()

ALt j?,

Performance Measurements of a Light Scattering Code
on the Parsytec CC

Comparison with the Parsytec PowerXplorer
Benno Overeinder and Alfons Hoekstra

Parallel Scientific Computing & Simulation Group, Faculty of Mathematics, Computer Science,
Physics, and Astronomy, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, the
Netherlands, tel 020 5257463, fax 020 5257490, email {bjo, alfons} @wins.uva.nl,
http://www.wins.uva.nl/research/pscs/

Abstract

The performance of a Light Scattering code, which is routinely in use as a preduction code for more than two
years now, has been measured on the Parsytec CC, a new parallel computer which has recently become
available. The total execution time and communication time are measured, and compared with measurements
made on an older computer (the Parsytec PowerXplorer). A simplified time complexity analysis allows to
interpret the measured data in terms of three parameters and allows to understand the scalability of the code.
The analysis is of value for other applications, containing comparable kernels with global communications.
The data presented here will give a first impression of attainable performance on the Parsytec CC for such

4

applications.

Keywords

performance measurements, time complexity analysis, scalability, elastic light scattering

1. INTRODUCTION

The fast Discrete Dipole Approximation (DDA} is an
efficient algorithm to simulate elastic light scattering
from arbitrary shaped particles. In the fast DDA a
system of equations, stemming from a formal solution
of the Maxwell equations in the frequency domain, is
solved iteratively using a Conjugate Gradient method.
The matrix-vector products in the Conjugate Gradient
method can be identified as discrete convolution and,
using three dimensional fft's, can be executed in an
O(MogN) complexity, with N the number of
unknowns (dipoles) in the method. For our purposes ¥
needs to be very large, in the order of 108 or more. [1]
The method itself is extensively described in Ref.
[2,3]. and the parallel implementation is described in
Ref. [1.4,3].

Recently, in October 1996, a new parallel computer
has become available for the Dutch research
community. This system, a Parsytec CC, installed in
Amsterdam, is a powerful distributed memory system
based on PowerPC-604 processors.

In order to provide the ASCI community with an
impression of the capabilities of the Parsytec CC a
first set of performance measurements of the kernel of
the fast DDA are shown and compared with

measurements on the Parsytec PowerXplorer. More
specifically, the execution time of one iteration of the
parallel conjugate gradient solver of the fast DDA,
using three dimensional fft's for the matrix vector
products, will be shown as a function of the number of
dipoles N and the number of processors p.

2. MATERIALS AND METHODS

The parallel fast DDA was originally developed in
PVM on a cluster of workstations and subsequently
ported to PowerPVM on the Parsytec PowerXplorer in
Amsterdam. The implementation of the fast DDA in
PowerPVM, running on the PowerXplorer, has been in
use as a production code for approximately two year.

The main bottleneck of the parallel code is a transpose
operation of the data box, resulting in a very expensive
global communication operation, which is
implemented in a straightforward way [4]. Each
processor sets up a communication link with all other
processors and exchanges the required data. Obviously,
this operation can be improved. The transpose
operation results in a relative bad scaling behaviour,
making the code communication bound. This does not
really concern us, because the main reason to use the
paralle] system was the availability of large amounts

of memory as compared to a single workstation. The
increased computational power is also important, but
the relative poor efficiency is not critical [4]. Anyway,
the global communication routine is a suitable case to
compare the communication capabilities of the CC
with those of the PowerXplorer.

The production code was put on the Parsytec CC, and
recompiled using a beta version of PowerPVM for the
NanoKernel. After recompilation, which did not require
any code adaptations, the program executed without
errors on the Parsytec CC.

The execution time of many subroutines of the fast
DDA is measured. The time required for
communication is measured as well. Here, we only
present the measurements made on one iteration of the
fast DDA, In a typical production run we need to
perform many iterations, and therefore most of the
execution time will be spent in the iterative solver.
Therefore, the performance and scalability of a total
fast DDA run will be comparable to that of one
iteration.

The Parsytec PowerXplorer contains 32 PowerPC-601
processors connected in a 4x8 grid topology. Each
node has 32 Mbyte RAM. The point-to-point
communication is represented by the setup time and
time to send 1 byte from one processor to the next.
For the PowerXplorer we measured, using PowerPYM,
a setup time of 220 ps and a send time of 0.95 ps/byte
[6].

The Parsytec CC contains 40 PowerPC-604
processors, of which 8 are /O nodes containing 256
Mbyte RAM and running the AIX operating system.
The other 32 processors are compute nodes, each with
96 Mbyte RAM. The processors are connected by a so-
called mesh of clos (for a description of such network,
see e.g. (7. Preliminary point-to-point
communication measurements show that the setup
time for PowerPVM is 160 us, and the send time is
0.1 us/byte.

3. RESULTS

The performance of one iteration of the fast DDA is
measured, as a function of the number of processors p
and the number of dipoles N (i.e. the problem size).
The number of processors was in the range 1 to 32; the
number of dipoles was in the range 83=512101603 =
4.096.000. The maximum problem size on the
PowerXplorer was 1283 dipoles. The CC has enough
memory to increase the problem size to 1923 =
7.077.888. Here, only the results for N = 83, 323,
1283, and 1603 are presented.

T (s)
1000 -

100 A X%. 4B

0.1 g

0.01 , -
1 10 p 100

Figure 1: The execution time of 1 iteration of the fast
DDA as a function of the number of processors (note
the log-log axes) for a number of problem sizes N,
both measured on the Parsytec PowerXplorer and the
Parsytec CC. The open symbols, connected by a solid
line is data for the PowerXplorer whereas the filled
symbols cornected by a dashed line is CC data. The
squares are for N = 83, the circles are for & = 323, the
triangles are for N = 128> and finally the stars are for
N =1603. Note that largest problem size was only
measured on the CC, as it did not fit in memory of the
PowerXplorer.

T (s)
100 -
A
A, X

] =
0.1

0.01 r —_

1 10 o 100

Figure 2: The total communication time during {
iteration of the fast DDA as a function of the number
of processors {note the log-log axes) for a number of
problem sizes N, both measured on the Parsytec
PowerXplorer and the Parsytec CC. The lines and plot
symbols have the same meaning as in Fig. 1.

Fig. 1 shows the measured execution time per iteration
of the fast DDA as a function of the number of
processors, both on the PowerXplorer and the CC.

14l

sake

(R

O

Fig. 2 shows the total communication time per fast
DDA iteration. Because only the smallest problem
sizes fit in memory of ! processor, it is not possible
to present measured speedup of efficiencies for all
problem sizes. Instead the fraction of time spend in
communication in one iteration of the fast DDA was
calculated, and is shown in Fig. 3. This number also
provides a reasonable idea of the scalability of the code,
as was shown in Ref. [4].

%

1
100

“Figure 3: The fraction of communication time in 1
iteration of the fast DDA as a function of the number
of processors for a number of problem sizes N, both
measured on the Parsytec PowerXplorer and the
Parsytec CC. The lines and plot symbels have the
same meaning as in Fig. 1.

4. DISCUSSION

Global examination of Figs. 1-3 shows that the
behaviour of the fast DDA code on the CC and the
PowerXplorer is comparable. For each problem size
one can find a minimum in the execution time as a
function of the number of processors p. This
minimum shifts to larger p if the problem size
increases. Furthermore, this minimum lies at a smaller
p for the CC, as compared to the PowerXplorer. For
small N and large p the program is communication
bounded, but as the problem size increases the
percentage of communication decreases, resulting in
increasingly better performance on larger problem
instances.

A simple time complexity analysis can reproduce these
effects. Define a parameter 7,5, which represents the

total amount of computational time needed for 1
dipole. In that case the total computing time for N
dipoles is

N
TCUmP(N’p)=?(l°g N)Tegic 1

The total communication time is represented by Tsepp
and Tg.,s which respectively represent the time to
initialise a point-to-point communication and the time
to actually send all the data for 1 dipole. In that case
the total communication time is

N
Teomm N, p)=(p- 1)[Tsetup + 7 1'send} . (2

where we assume that each processor performs p-1
blocking synchronous point-to-point communications
routines. This is obviously not the case on both the
PowerXplorer and the CC and the real behaviour of the
communication time is more complex, depending on
the exact network topology and low-level routing
strategies. Still, this model helps to understand some
main features of the measured data.

The total execution time per iteration is the
summation of Teomp and Tegpmy. Next we derive an
expression for the number of processors that results in
a minimum execution time. First, take the derivative
to p of the total execution time.

oT N
a_P = _p_z (log N) T 40 + Tsetup

N (p—-DN
+ ['_ _p_g}rsend
P P

N
= _p_2 (og N)Tegie + Tserup

In the second step we assume the quotient (p-1)/p = 1,
which is valid for large p. By putting the final equation
equal to zero we find pyy, the number of processors for

which the execution time will be minimal,

T,
Pm = | —U-NlogN . 3]
Tsetup

According to Eq. 3, py, will shift to larger values as N

increases. This is indeed observed Fig 1. Furthermore,
from Fig. 1, we see that for equal N the py, of the CC

is smaller that of the PowerXplorer. That means that

(Teale] <[Tealc] . [4}
T T,
setup Joc setup PowerXplorer

Based on the measured execution time on 1 processor
we conclude that, for this specific code, the PowerPC-
604 is a factor of 2.5 to 4 faster than the PowerPC-
601. In section 2 a setup time of 220 pus for the
PowerXplorer and of 160 ps for the CC was reported.
These numbers confirm Eq. [4]. All this means that
although the absolute speed of the CC is faster (as can
be seen from Fig. 1), the decrease of execution time
stops earlier on the CC. The reason for this, to Eq. 4,
is that the setup time in the network of the CC did not
scale equally with the increased computational power

of the processors of the CC as compared to the
PowerXplorer.

According to the model, the fraction of communication
time in 1 iteration is

fraction = (p- l)fse!up + NTsond

;(l(’g NYTegie +(P =D Tsepup + NTseng

where we again assumed that (p-1)/p = 1. Furthermore,
assuming that N is large, which allows us to neglect
the terms of the setup time, we arrive at

-1
fraction=|1+ log N Teate) [5]
P Tsend

Again, the simple model reproduces the effects as
presented in Fig. 3. As N is increased, the fraction
decreases, resulting in a better efficiency of the code.
Furthermore, if p is increased, the fraction increases as
well. This is also observed in Fig. 3. Comparing the
PowerXplorer with the CC is in this case not
conclusive, although for large values of p and N (e.g. p
=32 and N = 963 or 1283), the fraction for the CC is
always smaller that for the PowerXplorer, suggesting
that

[Teale] >(Teale J) 6]
Tsend Jcc Tsend PowerXplorer

Again, the numbers reported in section 2 and above
confirm Eq. 6. However, in this case it is not
considered very conclusive because, as can be seen
from Fig. 3, one can also find regions where the
reverse of Eq. 3 should be valid according to the model.
We immediately add that the communication
measurements are not fully explained by our simple
model. Some main features which are predicted by Eq.
[2] can be observed in the measurements shown in Fig.
2. For instance, the increasing communication time
with increasing N is predicted by the model. However,
detailed behaviour when increasing the number of
processors is not accounted for in the model. It is
obvious that the global transpose operation, which
accounts for most of the communication time, behaves
very differently on the CC, as compared to the
PowerXplorer (e.g. the behaviour on the CC for larger
problem sizes, where even a decrease of
communication time is observed with increasing p).
The exact reason for the behaviour on the CC is not
vet understood.

On this specific application the CC is roughly 2 to 4
times faster than the PowerXplorer, depending on the
problem size and number of processors. However, for
small problems and a large number of dipoles the CC
turns out to be slower than the PowerXplorer. As can
be seen from Fig. 3, in this situation (e.g. N = 323
and p = 32) the total execution time is fully determined

by communication, and Fig. 2 shows that the
communication time on the CC is larger than on the
PowerXplorer. Althcugh this case is not relevant with
respect to planned production runs using the fast DDA,
it does present an interesting case to understand the
network performance of the CC, as compared to the
PowerXplorer, under heavy loading conditions. In the
future we plan to further investigate this issue.

Finally, as we already noted in Ref. 4, good scalability
of this production code is not the most important item.
We are interested to run as large as possible models in
a reasonable amount of time. Because of the increased
amount of memory in the CC, we are now able to run
models with 7.1 x 10° dipoles, as compared to models
up to 2.1 x 10% dipoles on the PowerXplorer. The
execution time for 1 iteration of the largest possible
model in the CC is 157 seconds, which is comparable
to the 149 seconds per iteration for ¥ = 2.1 x 106 on
the PowerXplorer. In other words, we are able te run
larger problems in the same amount of time, i.e. large
scale computing in the spirit of Gustafson’s fixed-time

speedup law.
6. REFERENCES

1. A.G. Hoekstra and P.M.A. Sloot, “Coupled Dipole
Simulations of Elastic Light Scattering on Parallel
Systems”, Int. J. Mod. Phys. C, vol 6, 663-679
(1995).

2. A.G. Hoekstra, Computer Simulations of Elastic Light
Scattering, Implementation and Applications, Ph.D.
thesis, University of Amsterdam, the Netherlands,
1994.

3. A.G. Hockstra and P.M.A. Sloot, “The Discrete Dipole
Approximation, Possibilities and Problems to
Simulate Elastic Light Scattering”, in Electromagnetic
and Light Scattering - Theory and Applications, Eds.
Th. Wriedt, M. Quinten, and K. Bauckhage, University
of Bremen, isbn 3-88722-359-4, 1996.

4. A.G. Hoekstra, M.D. Grimminck, and P.M.A. Sloot,
“Simulating Light Scattering from Micron-Sized
Particles: A Parallel Fast Discrete Dipole
Approximation”, in High Performance Computing and
Networking, Lecture Notes in Computer Science 1067,
Eds. H. Lidell, A. Colbrook, B. Hertzberger, and
P.M.A. Sloot, pp 269-275, 1996.

5. M.D. Grimminck, Computer Simulation of light
scattering of small particles in focused laser beams,
M.Sc.. thesis, University of Amsterdam, faculty of
Mathematics, Computer Science, Physics, and
Astrophysics, 1996.

6. A.G. Hoekstra, P.M.A. Sloot, F. van der Linden, M.
van Muiswinkel, J.J.J. Vesseur, and L.O. Hertzberger,
“Native and Generic Parallel Programming
Environments on a transputer and PowerPC platform”,
Concurrency: Practice and Experience, vol. 8, pp. 19-
46 (1996).

7. A. D. Pimentel and L. O. Hertzberger, “Evaluation of a
Mesh of Clos Wormhole Network™ in Proc. of the 3rd
International Conference on High Performance
Computing, IEEE Computer Society Press, Dec. 1996.

