig. 6.16. From the figure one can
derive that in the low T regime, the runtime scales down if more processors
are used. This is also valid for the high temperature regime. Around Tc, we
find non-trivial scaling of the parallel runtime for different number of proces-
sors. Obviously, using only 4 processors gives the best result, which could be
expected from the significantly lower average rollback length in this regime.
Using 12 processors gives the worst results in this case.

For the high and low temperature regimes P = 24 gives the best perfor-
mance results. Even though, in the low T regime, the average rollback length
is maximal for P = 24, the extra overhead is beneficially applied to efficiently
exploit the parallelism present in the simulation.
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Figure 6.15: Average rollback lengths for P = {4, 8, 12, 24} for varying T using
the parameters L = 220, VTW = 3000, and a 2D decomposition.
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Figure 6.16: Run times for P = {4, 8, 12, 24} for varying T using the parameters
L = 220, VTW = 3000, and a 2D decomposition.

Although the average rollback lengths in the low T regime are much larger
than the average rollback lengths in the high T regime, the execution times are
comparable. This is a result of the frequency of rollback events. In the low T
regime this frequency is much lower, due to the reduced acceptance probability
of spin flips. It seems that, the average rollback lengths and the rollback fre-
quency are balanced to approximately similar execution times for the low and
high T regimes.



6.4 Finite-Size Scaling Effects 147

6.4.3 Different Virtual Time Window Sizes
An important parameter of the Time Warp protocol is the so-called virtual time
window (VTW). This parameter controls the asynchronicity of the simulation.
It specifies the maximum difference between the local virtual time and the
global virtual time (the minimum of all local virtual times). It is expected that
this parameter greatly influences the rollback dynamics. For the experiments
presented in this section we have varied the VTW parameter while keeping all
other parameters fixed (P = 12 and L = 220).

In Fig. 6.17 the rollback distributions are depicted for T = 1.0 for experi-
ments with VTW parameters in the range [750, 6000]. Obviously, a small vir-
tual time window decreases the maximum rollback length.
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Figure 6.17: Rollback distributions for VTW = {750, 1500, 2000, 2250, 2500, 2750,

3000, 6000} at T = 1.0 using the parameters L = 220, P = 12, and a 1D decom-
position.

In Fig. 6.18 the rollback distributions for VTWs around 3000 are shown.
There is a transition from VTW = 2750 to VTW = 3000. The VTW values
{3000, 3250, 3500} produce similar rollback length distributions, while VTW =
4000 deviates.

From Fig. 6.19 it can be observed that the peak of the average rollback
length shifts and broadens for increasing VTW. This effect is caused by the
Ising dynamics. Large virtual time windows effectively result in a more pro-
nounced influence of the finite sub-lattices (decomposed over the 12 processors).
Due to the increased asynchronicity for larger time windows the sub-lattices
are effectively loosely coupled and act more like individual Ising spin lattices.
It is a well-known fact in Ising spin simulations that decreasing the lattice size
results in a broadening and shifting of the spin correlation peak around Tc.

The average rollback lengths roughly decrease for decreasing virtual time
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Figure 6.18: Rollback distributions for VTW = {2750, 3000, 3250, 3500, 4000} at
T = 1.0 using the parameters L = 220, P = 12, and a 1D decomposition.
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Figure 6.19: Average rollback length for VTW = {750, 1500, 2000, 2250, 2500,

2750, 3000, 3500, 4000, 6000} for varying T using the parameters L = 220, P =
12, and a 1D decomposition.

window size (see Fig. 6.19). This is a result of the Time Warp dynamics. Small
virtual time windows only allow for a small build up of local virtual time dif-
ferences.

For smaller VTW values the average rollback lengths are comparable over
the entire temperature range. For these values it can be concluded that the
Time Warp dynamics are not constrained by the details of the Ising dynamics.
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Figure 6.20: Runtimes for VTW = {750, 1500, 2000, 2250, 2500, 2750, 3000, 3250,

3500, 4000, 6000} for varying T using the parameters L = 220, P = 12, and a 1D
decomposition.

The increased synchronization frequency disables the build up of large time
differences.

Somewhere there is a crossover point where increasing the maximum roll-
back lengths (by increasing VTW) does not improve the progress in simulation
time due to the increased protocol overhead. For this specific simulation in-
stance it seems that VTW = 2750 is optimal for the low and high temperature
regime (see Fig. 6.20). For the regime around Tc it is almost optimal. Note that
VTW = 3000 is comparable to VTW = 2750 in the low and high T regimes, while
around Tc, VTW = 3000 produces significantly higher execution times. Hence
the run times are highly susceptible for VTW around Tc, as a consequence of
the critical Ising dynamics.

In contrast to the disappearance of the average rollback length peak in
Fig. 6.19 for increasing VTW, a peak remains in the runtime curves. This can
be explained from reduced rollback frequencies in lower temperature regimes.
The increase of the runtimes around Tc with increasing VTW can be explained
from the increased average rollback lengths (see Fig. 6.19) and the fat tail in
the rollback size distribution around Tc for large virtual time windows (data
not shown).

6.5 Summary and Discussion
In this chapter we have intensively studied the dynamical behavior of the Time
Warp protocol for parallel discrete event simulations. As a simulation case we
considered a model that supports tuning of the correlation length, namely the
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Ising spin model, which is basically a cellular automata model. A property
of the Time Warp protocol is the appearance of so-called rollbacks whenever a
causality error occurs. This rollback mechanism can trigger a cascade of events
that need to be undone. The local rollbacks are recorded by the simulation
process, as the instantaneous global cascaded rollbacks cannot be administered
without unacceptable intrusion into the Time Warp dynamics. It is known that
so called slowly-driven, interaction-dominated threshold (SDIDT) systems can
exhibit power laws without any apparent tuning. The specific feature of these
dynamical systems is called self-organized criticality (SOC).

From the inset in Fig. 6.16 we can see that the optimistic simulation of
the Ising spin system scales linearly with the number of processors for low
temperatures T = [0−1.5]. However, it is found that the Ising spin phase tran-
sition influences the rollback behavior, and consequently the runtime. Around
the critical temperature (physical critical behavior) Tc, the average rollback
lengths increase dramatically, as well as the simulation runtimes, due to long-
range spin correlations. The non-trivial scaling in runtimes around the critical
temperature shows in Fig. 6.16 that the best performance is obtained with only
4 processors. For physical sub- and super-critical temperatures the simulation
runtimes approximately coincide.

For the rollback dynamics three different phases can be distinguished:
physical sub-critical, physical critical, and physical super-critical rollback
length scaling behavior. In the sub-critical regime the scaling behavior ap-
pears to behave like a power-law, with exponents independent of the tempera-
ture. In this regime we conjecture that computational critical (SOC) behavior
appears. Around the critical phase large rollback lengths become more abun-
dant due the long-range spin correlations. Here the computational complexity
and the physical complexity are entangled and contribute both to the runtime
and rollback behavior in a non-linear way. In the physical super-critical phase
a negative exponential distribution of the rollback lengths is observed.

Obviously a lot of work remains to be done in the study of physical- and
computational critical behavior in Time Warp. The results presented in this
chapter are, to our knowledge, the first series of experiments that have ever
been conducted to study the influence and the appearance of critical behav-
ior in Time Warp. The entanglement of the computational and physical com-
plexity, and their non-trivial contribution to the runtime behavior might have
consequences for other optimistic simulations.
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Chapter 7

Dynamic Load Balancing:
Automatic Control of Execution Threads

When one’s ill or unhappy, one needs something outside oneself to hold one
up. It is a good thing, I think, when one has been knocked out of one’s
balance, to have some external job or duty to hang on to.

—Aldous Leonard Huxley

7.1 Introduction
The progressive use of event-driven simulation techniques as an essential ap-
proach to problem solving in, for example, science, engineering, and economics,
has urged the need for robust performance. Efforts to parallelize the discrete
event simulation execution mechanism resulted in two different parallel dis-
crete event simulation (PDES) protocol classes: conservative and optimistic. In
the preceding chapters of this thesis, we have extensively studied the perfor-
mance and execution behavior of the optimistic scheduling protocol Time Warp.
The performance of parallel programs, and in particular of optimistic simula-
tions, is (negatively) influenced by the appearance of load imbalance over the
processing nodes of the parallel or distributed computing platform. Due the
very complex execution patterns in optimistic simulation, the load imbalance
cannot be predicted before the execution of the parallel simulation. Hence, we
must solve the load imbalance dynamically. To this end, we need an execution
environment that allows for the dynamic migration of execution threads (pro-
cesses, threads, or objects) from overloaded processing nodes to “underloaded”
or less loaded processing nodes.

The Polder project is an experiment framework for wide-area resource man-
agement, which deals with both resource allocation and job placement, and dy-
namic resource management in local clusters. The main contribution of this
chapter is the presentation of the design and implementation of, and experi-
mentation with, dynamic resource management local to a cluster. The dynamic
resource management environment is named Dynamite, and incorporates pro-
visions for transparent process migration that allow for efficient load balancing
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of parallel jobs over the processing nodes of the cluster.
The development of Dynamite is the first step towards dynamic load bal-

ancing of execution threads in PDES. Dynamic load balancing of parallel jobs
is a complex task and a research topic that is extensively studied. Dynamic
load balancing of PDES can be even more complex, as the notion of workload
must be redefined, see for example thrashing behavior that incurs tremendous
amounts of work but no progress (or useful work). Also, we have to consider
which class of PDES applications can potentially benefit from dynamic load
balancing over the processing nodes of a cluster. By the amount of event mes-
sages in PDES, the communication latency is a considerable factor in the de-
termination of the performance. In this respect, self-initiated simulation appli-
cations, where the simulation processes schedule most of their events to them-
selves, seems to offer a good opportunity. The remainder of the introduction
presents the general setting of wide-area resource management and dynamic
load balancing local to a cluster. The challenges of dynamic load balancing
of PDES are not considered in this chapter, but some ideas are discussed in
Section 7.7.

The current developments in clusters of workstations, and on a larger scale
wide-area distributed computing, or “grid” technologies (Foster and Kesselman
1998), indicate the importance of resource management to determine the effi-
cacy of a distributed computing environment. In distributed environments the
typical set of jobs consists of interactive and batch jobs, which in turn can be
sequential or parallel execution runs. By the diversity of the jobs offered to the
distributed environment—interactive users start sequential and parallel jobs,
and batch jobs arrive with some arrival probability distribution function—both
the demand for, and the availability of resources are highly dynamic.

Resource management in distributed environments spans a variety of ac-
tivities such as job scheduling, I/O scheduling, load balancing, etc. In order
to optimize performance of applications, or the utilization of resources, the re-
source management system should be able to react on changes in the distrib-
uted computing environment. As a consequence, several facilities have to be
made available to the distributed computing environment in order to interact
with resources and applications. The term “metacomputing” was introduced
by Smarr and Catlett (1992), as a reference to such a set of widely different
computing resources that presents itself to the user as a single computing en-
vironment.

A serious problem hampering the development of metacomputing environ-
ments is the lack of a sound theoretical basis for resource management strate-
gies to build upon. In order to break the impasse, we developed an experimen-
tal environment that provides a framework for the development and evalua-
tion of the various components making up the metacomputer (van Halderen
et al. 1998). The experimental environment is essentially a metacomputer in
its functionality and characteristics, but allows to study, for example, differ-
ent policies for resource management or test designs and implementations of
scalable I/O libraries, and the validation of theories.
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In this chapter we focus on issues concerned with dynamic load balancing
of parallel applications within a local cluster in the metacomputing environ-
ment. With the availability of high-speed networks, clusters of workstations
achieve the same scalable parallelism as the current massively parallel proces-
sor (MPP) architectures. Hence, we currently witness a shift of emphasis in
high-performance computing from expensive, special-purpose monolithic sys-
tems to the use of clusters of workstations or PCs. When using time-shared
workstation clusters as high-performance computing servers, however, one has
to cope with the dynamical behavior of the compute nodes, the network load
and the application tasks. These can lead to local load imbalances, which ham-
per the application’s execution and the overall system performance.

One way to deal with this dynamically changing resource requirement
would be an adaptive system that supports the migration of processes from
overloaded to under-loaded processors at runtime, without interference from
the programmer. In addition, the resulting adaptive system should hide the
complexity of the load balancing from the programmer/end-user. These obser-
vations resulted in the design and implementation of an experimental adaptive
system called Dynamite.

The chapter is outlined as follows. Section 7.2 describes the current hard-
ware and software trends in cluster and metacomputing. In Section 7.3 the
Polder metacomputer framework is introduced. This section gives a global per-
spective of the research goals we are aiming for. The next sections, Section 7.4
and Section 7.5, present the main contribution of this chapter, namely the de-
sign and implementation of a local-area load balancing facility incorporated
within a message passing library. The ideas and design of a local-area sched-
uler, i.e., process monitoring and migration decision, are presented briefly. The
design and implementation of parallel process migration and restart are de-
scribed in detail. A series of experiments and results are presented in Sec-
tion 7.6. Finally, Section 7.7 discusses the results and observations of the Dy-
namite environment, and concludes with suggestions for future work.

7.2 Background and Design Aspects
The current developments in high performance cluster computing and meta-
computing are moving along two axis: hardware and software. The hard-
ware development of parallel supercomputing and modern networks/clusters
of workstations are directing to the same point on the horizon. The compute
nodes in the parallel supercomputer are the same processors found in work-
stations, and the performances of the distinguished proprietary interconnec-
tion networks are attained by independently available network interfaces such
as Gigabit Ethernet, Fibre Channel, HIPPI, or Myrinet. Progress in wide-
area networking, e.g., SONET and ATM, motivated the development of soft-
ware infrastructures that smoothly integrate distant distributed resources into
a metacomputer that enables the coordinated implementation of high perfor-
mance applications.
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7.2.1 Trends in Hardware
The development of high speed networks, both for local-area and wide-area
networks, has triggered a refocus on the hardware used in high performance
computing, and in particular a refocus on distributed memory architectures.
For example, the massively parallel processors (MPPs) that are used to solve
large computational problems, are distinct by their proprietary message pass-
ing networks, i.e., communication backplanes specifically designed for a family
of MPPs. With the advent of fast network interfaces that are generally avail-
able, like (switched) Gigabit Ethernet, Fibre Channel, HIPPI∗, and Myrinet,
the same large computational problems can be solved effectively on clusters of
workstations connected by a local-area network (LAN). In particular Myrinet is
an outstanding example of how technology used for communication and switch-
ing in MPPs has evolved to a high speed LAN.

The availability of high speed LAN has initiated a number of research
projects to build parallel supercomputers made of “commodity off the shelf”
(COTS) components. Although the projects described below also cover software
issues, their main focus is the implementation of a parallel supercomputer.

The Beowulf project (Warren et al. 1997) aims to develop a parallel com-
puter architecture based upon Pentium Pro processors and switched Fast Eth-
ernet communication links (i.e., switched Fast Ethernet is not used as a broad-
cast medium, but rather as a point-to-point interconnection fabric giving the
full 100 Mbit/s bandwidth). In addition with the availability of powerful, free
operating systems (Linux, FreeBSD) and message passing interfaces (MPI),
the Beowulf project realized a low-cost commodity parallel computer. With a
16-node parallel computer a sustained performance of one Gflop/s has been
obtained on scientific applications. A number of Beowulf offsprings have been
build, among which the 140-node DEC Alpha cluster Avalon, the 276-node DEC
Alpha cluster Jet (interconnected with Myrinet), and the 56-node (dual proces-
sor) Pentium II cluster SWARM. The Avalon cluster achieves 12.83 Gflop/s
running a 64 million particle molecular dynamics simulation (SPaSM) on 70
nodes (Warren et al. 1998).

An interesting initiative that combines both high speed LAN and WAN in-
terconnections in the implementation of a high performance computing plat-
form is the Distributed ASCI Supercomputer (DAS)†. The DAS is a 200-node
wide-area distributed system built out of four Myrinet-based Pentium Pro clus-
ters. The four clusters are located at four universities: Free University Amster-
dam, University of Amsterdam, Delft University of Technology, and University
of Leiden.

Each node contains a Pentium Pro, 128 MB RAM, a 2.5 GB local disk, a
Myrinet interface card, and a Fast Ethernet interface card. The nodes within a
local cluster are connected by a Myrinet SAN network (SAN stands for system
area network), which is used as a high speed interconnection, mapped in user-
space. Fast Ethernet is used as the operating system network for NFS services,
∗The new HIPPI-6400-PH ANSI standard provides 6.4 Gbit/s throughput.
†http://www.asci.tudelft.nl/das/das.shtml or http://www.cs.vu.nl/das/
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etc. The four local clusters are connected by an ATM wide-area network, so
the entire system can be used as a 200-node wide-area distributed cluster (see
Fig. 7.1). The system runs the Linux operating system.

Myrinet switch

LAN network
(Myrinet and Fast Ethernet)

WAN network (ATM)
WAN

Figure 7.1: Overview of the DAS Architecture. Four local-area Myrinet clusters
are connected by an ATM wide-area network.

The DAS distributed supercomputer, with its high speed local-area and
wide-area interconnections, can be regarded as a prototypical metacomputer
architecture for the near future. In this respect, the DAS architecture provides
a unique experimental testbed for research in metacomputer software infras-
tructures.

7.2.2 Trends in Software
New technologies in wide-area networks have resulted in a new impetus to
research directed to provide coordinated network services. The feasibility
of wide-area high speed network technology (e.g., ATM, but also HIPPI and
IP over SONET) has been demonstrated by the implementation of network
testbeds including BERKOM, CASA, Abilene, and vBNS (Abilene and vBNS
take part in the Internet2 consortium). The aggregation of distributed and high
performance resources on high speed networks will change the perspective on
distributed computing and have an impact on the development of scientific ap-
plications. In a similar way as parallel computing enabled scientists to solve
computational problems that could not be obtained efficiently by sequential
computing, aggregated distributed resources can engage larger computational
power to a single application.

Although the hardware developments in high speed networks are impres-
sive, the services provided to use the aggregated distributed resources in a co-
ordinated manner are still in their infancy. To fully exploit the potential of dis-
tributed resources on coordinated networks, a software infrastructure must be
developed to provide easy to use and transparent access to the resources. This
software infrastructure, the metacomputer (Smarr and Catlett 1992), manages
the complexity of the underlying physical system for the user. The key ob-
servation in metacomputing environments is that with the current conceptual
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model, interacting autonomous hosts are stretched into a regime for which they
were not designed. This has resulted in a collection of partial solutions without
coherence and scalability. The challenge is to provide an integrated foundation
that hides the underlying physical infrastructure from users and from the ma-
jority of programmers. By seamlessly integrating the diverse computational
resources, the metacomputer provides a platform that fulfills the requirements
of a new class of resource-intensive applications.

Two projects that are exemplary for the current trends in metacomputing
research are Legion and Globus. A prototype of the Legion metacomputer and
preliminary versions of Globus components have been demonstrated success-
fully as part of the I-WAY network experiment (DeFanti et al. 1996). Globus
and Legion are currently used to provide the infrastructure for the National
Technology Grid (Stevens et al. 1997; Foster and Kesselman 1998).

Legion is a metacomputer project designed to provide users with a trans-
parent interface to the available resources, both at the programming interface
level and at the user level (Grimshaw and Wulf 1996). Legion uses an object-
oriented framework that enables a coherent solution to problems like access
support, location, fault transparency, inter-operability, security, etc. The ob-
jects, written in either an object-oriented language or other languages such as
C, will interact with other objects via well-defined interfaces. The use of objects
allows for substantial flexibility in the semantics of user applications; a user
is able to select both the kind and level of functionality, and make their own
trade-offs between function and cost (e.g., the level of security in authentica-
tion).

The Globus (Foster and Kesselman 1997) project addresses the metacom-
puting challenge by a vertically integrated treatment of application, middle-
ware, and network. In the Globus perspective, metacomputing can build on
distributed and parallel software technologies, but also requires significant
advances in mechanisms, techniques, and tools. The metacomputing soft-
ware problem is approached from the bottom up, by developing basic mech-
anisms such as communication, authentication, network information and data
access. These low-level components define a metacomputing abstract machine
on which can be constructed a range of alternative infrastructures, higher-level
services, and applications.

The long term goal of the Globus project is to construct an integrated set
of higher-level services that enable applications to adapt to heterogeneous and
dynamically changing metacomputer environments. The adaptive applications
are able to configure themselves to fit the execution environment and optimize
the performance.

Essential to the success of metacomputing is careful scheduling. Generally,
there are two performance optimization objectives in wide-area systems: high
performance computing (reducing turnaround time of jobs) and high through-
put computing (e.g., maximize the aggregate amount of work per time period).
Given one of these two goals, the scheduling process must decide where a job
and its constituent tasks will run. The objectives and issues that must be ad-
dressed by a wide-area scheduling system are more complex than in local clus-
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ter scheduling systems (Weissman and Grimshaw 1996; Chapin et al. 1999).
For example, the wide-area scheduler should make use of the heterogeneity
in the metacomputer by efficiently exploiting remote resources. However, in a
metacomputing setting, resources are often managed by separate local sched-
ulers (e.g., Condor, Codine, LSF) which are not coordinated. Consequently, the
wide-area scheduler must make decisions in concert with the local site sched-
ulers. The CCS system (Keller et al. 1999) is a typical example of a resource
management system that was originally developed for high performance MPPs,
and is adapted to modern workstation clusters. It provides allocation of exclu-
sive and non-exclusive resources, scheduling of interactive and batch jobs, and
has an open, extensible interface to other resource management systems.

The delicate interplay of the wide-area scheduler with the local site sched-
ulers is one of the research interests in the Polder metacomputer project, which
is presented in the next section.

7.3 The Polder Metacomputer Experimental
Framework

The Polder metacomputer initiative (Overeinder and Sloot 1997; van Halderen
et al. 1998) is an ambitions project that aims to provide an experimental frame-
work for metacomputer design tradeoffs and gradually build a metacomputer
environment that organizes heterogeneous distributed resources into one sin-
gle computing environment with a uniform access. By its distributed nature,
the resources are administered by local authorizing resource managers. There-
fore, the Polder metacomputer must incorporate existing management soft-
ware concerning resource control, access control, accounting and monitoring
while supporting the multitude of hardware platforms present within the dis-
tributed system.

In the Polder metacomputer experiment different ways of use of metacom-
puting are addressed: high performance computing, high throughput com-
puting, multi-site computing and automatic task balancing for dynamic re-
sources. Each of these different usages of the metacomputing environment
has its own requirements with respect to the services provided by the meta-
computer. The underlying mechanisms should be flexible and generic in order
to efficiently support these different requirements in services. To tackle these
problems, a number of subprojects have been initiated to deal with issues like
metacomputer access and job submission, wide-area and local scheduling, load
balancing, and scalable I/O. These subprojects are performed by the differ-
ent participants in the Polder initiative, among which the University of Ams-
terdam, NIKHEF (Amsterdam), Delft University of Technology, University of
Wisconsin–Madison, and Paderborn Center for Parallel Computing.

Some of the issues concerning metacomputer access and job submission,
wide-area scheduling, and local-area load balancing are discussed in the next
section. Within the MOL partner project, the PLUS lightweight communica-
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tion interface (Brune et al. 1997b) addresses inter-operability between het-
erogeneous platforms and different message passing layers. PLUS encap-
sulates message passing specific communication primitives (e.g., MPI_Send,
pvm_send) and enables inter-operability between MPI and PVM applications.

7.3.1 Resource Management in the Polder Metacomputer

The efficiency of a metacomputing system can be viewed in two different ways.
For high performance computing (HPC) a parallel job perspective is taken. The
system performance is defined in terms of the turnaround time of highly de-
manding parallel jobs. In the view taken by high throughput computing (HTC),
the performance of the system is mainly defined in terms of the number of jobs
that are processed within a certain period of time.

The global resource management structure of the Polder metacomputer
model is depicted in Fig. 7.2. The structure determines how the heterogeneous
distributed resources are presented to the metacomputer user or application.
On the base-level there are resources (e.g., workstations, MPPs, or I/O devices)
administered by a local resource manager (e.g., Condor, Codine, or LSF). The
aggregated local resources (that is, at the base-level the resources administered
by the local resource manager) are represented by self-describing active agents.
These agents (in Fig. 7.2 the entities in the shaded area) describe the type of
resources, amount of memory, disk space, connectivity, etc.—the agent is es-
sentially not limited in its descriptive plurality. The agents can be aggregated
into a new agent, and hence represent a larger set of distributed resources.
The aggregation of agents and the information advertised by the agents can
reflect local authorization decisions. Although the organization of the agents is
hierarchical, the perspective to resources is one-dimensional; that is, a unified
view to the heterogeneous distributed resources on a coordinated network.

Resources (workstations, MPPs, SMPs)

Local RM (Condor, Codine, LSF, ...)

Software Infrastructure (Metacomputer)

Metacomputer Access Interface

Figure 7.2: The Polder metacomputer global resource management model. The
software infrastructure (active agents) organizes the distributed resources to a
metacomputer.
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The Polder metacomputer access interface is distributed and WWW-based
to allow for a scalable, flexible and generic interface that interacts with the re-
source agents. The wide-area resource management actually takes place at the
metacomputer access interface. Upon job submission via the access interface—
with the job requirements being specified—the agents start with bidding on
the job. In accordance with the wide-area scheduling policy, one of the agents
offers the best fit on the job requirements. The job and its constituent tasks
are allocated to the resources in coordination with the local resource manager.
In this top-down approach, the wide-area scheduler determines the resources
assigned to a job, and direct the local resource managers to actually allocate
these resources.

Wide-area scheduling is a complex problem and subject of various research
projects. Within the Polder metacomputer project a simulation model of the re-
source management infrastructure has been developed to allow for rapid pro-
totyping and evaluation of scheduling strategies (Santoso et al. 2000). Experi-
ments with scheduling strategies under strict conditions can be instrumented
on top of the resource management simulation model, which is essential for
validation with theoretical models. After a scheduling algorithm has been thor-
oughly evaluated, it can be integrated within the metacomputing environment.

The previous discussion did not mention the scheduler for dynamic load
balancing in a local-area cluster. This subject is presented in Section 7.5.1,
where the Dynamite local-area scheduler is introduced.

7.3.2 The Curse of Dynamics
In general the resources in the metacomputing environment are not exclusively
allocated to one user or application, that is, resources are often shared among
users and applications. Consequently, changes in the distributed system such
as variation in demand of processor power, variation in number of available re-
sources, or dynamic changes in the runtime behavior of the application, ham-
per the efficient use of the metacomputing environment.

Consider, for example, an application that after a straightforward domain
decomposition, is mapped onto the processors of a parallel architecture. If the
hardware system is homogeneous and allocated to only one application pro-
gram, then the execution will run balanced until completion: we have mapped
a static resource problem to a static resource system. However, if the underly-
ing hardware system is a cluster of multi-user workstations we run into prob-
lems because the available processing capacity per node may change: in this
case the static resource problem is mapped to a system with dynamic resources,
resulting in a potentially unbalanced execution. Things can get even more com-
plicated if we consider the execution of an application with a dynamic runtime
behavior on a metacomputer environment, i.e., the mapping of a dynamic re-
source problem onto a dynamic resource machine. The notion of redundant
decomposition has been posed by de Ronde et al. (1996) to introduce sufficient
richness in parallel tasks to make a balanced workload in such a dynamic re-
source machine possible.
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One way of dealing with this dynamically changing resource requirement
would be to dynamically rebalance a job and its (parallel) constituents by mi-
gration of processes from overloaded to under-loaded resources at runtime. If
the dynamic load balancing occurs locally, the wide-area scheduler does not
participate. However, the local resource manager might request the wide-area
scheduler that a job be re-scheduled elsewhere. The next section describes the
design and implementation of these functionalities that are needed for dynamic
load balancing, i.e., process migration of running (parallel) jobs.

allocation predictable
reallocation

dynamical
static task

reallocation

load
dynamic resource

dynamic task load

static resource
load

static task load

Figure 7.3: Task allocation of static and dynamic applications and resources.

7.4 Dynamite: Process Migration in Message
Passing Environments

Process migration support can be incorporated at two operation levels: oper-
ating system level and user level. In operating system level implementations
the resource management facilities are supported by the OS kernel. Examples
of such systems are Mach (Milojicic et al. 1993), Sprite (Douglis and Ouster-
hout 1991), and MOSIX (Barak and La’aden 1998). User level designs and
implementations of adaptive systems include dynamic resource management
facilities by providing their own dynamic load balancing runtime support. Ex-
amples of user level designs are Condor (Litzkow et al. 1988) for sequential,
and MPVM (Casas et al. 1995) for parallel application systems.

In our project we have the following design constraints for the process mi-
gration facility:

• since we assume that the major computational resource is a scalable clus-
ter environment, the application programming model must be based on
message passing;

• it is essential we support a platform independent operating system, there-
fore the operating system should be Unix;

• by hiding the complexity in libraries, the dynamic load balance runtime
support system must be incorporated at user level.
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Furthermore, the design of a self-contained experimental environment for
dynamic load balancing of parallel application systems should include at least
the following three components: (i) parallel programming environment, (ii) par-
allel runtime support system, and (iii) checkpointing/migration facility. The
parallel programming environment enables the programmer to decompose the
application problem into parallel subtasks. The parallel runtime support sys-
tem allows for the parallel execution of the parallel application system; and the
checkpoint/migration facility extends the runtime support system with func-
tionality necessary for dynamic load balancing.

The first two facilities are provided by the PVM system (Sunderam et al.
1994). The PVM system includes an application programming interface for
parallel program development and a runtime support system to allow for par-
allel execution of the application. The task checkpoint/migration functionality
extension must be integrated with the PVM runtime support. The choice to
use PVM as the basic parallel programming environment is motivated by the
free availability of the source code and the extendibility of the runtime support.
The application programming interface incorporates the dynamic addition and
deletion of hosts (resources) and processes.

These design constraints have motivated the development of Dynamic PVM
or DPVM for short (Dikken et al. 1994; Overeinder et al. 1996). The develop-
ment of DPVM is now continued in the Dynamite project (van Albada et al.
1999; Iskra et al. 2000). Dynamite is an acronym for Dynamic Task Migration
Environment, and currently supports PVM-based programs only. However, the
principles of Dynamite should be easily portable to MPI (MPI Forum 1998).
Both message passing environments are generally available on many different
platforms and allow for the extension of process migration into their libraries.
Although the checkpoint/migration design considerations are equal for PVM
and MPI, there are some differences in the implementation. PVM (as basis for
DPVM/Dynamite) is a message passing environment that also includes pro-
cess creation and termination, and other resource management functionalities
such as primitives for the allocation and deallocation of resources. The MPI-
1.1 definition however, does not include any hooks for resource management
functionalities required with process migration. This has to be included in
the MPI runtime support system, but must be transparent to the application
programmer. The MPI-2 definition includes process management, but no re-
source control as in PVM. MPI-2 assumes that resource control is provided
externally—probably by computer vendors, in the case of tightly coupled sys-
tems, or by a third party software package when the environment is a cluster
of workstations.

In the following discussion we briefly outline aspects of the PVM system
and present the design issues to incorporate checkpoint/migration facilities in
Dynamite.
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7.4.1 The PVM System
The PVM (Parallel Virtual Machine) system presents an integrated environ-
ment for heterogeneous concurrent computing on a network of workstations.
The computational model is process-based, that is, the unit of parallelism in
PVM is an independent sequential thread of control, called a task. A collection
of tasks constituting the parallel application, cooperate by explicitly sending
and receiving messages to one another. The support for heterogeneity permits
the exchange of any data type between machines having different data repre-
sentations.

The PVM system consists of two parts: a daemon, called pvmd, and a library
of PVM interface routines, the pvmlib. The PVM daemon and library enable a
uniform view of the network of workstations, called hosts in PVM, as a parallel
virtual machine.

Each host in the virtual machine is represented by a daemon that takes care
of task creation and dynamic (re-)configuration of the parallel virtual machine.
PVM tasks are assigned to the available hosts using a round-robin allocation
scheme. Once a task is started, it runs on the assigned host until completion,
i.e., the task is statically allocated.

The PVM library implements the application programming interface that
includes primitives for process creation and termination, host addition and
deletion, coordinating tasks, and message-passing primitives. The underly-
ing communication model can be classified as asynchronous message-passing,
where the messages are buffered at the receiving end. An important aspect of
the communication model is that the message order from each sender to each
receiver in the system is preserved. The PVM message-passing interface sup-
plies both point-to-point communication primitives and global communication

UDP

TCP

task a1

task c1

task b1

task b2

pvmd A

pvmd C

pvmd B

Figure 7.4: The PVM system composed of daemons and tasks.
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primitives based on dynamic process groups. To enable the use of heteroge-
neous host pools, messages can be encoded using an external data representa-
tion (see XDR (Sun Microsystems, Inc. 1987)).

A relevant issue in the context of the forthcoming discussion, is message
routing. PVM supports two routing mechanism for messages, namely indirect
and direct routing. By default, the messages exchanged between tasks are
indirectly routed via the PVM daemon. With indirect routing, a task sends
the messages first to the local PVM daemon. The local daemon determines
the host on which the destination task resides, and sends the message over
the User Datagram Protocol (UDP) transport-layer to the responsible daemon.
This daemon eventually delivers the message to the destination task. For ex-
ample in Fig. 7.4, an indirect path from task a1 to b2 goes via pvmd A and pvmd
B. Direct message routing allows a task to send messages to another task di-
rectly over a Transmission Control Protocol (TCP) link, without interference of
the PVM daemons and thereby enhancing communication performance (see for
example the TCP connection between tasks a1 and c1 in Fig. 7.4).

7.4.2 Design Aspects of Process Migration in Dynamite
Process migration (operating system level and user level) is realized by the
movement of an active process from one machine to another in a parallel or
distributed computing system. The process is suspended and detached from
its environment, its state and data (the checkpoint) transfered to the destina-
tion host, where it is restarted and attached to the destination environment.
The major requirement for providing a migration facility is transparency: the
execution of a process should proceed as if the migration never took place. In
parallel application systems like PVM applications, this transparency should
hold also for the migrated process’s communication partners. The application
programs then do not have to take into account for possible complications of
checkpointing and migration.

From the requirements defined above, it follows that Dynamite must in-
corporate a checkpoint/migration facility and location independent task iden-
tifiers, in order to support transparent process migration. The checkpoint/-
migration functionality in Dynamite is based on the ideas of the facility pro-
vided by the Condor system. Dynamite extended the checkpoint protocol to
safely checkpoint communicating parallel tasks without loss of messages. The
location independent task identifiers, or virtual task identifiers, guarantee a
unique name space for tasks independent of their location. Thus the same task
can be addressed with the same task identifier after migration. Compare the
virtual task identifiers with virtual memory addresses: the virtual memory ad-
dress can be mapped to different physical addresses during the execution of a
program.
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7.5 Implementation Aspects of the Dynamite
Environment

This section describes the extensions to PVM that are necessary to support
dynamic load balancing within the runtime support system. In order to im-
plement task migration, see Section 7.5.3, functionalities in the PVM daemon
pvmd and library pvmlib need to be enhanced with checkpoint/migration mech-
anisms.

It is essential to note that the intertask communication, viz., message rout-
ing by the pvmd, is strongly affected by the added functionality of task mi-
gration. Therefore, we need to develop a methodology to guarantee the trans-
parency and correctness of this intertask communication.

The extensions to the pvmd and pvmlib must not change the PVM program-
ming interface and semantics, such that source code portability is guaranteed.
The packet routing by the pvmd ensures migration transparency. With this
approach, any standard PVM application can be linked and executed with the
Dynamite system without a modification to the source code of this application,
thus hiding the complexity for the end-user.

7.5.1 The Scheduler
Although the scheduler is not considered an integral part of Dynamite, its role
and interface is mentioned here. In line with the top-down perspective of the
wide-area and local site scheduler, the Dynamite scheduler resides beneath
the local site scheduler. The local site resource manager is the authority that
allocates the resources for the Dynamite cluster. The Dynamite scheduler acts
as a resource manager within this Dynamite cluster, that is, it decides when
to migrate a task and to which host it is moved. In addition, the Dynamite
scheduler can request or relinquish resources in interaction with the the local
resource manager.

In this scenario, the Dynamite scheduler largely determines the efficacy of
the Dynamite system in its aim for load balancing. The development of good
algorithms or heuristics for load balancing is a study in itself and is beyond
the scope of this thesis. The current scheduler decides on (re-)allocation of pro-
cessors for tasks, based on gathered load information of the workstation pool.
The scheduler was developed in collaboration with the University of Paderborn
within the Dynamite project (van Albada et al. 1999).

The scheduler consists of two functional components: resource monitoring
and a migration decider. The resource monitors and migration decider are
implemented as normal PVM tasks. This approach makes the incorporation
of new scheduling strategies flexible and provides for a flexible experimental
platform for studying the effectivity of the different load balancing disciplines.
A consequence of implementing the scheduling components as PVM tasks, is
that an additional interface must be provided to enable the migration decider
to interact with the Dynamite system, in particular with the PVM daemons.
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To this end, the pvmlib is extended with an interface routine, pvm_move(tid,
host), that initiates the migration of task tid to the specified host host.

Resource Monitoring

The monitoring subsystem keeps track of the load on the hosts and the commu-
nication between the tasks. In order to make migration decisions, the following
information is administered:

• nominal capacity on each node (CPU, memory, disk space);

• current load on each node;

• required capacity for each task;

• network capacity for each task;

• communication pattern for each task.

Each of these items can be measured at execution time by the monitoring sub-
system, but we assume that node capacity and network properties are suffi-
ciently stable that they can best be specified beforehand by the system admin-
istrator (see Brune et al. (1997a) for further details).

Because of the assumed dynamic behavior of the application and the system
load, the other items need to be obtained by the monitoring subsystem. Infor-
mation about load and capacity must be collected from all nodes of the cluster,
also those where currently no task of the parallel application is running. This
is accomplished by running a small monitoring slave on each node (Fig 7.5).

The statistics obtained by the monitor slaves are sent to the monitor master
process that is not only responsible for maintaining the whole cluster statistics,
but also has to make migration decisions. The information on communication
patterns is obtained directly from the DPVM environment. Therefore, DPVM
has been enhanced by a message monitoring thread. This thread keeps track
of each message sent and received. These communication statistics are also
sent to the monitor master process.

Migration Decider

The migration decider is the main part of the scheduler thread that is executed
periodically by the monitor master process. Based on the monitored data, the
migration decider has to judge where and when to migrate a task from an
overloaded node. Additionally, the task to be moved causes some constraints on
the migration decision. Therefore, the master load monitor has to supply some
normalized values about the attributes CPU, memory, and disk swap space of
each node and additionally the available network capacity.

The increasing interest in distributed computing has lead to intensive sci-
entific research in load balancing schemes for distributed memory systems, see
for example Decker et al. (1998). Because not every load balancing scheme is
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Figure 7.5: Capacity and message monitoring.

applicable to every application, the migration decider has been designed in a
flexible manner to support a broad range of applications. For the first prototype
we have implemented a straightforward solution with a greedy-like algorithm
and a constraints list. The details of the algorithm are beyond the scope of the
thesis, and can be found in van Albada et al. (1999).

7.5.2 Consistent Checkpointing Through Critical Sections
To implement dynamic load balancing by task migration, the runtime support
system must be able to create an image of the running process, the so-called
checkpoint. A checkpoint of an active process consists of the state and data of
the process, together with some additional information to recreate the process.
To incorporate file I/O migration, the state vector also includes information
about open files together with their modes, file descriptors, etc.

A complication with checkpointing communicating PVM tasks, is that the
state of the process also includes the communication status of the socket con-
nections. Thus, to save the state of the process, the interprocess communication
must also be in a well-defined state. Since suspension of the related commu-
nicating task is not desirable, the task should not be communicating with an-
other task at the moment a checkpoint is created. To prohibit the creation of
process checkpoints during communication, we apply the notion of critical sec-
tions and embed all interprocess communication operations in such sections.
Checkpointing can only take place outside a critical section. When a check-
point signal arrives during the execution of a critical section, the checkpointing
is deferred.
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The checkpointing functionality is implemented in the dynamic loader, to
which the following changes have been made:

• it can handle a checkpoint signal (SIGUSR1);

• it can treat a checkpoint file just like any other executable;

• it wraps certain system and library calls:

– for open files (a.o., open, write, creat),

– for memory allocation (mmap, munmap, and mremap‡);

• cross-checkpoint data is stored separately.

When a checkpoint signal is sent to the process, control is passed to the
checkpoint handler. First of all the current signal status and the contents of the
processor registers are saved. Next, the name and location of the checkpoint
file is determined. The checkpoint file is placed in a directory which must
be accessible from all the nodes in the cluster. After saving the signal mask
and the status of open files, the checkpoint itself is created. Basically, the
checkpoint handler saves the address space of the process: the text segment,
the data segment, the stack, the dynamically allocated pages, and the shared
libraries used.

Restarting the checkpoint is realized by running the checkpoint binary.
When the binary is run, the dynamic loader is executed first. As soon as the
dynamic loader is finished, control is passed to the actual program. The Dy-
namite dynamic loader has some extra functionality included. One of the first
things this loader tries to locate is the special section containing the name of
the checkpoint file. If such a section is present, it knows that it is restoring form
a checkpoint, and specialized subroutines take care of a proper handling of the
process’ segments. The signal status and processor registers are restored, and
the process resumes its execution at the point where it was checkpointed.

The wrapped system calls enables the checkpointing/restoring facility to
deal with open files. Basically, these wrapper routines invoke the original
C-library calls, doing some extra administration, which allow the open file
connections to be restored properly. The system call mmap is wrapped as the
memory allocated by this system call must be restored too. This implies that
all the memory allocations done by mmap have to be monitored as well. The
cross-checkpoint storage is used to preserve data structures across a check-
point/restart, such as the mapping of the shared libraries used by the process
or the status of the open files.

7.5.3 The Migration Protocol
The main objective of the Dynamite migration facility is transparency of the
migration protocol, i.e., to allow for the movement of tasks without affecting

‡Linux specific.
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the operation of other tasks in the system. With respect to the individual task
selected for migration this implies transparent suspension and resumption of
execution: the task has no notion that it is migrated to another host, and the
communication can be delayed without failure, triggered by migration of one of
the tasks.

In the task migration protocol we distinguish four phases:

1. create new process context at destination host;

2. the new routing information is broadcasted;

3. disconnect task from its local pvmd and checkpoint task;

4. move task to its new host, and restart and reconnect the task to its new
pvmd.

The first step in the migration protocol is the creation of a new process
context at the destination host by sending a message to the pvmd representing
that host. A new PVM task context is created, so that the PVM daemon can
accept any messages addressed to the migrating task and temporarily store
them.

Next, all the PVM daemons but the source and the destination one are noti-
fied that a migration is about to take place. The daemons update their routing
information, so that messages sent via the daemons to the migrating task are
sent to the destination node, see also Section 7.5.4.

The checkpoint phase (the third step) is executed on the source node, i.e.,
the node the task runs on before the migration takes place. First, routing
information is updated, so that any messages sent to the migrating task via the
PVM daemon are forwarded to the destination node instead of being delivered
locally. Finally, the task finds out that it is to be migrated. A SIGUSR1 signal
is sent to the task by the PVM daemon. Control is passed to the checkpoint
signal handler in the Dynamite dynamic loader. However, before the actual
checkpointing takes place, the communication between this task and its PVM
daemon and the other tasks has to be flushed. The signal handler invokes a
DPVM function that reads all the available data from all the connections, closes
the task connections and sends the final TM_MIG migration message to the local
PVM daemon. Subsequently, the checkpoint handler creates the checkpoint file
and terminates the process.

In the final restart stage, executed on the destination node, the task is
restarted at the new location using the spawn_task function. In the process
of restarting the task from the checkpoint file, the dynamic loader invokes a
DPVM function that reconnects the restored task to the PVM daemon on the
destination node. Control is passed back to the application code, and the PVM
daemon can finally deliver all the messages addressed to the migrating task
which it had to store during the migration.
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7.5.4 Packet Routing and Direct Connections
In message passing environments like PVM, the process identifier or task iden-
tifier, task id for short, is a unique identifier which serves as the task’s address
and therefore may be distributed to other PVM tasks for communication pur-
poses. For this reason the task id must remain unchanged during the lifetime
of a task, even when the task is migrated.

Indirect Connections

By default, PVM tasks use indirect connections to communicate with each
other. In this mode, messages between tasks are routed through two PVM
daemons, local to the source and destination tasks. As a consequence, PVM
application tasks do not have any remote network connections open, their only
communication channel is with the daemon.

As the task ids must remain unchanged over migrations, this has implica-
tions for the packet routing of messages. The task id contains the host identifier
at which the task is enrolled and a task sequence number (local to the host).
This information is used by the PVM daemon to route packets to their destina-
tion, i.e., to the appropriate PVM daemon and task. When a task is migrated
to another host, this routing information is not correct anymore. Therefore,
an additional routing functionality must be incorporated in the PVM daemon
routing software in order to support the migration of tasks.

An important design constraint is that the routing facility must be highly
efficient and should not impose additional limitations on the scalability. This
is accomplished by maintaining in the PVM daemons the routing tables for
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Routing table

Routing table
b1 −> c1

pvmd C

pvmd A pvmd B

Figure 7.6: Routing tables keep track of the migrated tasks.
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migrated tasks, which contains the current locations of migrated tasks (see
Fig. 7.6). These routing tables are consulted for all inter-task communication.
Upon migration of a task, the routing table of the PVM daemons are updated
to reflect the change in location of the migrated task. How this is accomplished
was described in the previous section. Figure 7.6 depicts the migration of a
task attached to pvmd B and the subsequent routing table update.

Direct Connections

To improve efficiency, an alternative direct communication mode is available on
application request. In this mode, tasks that wish to communicate with each
other can establish a direct TCP/IP network connection between themselves.

Special care must be taken when migrating a task that has direct connec-
tions with other tasks, or else messages that are being processed or are cached
in the kernel buffers will be lost during the migration.

In the first two stages of the migration protocol, along with updating the
routing information, DPVM notifies all the PVM tasks that a migration is about
to take place. Because it is important that the tasks reply in a timely manner,
PVM daemons also send SIGURG signal along with the migration notification
messages. It is the responsibility of the asynchronously invoked signal handler
function to handle this message.

In the checkpoint stage, the checkpoint signal handler of the migrating task
sends an end-of-connection (TC_EOC) message via all the open direct connec-
tions. The remote tasks read all the data from the connection until they receive
TC_EOC, at which point they send the TC_EOC message back. The migrating
task reads all the data on its side of the connection, and closes the connec-
tion upon receipt of TC_EOC. As a result of the close on the migrating side, the
remote tasks receive EOF at this point, and can close the connection on their
side.

Any messages that were only partially sent by the migrating task are fully
resent after the task is restarted. Any messages that were partially sent by
the remote tasks are fully resent via PVM daemons, i.e., indirectly. The direct
connection is reestablished as soon as the migrating task restarts and there
are new messages to be sent.

7.6 Performance Evaluation
Originally, DPVM was developed on a network of IBM AIX/32 machines
(Dikken et al. 1994). Further development of DPVM and later Dynamite
has been accomplished on Sun workstations operating under SunOS4 and So-
laris (Vesseur et al. 1995), and PC’s running Linux. Dynamite currently sup-
ports applications written for PVM 3.3.x, running under Solaris/UltraSPARC
2.5.1 and 2.6 and Linux/i386 2.0 and 2.2 (Iskra et al. 2000). From the user’s
perspective, all that is needed is to relink the application with Dynamite’s ver-
sion of the PVM libraries and with the Dynamite dynamic loader.
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The stability of the Dynamite environment has been assessed by a series
of tests under Solaris and Linux. Dynamite has been used to make over 2500
successful migrations of large processes (over 20 MB of memory image size) of
a commercial PVM application PAM-CRASH (Clinckemaillie et al. 1997) using
direct connections, after which the application finished normally.

The performance evaluation of Dynamite is accomplished by four different
experiments: (i) communication performance evaluation, (ii) migration over-
head evaluation, (iii) evaluation by the NAS Parallel Benchmark (NPB) suite,
and (iv) the GRAIL simulation application. The focus of the first two experi-
ments is on the increased overhead of Dynamite compared to standard PVM.
The third series of experiments explores the efficacy of the Dynamite environ-
ment (including scheduler) for a number of parallel benchmark kernels with
different computation and communication behavior. The last experiment mea-
sures the performance of Dynamite for a large scientific finite-element model
simulation, called GRAIL (de Ronde et al. 1997b).

7.6.1 Measuring DPVM Communication Overhead
The basic communication properties of a message-passing system, such as la-
tency time and throughput bandwidth, can be measured by the well-known
ping-pong experiment. With the ping-pong experiment, series of messages of
different sizes are sent between two tasks. The initiating task sends a mes-
sage to the second task, the second task receives the message into a buffer, and
immediately returns it to the initiating task. Half the time of this message
ping-pong is recorded as the time t to send a message of length n.

The ping-pong experiments are performed for both the standard PVM im-
plementation as well as the DPVM implementation, with message size ranging
from 1 byte to 100 KB. The experimental results obtained for Solaris and Linux
are presented in Fig. 7.7 and Table 7.1. The Solaris network consists of Sun
Ultra 5/10 workstations interconnected by switched 100 Mb/s Fast Ethernet.
The Linux cluster is equipped with Pentium Pro 200 MHz nodes and is also
interconnected by switched 100 Mb/s Fast Ethernet.

From Fig. 7.7, we can see that in all cases DPVM has (little) increased com-
munication costs. This stems from two factors:

• signal blocking/unblocking on entry and exit from PVM functions (func-
tion call overhead);

• extra header in message fragments (communication overhead).

The first factor adds a fixed amount of time for every PVM communication call,
whereas the second one increases the communication time by a constant per-
centage. For small message sizes, the signal blocking/unblocking factor domi-
nates over the extra header information factor, since there is little communi-
cation and the message is not fragmented into multiple packets. The DPVM
overhead for 1 byte messages ranges from 25% for direct communication under
Linux to 4% for indirect communication under Solaris. Although the DPVM
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(a) Performance results for Solaris.
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(b) Performance results for Linux.

Figure 7.7: Communication performance of PVM and DPVM for Solaris and
Linux.

direct communication overhead is significant, we must point out that it rep-
resents the worst-case scenario, as the relatively fast direct communication is
hurdled by a fixed signal blocking/unblocking overhead, resulting in a large
overhead percentage.

As the message size increases, the overhead of extra message header infor-
mation in message fragments becomes more dominant. The DPVM overhead
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PVM DVPM
latency throughput latency throughput
(msec) (MB/s) (msec) (MB/s)

Solaris
indirect 1.57 1.64 1.63 1.61
direct 0.59 4.01 0.66 3.77

Linux
indirect 1.01 1.73 1.15 1.67
direct 0.42 3.42 0.52 3.30

Table 7.1: Latency and throughput performance of PVM and DPVM for Solaris
and Linux.

for 100 KB messages eventually becomes 2% for indirect communication and
8% for direct communication under Solaris, and is 4% for both direct and indi-
rect communication under Linux. The extra message header overhead can be
tuned by changing the PVM/DPVM message fragment size. By increasing the
packet size, a smaller number of fragments are necessary per message sent.
However, the overhead for small messages increases, as the packets sent be-
tween the tasks will be largely empty.

7.6.2 Checkpoint and Migration Overhead
The checkpoint and migration experiments measure the DPVM load balance
overhead for various process sizes. A simple ping-pong type program commu-
nicating once a few seconds via direct connection was used, process size was
set with a single large malloc call. The experiments measure the executing
time of each of the four migration stages (see Section 7.5.3). The average re-
sults over five experiments for Solaris and Linux are shown in Fig. 7.8. The
standard deviation σ is smaller than 10%.

The results from the experiments show that the major part of the load bal-
ancing overhead is due to checkpointing and restarting. The migration protocol
and connection flushing amount together to approximately 0.01–0.03 seconds,
and are not depicted in Fig. 7.8. The checkpoint and restart times are limited
by the speed of the shared file system. On the two platforms used, the So-
laris network and Linux cluster, the bandwidth of the NFS system is 4–5 MB/s
over the 100 Mb/s network. From the figure we can see that the checkpoint
times under Solaris and Linux approximately increase linearly with process
size. However, the restoring phase in Linux takes more or less a constant
amount of time, while it grows with the process size under Solaris.

The difference in restore times between Solaris and Linux is due to differ-
ences in the implemented memory allocation strategy in malloc. For large
memory allocations, Linux creates a new memory segment (separate from the
heap) using mmap, whereas Solaris always allocates from the heap with sbrk.
When restoring, the head and stack are restored with read (see Section 7.5.3),
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(a) Checkpoint and migration performance for Solaris.
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(b) Checkpoint and migration performance for Linux.

Figure 7.8: Checkpoint and migration performance of DPVM.

which forces an immediate data transfer. However, for the other segments the
Linux implementation takes advantage of mmap, which uses a more advanced
page on demand technique, delaying network transfer until the data is actu-
ally needed. Since the allocated memory region is not needed to reconnect to
the PVM daemon, the time it takes to restart the task is constant under Linux.
Clearly, delays may be incurred later, when the mmapped memory is accessed
and loaded.
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7.6.3 NAS Parallel Benchmarks
The NAS Parallel Benchmarks (NPB)§ is a suite of applications used by the Nu-
merical Aerodynamic Simulation (NAS) Program at NASA for the performance
analysis of parallel computers. The benchmark suite consists of five “kernels”
and three simulated applications which mimic the computational behavior of
large scale computational fluid dynamics applications. A unique property of
the NPB is that the applications are specified algorithmically. The implemen-
tation of the NPB kernels used in the experiments with DPVM are described
in White et al. (1995).

The characteristic behavior of the NBP kernels used in the performance
analysis of PVM and DPVM are:

CG The communication patterns in the conjugate gradient kernel are long-
distance and unstructured.

EP The embarrassingly parallel kernel is based on a trivial partitionable prob-
lem requiring little or no communication between processors.

FT In the 3-D Fast Fourier Transformation, the communication patters are
structured and long distance.

IS Integer sort performs rankings of equally distributed integer keys; the com-
munication is frequent and relatively low-volume, and the pattern of com-
munication is a fully connected graph.

MG The 3-D multigrid solver is characterized by highly structured short- and
long-distance communication patterns.

The NPB experiments are performed on eight nodes of the DAS Linux clus-
ter (Pentium Pro 200 MHz and 100 MB/s Fast Ethernet). The nodes are ex-
clusively reserved for the experiments. The NPB kernels are configured to
use four computation tasks each, running for approximately 30 minutes in the
optimal situation without background load. The number of available nodes ex-
ceeds the number of tasks of the NPB kernel. Thus, during the execution of the
benchmarks some of the nodes are idle, which allows the Dynamite scheduler
to migrate PVM tasks from overloaded nodes to idle nodes.

The NPB kernels are executed and timed for three situations: (i) no back-
ground load, (ii) with background load, and (iii) with background load and
Dynamite scheduling and migration. Without background load, the compute
nodes are fully dedicated to the NPB kernels, and the timings are used as a
reference performance. The external background load is generated by running
a single computationally intensive process for five minutes on each node used
by the benchmark kernel. In this way, one node at a time is overloaded using
a round-robin schedule. The performance results of the NPB kernels for the
three situations are shown in Table 7.2.

§http://www.nas.nasa.gov/NAS/NPB/
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no load ckpt. migra-
load no Dynamite Dynamite size tions

CG 1795 3352 (+87%) 2226 (+24%) 19 MB 8
EP 1620 1919 (+18%) 1773 (+9%) 14 MB 6
FT 1859 2693 (+45%) 2237 (+20%) 31 MB 8
IS 1511 1688 (+12%) 1758 (+16%) 41 MB 9
MG 1756 2466 (+40%) 1863 (+6%) 17 MB 6

Table 7.2: Execution times of the NAS Parallel Benchmarks (in seconds).

The performance results in Table 7.2 show that the execution times with
background load increase for both situations, whether with or without Dyna-
mite. However, the performance results with Dynamite scheduling and mi-
gration significantly improve with respect to the results without Dynamite,
reducing the percentage of slowdown by a factor two to six. One notable excep-
tion is the IS kernel, for which Dynamite scheduling and migration diminishes
the performance results compared to the results without Dynamite. The rel-
ative difference in slowdown percentages of the NPB kernels depends on the
computation and communication characteristics of the respective benchmark
kernel.

Figure 7.9 presents the execution progress of three NPB kernels: conjugate
gradient, embarrassing parallel, and integer sort. These three benchmarks
each show different computation and communication characteristics, resulting
in significant different performance slowdown figures. The figures show the
data for one of the tasks of the parallel benchmark. The left column presents
the time spent on executing each individual step (ideally, this should be con-
stant), whereas the right column presents the accumulative execution time.

The results for the CG kernel are shown in Fig 7.9(a). The execution of the
CG benchmark slows down 87% when subjected to external background load.
The considerable slowdown indicates that a substantial amount of execution
time must be spent on computation, thus the CG kernel and the external back-
ground load compete for computing resources (CPU time). Furthermore, the
communication pattern of the benchmark (loosely synchronous, global commu-
nication) forces all the other process to wait for the one lagging behind. The
computational intensiveness and the loosely synchronous global communica-
tion pattern of the CG kernel makes that the overall performance of the bench-
mark severely drops. The scheduling capability in Dynamite is able to migrate
the CG task from an overloaded to an idle processor; see also the short periods
of increased execution time in the left figure of Fig 7.9(a), while the results
without Dynamite show constantly increased execution time per step.

The performance results for the EP kernel in Fig 7.9(b) show a different
picture. The “embarrassingly parallel” benchmark is based on trivial parti-
tionability of the problem, while incurring no data or functional dependencies,
and requiring little or no communication between processors. The external
background load significantly hampers the performance of the affected task,
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(a) Conjugate gradient (CG) kernel.
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(b) Embarrassing parallel (EP) kernel.
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(c) Integer sort (IS) kernel.

Figure 7.9: Execution progress of NAS parallel benchmarks: the time to exe-
cute one step (left) and the accumulative time (right).

but has almost no influence on the other tasks (the execution times per step co-
incidence for the “no load” and “load” figures in Fig. 7.9(b) where other tasks of
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the benchmark are affected by the external background load). The gain of Dy-
namite scheduling is limited, as the overall performance of the EP benchmark
is only partially determined by the individual tasks.

The IS benchmark is in particular a communication intensive application.
In Fig. 7.9(c), we see that the IS performance is only slightly affected by the
external background load, as most of the execution time is spent on communi-
cation: frequent and in large-volume. The pattern of communication is a fully
connected graph. The performance of Dynamite is slightly worse than the re-
sults without any scheduling and migration. Although the migration decisions
of Dynamite’s scheduler are not unreasonable, there is little performance gain
that fails to exceed the migration costs, which is rather high in the IS bench-
mark because of large process size (41 MB).

The large process size of the FT kernel (31 MB) also limits the attainable
performance of Dynamite over no scheduling and migration. The slowdown
reduction from 45% to 20% would be significant larger if the processes to be
migrated were smaller.

7.6.4 The GRAIL Finite-Element Model Simulation
The GRAIL simulation application is a finite element model of a gravita-
tional radiation antenna (de Ronde et al. 1997a). The finite element model
is parallelized by decomposition of a finite-element mesh. The parallel finite-
element simulation is time-driven, using loosely synchronous communication
to exchange the subdomain boundaries between the neighbors. The computa-
tion/communication behavior of the GRAIL simulation kernel is characterized
as computational intensive with regular communication patterns of large mes-
sages.

A series of GRAIL simulation experiments is executed on the DAS clus-
ter to evaluate the effectiveness of Dynamite for a real-world large scientific
simulation application. The series of experiments is carried out without ex-
ternal background load for PVM, DPVM, and DPVM with scheduler; and with
external background load for DPVM and DPVM with scheduler. The parallel
simulation consists of 3 tasks running on 4 nodes. The checkpoint size of the
GRAIL tasks is 8.5 MB. The results of the experiments are presented in Ta-
ble 7.3. The individual results are the average over three experiments, with
standard deviation σ smaller than 10%.

parallel environment exec. time
1 PVM 1854
2 DPVM 1880
3 DPVM + sched. 1914
4 DPVM + load 3286
5 DPVM + sched. + load 2564

Table 7.3: Execution time of the GRAIL application (in seconds).
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The first three rows in Table 7.3 show the increased costs of DPVM and
DPVM with scheduler over PVM, if there is no external background load. The
execution time increased with 1.5% for DPVM, and is accounted to the crit-
ical section locking and the extra communication overhead that is necessary
for transparent message routing to migrated tasks. On top of this overhead,
DPVM with scheduler and monitoring, i.e, the complete Dynamite environ-
ment, accounts for another 2% overhead. As there is no migration of the tasks,
this 2% overhead is interpreted as the monitoring overhead.

The fourth and fifth set of experiments include an artificial, external back-
ground load. The external background load is a single, CPU-intensive process
that runs for 600 seconds on each node in turn, using a round-robin schedule.
In the fourth set, the monitoring and scheduling subsystem is not running, and
DPVM does not migrate tasks from overloaded nodes. A considerable slowdown
of 75% over DPVM without background load is observed. The computational
intensive GRAIL simulation is fairly sensitive to the presence of external back-
ground load. Furthermore, the loosely synchronous communication between
the simulation tasks results in an overall performance of the GRAIL simula-
tion that suffers from the background load, and results in the significant slow-
down. The fifth set of experiments combines the external background load with
monitoring and scheduling; thus the complete Dynamite environment, includ-
ing the presence of external background load. The results in Table 7.3 show
that Dynamite manages to reduce the slowdown percentage from 75% to 34%.
This remaining 34% slowdown is contributed to the following factors:

• the delay before the monitor notices increase in load on the node, and to
make the migration decision;

• the non-zero costs of the migration; and

• the master task, which is started directly from the shell, cannot be mi-
grated; when the round-robin schedule of the external background load
skips the node with the master task, the slowdown decreases further by
10%.

Figure 7.10 depicts the execution progress of the GRAIL simulation for
three sets of experiments: (i) PVM, (ii) DPVM with background load, and (iii)
DPVM with monitor and scheduler, and background load. The figure shows
the progress in iterations of the GRAIL simulation versus the execution time.
The performance figure for PVM is a straight line with the largest angle. The
other two lines are the performance figures for DPVM with background load,
with and without scheduling, and show some discontinuities due to background
load and task migration. Initially, the progress of both experiments is slower
than the PVM experiment—as the load is initially applied to the node with the
master task, no migrations take place. After approximately 600 seconds, the
background load moves to another node. Subsequently, in the case where the
monitoring and scheduling subsystem runs, the scheduler migrates the appli-
cation task from the overloaded node, and the progress improves significantly,
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Figure 7.10: Execution progress of GRAIL for three cases. Note that the plain
PVM run was made without an external background load, whereas both DPVM
runs were done with such a background load.

coming close to the performance of PVM without any background load (perfor-
mance line of DPVM with scheduling shows same angle). For the experiment
with DPVM without the monitoring and scheduling subsystem running, there
is no observable change in the performance at this point. However, DPVM
without scheduler does improve between 1800 and 2400 seconds from the start,
that is when the idle node is overloaded. After 2400 seconds from the start, the
node with the master task is overloaded again, so the performance deteriorates
in both DPVM cases.

Figure 7.11 shows two typical Dynamite execution runs of the GRAIL simu-
lation in a heterogeneous environment. The execution time of both simulation
runs is approximately 1:15 hours. The two figures depict the CPU percent-
age (the CPU time divided by the elapsed time) of the DPVM tasks during
the GRAIL simulation. The results are taken from simulation runs with four
tasks on a network of workstations (Solaris/UltraSPARC). The host pool con-
sists of ten workstations with different relative speed¶, varying from 500, 900,
1000, to 1150. One can see from the figures that for most of the time, the four
tasks are assigned different CPU percentages. As the GRAIL simulation has a
loosely synchronous communication pattern, the tasks on the fastest worksta-
tion experience longer idle times than tasks on the slower workstations. This
translates to lower CPU percentages for the tasks on the faster workstations,
and vice versa.

The external background load consists of two components. First, the regular
background load generated by other users working at their workstations. Sec-

¶The relative speed is determined by running a small computation kernel.
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Figure 7.11: Two typical DPVM execution runs of the GRAIL simulation with
four tasks and a host pool of ten processors. The relative speed of the processors
in the host pool varies from 500, 900, 1000, to 1150. The migrations are denoted
by the vertical lines.

ond, there is an artificial background load imposed on each workstation in turn
for 300 seconds, in a round-robin schedule. These external background load fac-
tors bring about the large fluctuations in the CPU percentage in Fig. 7.11. But
even in the ideal situation without background load, we observe fluctuations
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in the GRAIL simulation progress due to the heterogeneity of the workstation
pool. By this heterogeneity, it is difficult to interpret the figures directly. The
scheduler relates the relative speed of the processor with the measured CPU
percentage. In this way the scheduler is successful in making sensible mi-
gration decisions. The migrations are denoted by vertical lines in the figures.
During the GRAIL simulation run in Fig 7.11(a), there were 11 migrations.
The first migration was almost at the start of the execution. The second mi-
gration around iteration 1900 in Fig 7.11(a) is more prominent. It demarcates
the migration of task 2 from the overloaded node to an lightly loaded node,
resulting in a significant overall performance improvement. The concerning
node was overloaded two minutes before the scheduler made the decision to
migrate task 2 (see the period of reduced performance in Fig 7.11(a). A simi-
lar situation appears just before the third migration, where task 3 is migrated.
Here however, task 3 is moved from a relative fast, overloaded workstation to a
moderate fast, slightly loaded workstation, so there is less global performance
impact. Other migrations with a global performance impact are migrations
five, seven, eight, nine, and eleven. Figure 7.11(b) gives a similar impression
of the GRAIL simulation execution. Although twelve migration are shown in
the figure, actually fifteen migrations are made. Three of the migrations were
double migrations, where two tasks were migrated at the same time (namely
migrations one, five, and twelve).

7.7 Summary and Discussion
The Dynamite environment provides a robust framework for load balancing,
where the runtime support system migrates tasks from a parallel program
when necessary. The overhead incorporated with dynamic load balancing is
small compared to the possible costs of load imbalance. Experiments show
a slight performance penalty in a well-balanced system (less than 5%), but
significant performance gains can be obtained for task migration in an unbal-
anced system. The communication and checkpoint overhead experiments in
Sections 7.6.1 and 7.6.2 indicate that the Dynamite system provides efficient
task migration support. The experiments in a controlled highly dynamic clus-
ter environment (see Sections 7.6.3 and 7.6.4) exposes the ability of Dynamite
to react to changes in the cluster environment and reduce the turnaround time
of the applications. The eventual success of Dynamite depends on the schedul-
ing strategy.

The concept of implementing the checkpoint/restart facilities in the dynamic
loader and using it to migrate PVM tasks has been proven to work in practice.
The architecture of Dynamite is modular so that it can easily be adapted to
specific application requirements. For example, it is possible to use just the
dynamic loader of Dynamite and get checkpoint/restart facilities for sequen-
tial jobs that do not use PVM. Also, in the development phase this modular-
ity is used for experimentation with various migration policies. It is even not
required to use the Dynamite monitor/scheduler: the user can migrate tasks
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manually from the PVM console (using the new move command) or from cus-
tom programs (using the new pvm_move function call).

The future development of Dynamite aims to provide a complete integrated
solution for dynamic load balancing of parallel jobs on networks of worksta-
tions or clusters. To realize such an environment, a number of enhancements
have to be included, such as support for MPI and generic support for the mi-
gration of TCP/IP sockets. The need for MPI support is motivated by the large
user base, whereas support for migration of TCP/IP sockets is motivated by
the potential large application base. With support for the migration of TCP/IP
sockets, a large number of parallel applications, either developed with PVM,
MPI, or another parallel programming environment based on TCP/IP commu-
nication, can benefit from the virtues of dynamic load balancing by task migra-
tion. Besides message-passing parallel programs, support for shared-memory
parallel programs is projected. The definition of the OpenMP standard (Dagum
and Menon 1998) for shared-memory parallel programs allows for an excellent
opportunity to include support for dynamic task migration of shared-memory
parallel programs in Dynamite.

Another research line is the integration of Dynamite into the Polder meta-
computer. The key issue in the integration is the interplay of the Dynamite
scheduler with the local resource manager. The design and implementation of
more advanced scheduling strategies will be directed by experimental valida-
tion of the strategies in the resource management simulation model, which is
developed within the Polder metacomputer framework (Santoso et al. 2000).
The DAS distributed supercomputer provides an excellent experimental plat-
form to implement and validate different the designs of components in the
Polder metacomputer. The DAS architecture with high speed local-area and
wide-area network, grasps the characteristics of the prototypical metacom-
puter of the near future. In this respect, the various issues in wide-area
scheduling and local site scheduling have to be included in the DAS resource
management.

Finally, the application of Dynamite as a runtime support system for the
APSIS Time Warp simulation environment is a challenging research topic. The
dynamic computational requirements of the optimistic Time Warp simulation
protocol seems to perfectly match the ability of Dynamite to dynamically re-
balance the computational load over the processors. However, there are some
different considerations for optimistic Time Warp simulations than for parallel
applications in general. First, the notion of progress or useful work in op-
timistic simulation is not easily translated to CPU percentage. Consider for
example a simulation process that inhibits trashing behavior, i.e., spends more
time on protocol overhead than on forward simulation. Such a process can have
a high CPU percentage, while the amount of progress is almost zero. Thus the
monitor/scheduler subsystem must be provided with the internal Time Warp
kernel statistics such as event rate, rollback rate, and committed event rate.
Another consideration is the simulation class that can benefit from dynamic
load balancing on a network of workstations. The potentially advantageous
simulation application has irregular internal workloads and is an instance of a
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class of applications that are self-initiated (Nicol 1991). In this self-initiated ap-
plication class, the simulation processes typically schedule most of their events
to themselves, which leads to relatively few remote messages making this class
of applications well suited for networks of workstations, which are known to
have high communication overheads.



Chapter 8

Summary and Conclusions

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked. “Begin at the beginning,” the King said gravely, “and
go on till you come to the end: then stop.”

—Lewis Carroll

The increasing understanding of the complexity of the world around us, both in
natural sciences and computer science, necessitates realistic models reflecting
the complexity of systems under study. The realistic models, and consequently
more complex and larger simulations, require vast amounts of execution time.
We are particular interested in real-world and theoretical systems that are
characterized by heterogeneous spatial and temporal behavior. Systems with
this behavior are very common in, for example, population dynamics, immunol-
ogy, statistical physics, and in computer science. The heterogeneous spatial
and temporal behavior is most exactly mapped to asynchronous models.

Experimentation with complex simulations and interpretation of vast
amounts of generated data is a challenging endeavor. In this respect, virtual
environments that integrate the visualization of data and the interaction with
the simulation are becoming more and more important. Consider for example
a virtual laboratory where scientists interact with a simulation in a virtual
environment (such as a CAVE Automatic Virtual Environment). As the sci-
entist interactively makes changes to the model or to the parameters of the
model, the running simulation must be stopped or even rolled back to a previ-
ous state, such that the changes can be sustained. Furthermore, support for
combined continuous simulation and discrete event simulation is necessary, as
applications used in virtual environments can be of both types.

The combination of complex simulations, asynchronous execution mecha-
nisms, and virtual environments, cumulates in large applications that require
sufficient computational power to allow for interactive experimentation with
the simulation model. Such high performance computing demands cannot be
easily fulfilled by a single supercomputer (also not by the distributed nature of
the virtual laboratory application). Distributed and parallel computing tech-
niques are a viable solution to the virtual laboratory application, where the
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aggregated computing resources are bundled to provide a high performance
computing platform.

In our endeavor to distributed and parallel computing, we exploit the lo-
cality of data and processing by event scheduling methods from parallel dis-
crete event simulation. The overall balance of workload over the distributed
and parallel processing nodes is accomplished by the Dynamite dynamic pro-
cess migration environment. The combined parallel scheduling of simulation
events and the load balance of computational work over the processing nodes
is a very complex task. In this thesis, we have approached the two (sub-) prob-
lems independently, but generically as both components must be integrated in
one environment.

The design and implementation of a simulation environment for parallel
discrete event simulation resulted in the APSIS system. The core of APSIS is
the Time Warp optimistic simulation kernel. Central issues in the design were
the efficient support for large, data-intensive scientific simulations with dy-
namic behavior. Data-intensive simulations put efficient memory management
requirements to the Time Warp simulation kernel. The Time Warp method
must regularly checkpoint the simulation state in order to recover from erro-
neous, optimistic processing of simulation events. We proposed, implemented,
and validated an incremental state saving mechanism that only saves the
changes to the state, instead of the complete state vector. The dynamic behav-
ior of the system asks for the scheduling and retraction of simulation events.
Event retraction is originally not included in the Time Warp method, but is
included in the APSIS environment.

The APSIS environment is complemented with the APSE parallelism anal-
ysis methodology. The effectiveness and dynamic behavior of the Time Warp
method is extensively evaluated using a prototypical application from statis-
tical physics, namely the Ising spin system. The APSE parallelism analysis
and the performance experiments with the Ising spin simulation show that
the APSIS environment can efficiently schedule the events over the parallel
processors.

The experiments with the Ising spin simulation showed also the need for
optimism control. In general, Time Warp is quite robust, i.e., performs fairly
well without specific adaptations to the simulation application. However, un-
expected long turnaround times are observed near the phase transition (or crit-
ical phase) in the Ising spin system due to an increase in length and frequency
of cascaded rollbacks. The length and frequency of cascaded rollbacks can be
bounded by limiting the optimism in the Time Warp method, which is shown
by the experiments. The non-trivial interference between application and Time
Warp method is conjectured to show self-organized critical behavior. Here the
computational complexity of the Time Warp method and the physical complex-
ity of the application are entangled and contribute both to turnaround time
and rollback behavior in a non-linear way.

The Dynamite environment incorporates our ideas on dynamic load balanc-
ing of computational work over the distributed and parallel processing nodes.
We have realized a runtime support system for dynamic load balancing of par-
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allel programs by supporting task migration in the PVM system. To allow for
task migration of parallel running tasks, a number of issues had to be taken
care of: consistent checkpointing, a migration protocol, and packet routing. To
implement dynamic load balancing by task migration, the runtime support sys-
tem must be able to create an image of the running process, the so-called check-
point. A complicating factor with checkpointing communicating PVM tasks, is
that the state of the process also includes the communication status. To pro-
hibit the creation of process checkpoints during communication, we apply the
notion of critical sections and embed all interprocess communication operations
in such sections. A transparent migration protocol allows for the movement of
tasks without affecting the operation of other tasks in the system. To provide
transparent and correct message routing with migrating tasks, the task iden-
tifiers must be made location independent. This imposes additional require-
ments on the runtime support system in order to route the messages to their
correct destination.

The dynamic load balancing facilities of the Dynamite environment are val-
idated on a cluster of workstations. The ability of the Dynamite environment
to adapt to dynamically changing environments is assessed by a number of
NAS Parallel Benchmark kernels and two large finite element simulation runs
(typically time-driven simulations). One of the finite element simulation mod-
els is GRAIL: a large antenna for the detection of gravitational waves. Other
finite element simulation experiments are realized with PAMCRASH, a finite
element package to evaluate safety issues in car crashes. The results from
the experiments showed the potential of Dynamite to dynamically balance the
computational load over the parallel or distributed processors.

Future research directions for the APSIS environment include further develop-
ment of efficient memory management strategies, such as hybrid state saving
where copy state saving and incremental state saving techniques are combined
and adaptively engaged according to the behavior of the application. Another
important feature that is prominent on our wish list is adaptive optimism con-
trol. The strategy to approach adaptive optimism control is still an open re-
search question. The difference in predictive quality of computational inten-
sive and complex statistical methods, and fast and simple statistical methods
to control the optimism in Time Warp, does not give a marked off advantage to
complex methods. Also the influence of self-organized critical behavior in opti-
mistic simulation has to be studied in relation to optimism control, and might
lead to new insights.

One of the future developments in Dynamite is the support of task migra-
tion for MPI. This work will be a collaboration with Mississippi State Uni-
versity and incorporates their work on Hector. Furthermore, global resource
management strategy research will be conducted in context with the Polder
metacomputer.

Finally, and maybe in the context of this thesis most important, the Dy-
namite environment will be used as a runtime support system for the APSIS
simulation environment. The main research issue for Dynamite with APSIS is
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the study of load balancing strategies for optimistic parallel simulations. In op-
timistic parallel simulation there is a difference between computational work
or load, and the notion of progress. For example, event rollback is computa-
tional work but there is no progress of the simulation. The essential question
is to find a compact set of system and Time Warp parameters, and an effective
strategy to balance the parallel simulation.
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Simuleren is een alledaagse activiteit die de laatste decennia niet meer weg te
denken is in onze maatschappij. Simuleren omvat een scala van activiteiten
dat gericht is op het verkrijgen van meer inzicht in het systeem dat onder-
werp van studie is. Het bestudeerde systeem kan variëren van de aerodyna-
mische eigenschappen van een vliegtuig in ontwikkeling, tot de eigenaardig-
heden van de dynamica van een proteïne die zich opvouwt in een complexe,
drie-dimensionale structuur. Of het bestudeerde systeem is een organisatie of
gemeenschap, zoals bijvoorbeeld efficiënt voorraadbeheer van een bedrijf, of de
verspreiding van HIV en hepatitis C bij injecterende drugsgebruikers.

Alhoewel de onderzoekdisciplines verschillen, blijft de aanpak van een si-
mulatiestudie min of meer identiek. Een model van een bestaand of theoretisch
fysisch systeem wordt ontworpen, experimenten met het model worden uitge-
voerd, en de resultaten van de experimenten worden geanalyseerd. Modellen
van een fysisch systeem komen voor in alle mogelijke vormen: het meest exacte
model is het fysisch systeem zelf, een in grootte geschaald model van het fysisch
systeem, of een abstract model beschreven door middel van wiskunde of een for-
mele logische taal. In het algemeen, worden abstracte modellen gerealiseerd
in computerprogramma’s, ook wel computersimulaties genoemd, zodat de ex-
perimenten met het abstracte model uitgevoerd kunnen worden op computers.
Het onderwerp van dit proefschrift is computersimulatie en in het bijzonder de
efficiënte computersimulatie van systemen, die gekarakteriseerd worden door
een heterogeen spatiëel en temporeel gedrag, hetgeen betekent dat veranderin-
gen in het systeem op wisselende plaatsen en op variërende tijden plaats vin-
den. Systemen met dit gedrag komen algemeen voor in, bijvoorbeeld, populatie
dynamica, immunologie, statistische natuurkunde, en informatica. Systemen
met heterogeen spatiëel en temporeel gedrag worden het meest nauwkeurig op
zogenaamde asynchrone modellen afgebeeld.

Experimenteren met complexe simulaties en de interpretatie van grote hoe-
veelheden gegenereerde data is een uitdagende onderneming. In dit opzicht
worden virtuele omgevingen, die de visualisatie van data en de interactie met
de computersimulatie integreren, steeds belangrijker. Een goed voorbeeld is
een virtueel laboratorium, waar wetenschappers interactief met een simulatie
experimenteren. Als de wetenschappers een wijziging in het simulatiemodel
aanbrengen, moet de computersimulatie stop gezet worden, of zelfs terugge-
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bracht worden naar een situatie in het (simulatie-) verleden, zodat de wijzigin-
gen doorgevoerd kunnen worden.

De combinatie van complexe simulaties, asynchrone modellen en virtuele
omgevingen resulteert in grote applicaties, die voldoende computercapaciteit
eisen om interactieve experimentatie mogelijk te maken. Dergelijke vereisten
zijn zelfs met de snelste supercomputers niet eenvoudig te realiseren (ook niet
door het gedistribueerde karakter van de virtuele laboratorium toepassing).
Gedistribueerde en parallelle oplossingsmethoden zijn een passend alternatief
voor de virtuele laboratorium toepassing, waar de verzamelde computercapa-
citeiten gebundeld worden om de benodigde prestatie te leveren.

In onze studie naar gedistribueerde en parallelle oplossingsmethoden, ex-
ploiteren we de lokaliteit van data en verwerking van gebeurtenissen met be-
hulp van technieken uit parallelle discrete event simulatie. De verdeling van
werk over de gedistribueerde computers wordt gecoördineerd door het Dyna-
mite executiesysteem. De gecombineerde parallelle verwerking van simulatie-
gebeurtenissen en de verdeling van werk over de gedistribueerde computers is
een zeer complexe taak. Daarom zijn de twee (sub-) problemen onafhankelijk
van elkaar bestudeerd, maar wel zodanig dat beide componenten geïntegreerd
kunnen worden in een omgeving.

Het ontwerp en implementatie van een simulatie-omgeving voor parallelle
discrete event simulatie heeft geresulteerd in het APSIS systeem, beschreven
in Hoofstuk 3. De kern van APSIS is het Time Warp optimistische simulatie-
mechanisme. De belangrijkste verantwoordelijkheid van een simulatiemecha-
nisme is de handhaving van causaliteit, d.i. oorzaak en gevolg. Op een sequen-
tiële computer is dit redelijk eenvoudig te realiseren door de gebeurtenissen in
de simulatie op toenemende simulatietijd te sorteren en steeds de gebeurtenis
met de eerste simulatietijd te selecteren (de voorste in de rij van gesorteerde
gebeurtenissen). Met de parallelle executie van asynchrone simulatiemodel-
len ligt dit anders. Hier worden gelijktijdig meerdere gebeurtenissen verwerkt
door verschillende computers. Het bijhouden van één gesorteerde lijst met ge-
beurtenissen is niet effectief voor de klasse van asynchrone simulatiemodellen:
de parallelle processoren zouden het merendeel van de tijd op elkaar moeten
wachten eer zij een gebeurtenis kunnen verwerken. Bij de parallelle executie
van asynchrone simulatiemodellen wordt de lijst met simulatiegebeurtenissen
over de computers verspreid om zo de lokaliteit van data en verwerking van
gebeurtenissen zoveel mogelijk uit te buiten. Maar omdat iedere computer zijn
eigen gesorteerde lijst met gebeurtenissen heeft, kan het voorkomen dat de
causaliteit in de simulatie geschonden wordt. Bijvoorbeeld: als computer A tij-
dens de simulatie een nieuwe gebeurtenis met simulatietijd 15 bij computer B
wil plaatsen, kan het voorkomen dat computer B al een gebeurtenis met simu-
latietijd 20 aan het verwerken is. Als een dergelijke causaliteitsfout optreedt,
wordt het zogenaamde “rollback and recovery” mechanisme in werking gezet.
In het voorbeeld zou computer B zijn simulatietijd terugzetten naar de laatste
gebeurtenis direct voor de nieuwe gebeurtenis met simulatietijd 15 (“rollback”)
en herstelt vervolgens alle veranderingen in de simulatie ten gevolge van de
voorbarige verwerking van gebeurtenissen tussen simulatietijd 15 en 20 (“re-
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covery”).
De Time Warp methode moet regelmatig de status van de simulatie bewa-

ren om zich te kunnen herstellen van causaliteitsfouten. Bij grote systemen
kan de volledige status van de simulaties zeer groot worden en het volledig
geheugen in beslag nemen. Wij hebben een meer efficiënte methode geïntrodu-
ceerd die alleen de wijzigingen in de status bewaard. Deze incrementele me-
thode is efficiënter in geheugen gebruik, maar tijdens de “recovery” fase moet
de oude status van de simulatie stap voor stap gereconstrueerd worden. Verder
wordt de APSIS omgeving gecompleteerd door de APSE parallellisme analyse
methodiek, zie Hoofdstuk 4. De APSE parallellisme analyse is een waarde-
volle aanvulling op de APSIS simulatie omgeving, omdat het inzicht geeft in
het intrinsieke parallellisme van het simulatiemodel en het parallelisme dat
gerealiseerd is door APSIS. Daarbij kan door middel van kritieke pad analyse,
de obstakels geïdentificeerd worden die het parallellelisme in de simulatie li-
miteren.

De toepasbaarheid van de Time Warp simulatie-omgeving is geëvalueerd in
Hoofdstuk 5. De applicatie is een Ising spin systeem, waarmee de magneti-
satie van ferro-metalen bestudeerd kan worden. Ising spin systemen zijn een
prototype voor een klasse van applicaties in statistische fysica. De experimen-
ten en de APSE parallellisme analyse geven aan dat de APSIS omgeving in
staat is de simulatiegebeurtenissen efficiënt te verwerken over de parallelle
processoren. De experimenten tonen ook aan dat er een mate van optimisme
controle nodig is. In Time Warp kunnen twee processoren een willekeurige si-
mulatietijd uit elkaar lopen, bijvoorbeeld: simulatietijd 10 op processor A en
simulatietijd 2040 op processor B. Als nu een nieuwe gebeurtenis met simula-
tietijd 15 door processor B verwerkt moet worden, moet processor B een “roll-
back en recovery” actie van simulatietijd 2040 naar simulatietijd 15 maken.
Dergelijke lange rollbacks vereisen substantiële computerrekentijden en kun-
nen zich herhaaldelijk voordoen. Dit kan voorkomen worden door het beperken
van het optimisme in de simulatie, bijvoorbeeld door een simulatietijdsinterval
vast te stellen waarbinnen gebeurtenissen verwerkt mogen worden. In ons vo-
rig voorbeeld met simulatietijd 10 op processor A en een simulatietijdsinterval
van 100, zou processor B zijn gebeurtenissen niet verder dan simulatietijd 110
mogen verwerken.

De effectiviteit van het optimisme controle mechanisme wordt aangetoond
in Hoofdstuk 6. In de Ising spin systeem simulatie treden (onverwacht) lange
rollback series op rondom de fasetransitie van magneet naar paramagneet.
De lengte en frequentie van de rollback series kunnen binnen grenzen gehou-
den worden door het optimisme controle mechanisme, resulterend in kortere
responsietijden. De niet-triviale interferentie tussen Ising spin systeem ap-
plicatie en Time Warp methode is mogelijk zelforganiserend kritisch gedrag,
waarbij de complexiteit van de berekingen en de complexiteit van de fysica op
een niet-lineaire wijze met elkaar vermengd zijn.

De Dynamite omgeving is een experimenteel platform voor onze ideeën be-
treffende dynamische werkverdeling van rekentaken (processen) over de gedis-
tribueerde of parallelle processoren. In Hoofdstuk 7 beschrijven we het onder-
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liggende principe van proces migratie, waarbij de executie van een programma
gestopt wordt, verplaatst naar een andere processor en weer opgestart wordt.
Een complicerende factor is communicatie tussen parallelle processen. De pro-
ces migratie moet transparant zijn, zodat de andere parallelle processen geen
notie hebben van de gewijzigde situatie. De transparante proces migratie in
Dynamite is geëvalueerd aan de hand van een aantal experimenten met ver-
schillende test applicaties en twee simulatie applicaties. De resultaten van de
experimenten tonen de effectiviteit van dynamische proces migratie in Dyna-
mite aan.

In de toekomst worden de APSIS en Dynamite omgeving met elkaar geïn-
tegreerd. Het belangrijkste onderzoeksonderwerp bij de integratie van APSIS
met de Dynamite omgeving, is de werkverdelings strategie voor optimistische
simulaties over de parallelle processoren. In optimistische simulatie is er een
verschil tussen rekenwerk en de het begrip voortgang. Bijvoorbeeld, “rollback
en recovery” acties worden als rekenwerk aangemerkt, maar dragen niet bij
aan de voortgang van de simulatie. Een van de belangrijkste onderzoeksvra-
gen zal zijn: het vinden van een compacte beschrijving van het executiegedrag
van optimistische simulaties en daarop gebasseeerd, een effectieve strategie
om werk te verdelen over de parallelle processoren.
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