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SUMMARY.

In this paper we propose a parallel sound synthesis model based on the well defined VOice
SMuhlion(VOSandeL&umjorinwrmiainmepmlleﬁsmuﬂhismodelandmemppins
onto a transputer platform. We designed transputer based hard- and software for sound synthesis from
multivariate data sets to actual audible sound.

1. INTRODUCTION.

With the advent of computational physics gigabytes of data resulting from a single
experiment need to be interpreted by scientists. Several tools are in use to present this
data in an edible form. Most of these tools work in the visual domain. As a counterpart
of visualization, sound can be used as an orientation guide to locate ‘hot spots’ of
important information in a multidimensional dataset. This acoustic “visualization™ is also
known as audiolization or sonification.

To get meaningful sound from experimental data, a linear transform model is
required. Linear dependencies in the dataset should result in perceivable linear
dependencies in sound. If this can be established for some number of dimensions the
applied transform can be made orthogonal. Since there rarely exists a direct, linear
relationship between an arbitrary dataset and a sound signal in terms of perception (like
Speeth’s seismometer sounds [1]), the transform can be split up in two parts. The first
part transforms the data to a linear representation in different auditory domains like
intensity, pitch, timbre etc. The second part generates a time domain signal from the
transformed data.

In this paper we present the second part of the transform: sound synthesis, its model
and implementation. From this model an analysis of the computational requirements of
sound synthesis is desired, showing the need for parallel processing. We base our
sound synthesis algorithm on the well established VOSIM (VOice SIMulation) model
[2], and report on the scalability of a parallel implementation of this model on a

Transputer network.

2. BACKGROUND.

Sound synthesis is a method to produce a sound without the help of an acoustic
instrument. It's commonly used in music and speech applications. In digital synthesis
the sound is represented by a discrete time signal. The digital synthesis process
computes this signal from a number of parameters that represent dimensions of the
auditory domain, e.g. pitch (frequency) and loudness (amplitude). The parameters can
be static or time variant, their data content is typically much lower then the represented
sound signal. In this view sound synthesis is a data expansion method.

*Author to whom all correspondence should be addressed.
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A sound synthesis program expands input data to a discrete time signal. The signal, a
stream of numbers, is then converted into an analog signal. A high quality audio signal
that reproduces the audio band from 0 to 20 KHz must have at least 40000 samples per
second. This means that an average of 25 microseconds is available to calculate one
sample. However, if it is not possible to produce the sample in this time interval the
samples are produced at a rate that is too low, and audible clicks or distortions will
result. To meet this time constraint either the sample rate must be decreased, resulting in
loss of sound quality, or the computational power must be increased (i.e. adding more
processors in a parallel environment).

DePoli [3] gives two classes of sound synthesis techniques : (1) generation
techniques, which_dlrectly_ produce the signal from given parameters and (2)

Historically, VOSIM was implemented on special purpose analogue electronic
circuits, followed by an implementation on a PDP15 and a special purpose digital
electronic circuit [6). These classic implementations are expensive and rather inflexible,
Work on implementations on modern microprocessors show that VOSIM is a
calculation intensive algorithm [7]. In many applications sound synthesis algorithms are
implemented in a serial manner. Although Moorer [8] remarks (in 1977) that music is

3. A PARALLEL SOUND SYNTHESIS MODEL.

When designing a synthesizer capable of generating at least 4 voices that is flexible
and expandable we need a parallel system consisting of more than one processor to
provide the necessary processing power over a single processor and the flexibility and
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expandability necessary to adapt the synthesizer to our ever increasing demands. To
design such a parallel sound synthesis system, thorough knowledge of the mathematical
structure of VOSIM is necessary. This leads to an abstract description of VOSIM. From
this abstract description we can derive a model of parallel VOSIM describing the
independent functions that may operate in parallel. This description of parallel VOSIM is
used to analyse the time complexity of the algorithm, and to predict the performance of a
parallel system executing the parallel VOSIM algorithm.

VOSIM is a sound synthesis model that produces sounds with a formant structure by
repeating a sequence of sin? periods and a delay (see Figure 1).
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Figure 1. One period of a VOSIM sound. T is the duration of one sin? period. N is the number of sin?
periods (in this case 5). A is the amplitude of the first sin? period (A is shown in arbitrary units) D is
the delay following the N sin? periods, and Q is the Quench factor of the second and following sin?
periods.

A VOSIM generator produces output according to the parameters describing a sound.
When a sound is finished, the next sound is processed.

= mm e w == ow= = Output i Period
Figure 2. Adding the output of several generators results  Figure 3 Sinus modulation.
in synthetic music or speech. The generators produce
sequences of sounds. These sounds are sequences of
periods.

To produce speech or music, the output of several generators has to be added in the
time domain (see Figure 2). For instance to synthesize a male voice, the output of 5
generators needs to be added. In general we want to add a large number of generators:

N
output(t) = Y, Gt (1,

g=1
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Gylt) = Uf= (sound(t)

where () f=1 is the time ordered union of s = 1 10 S. 2)
A sound is a sequence of periods.
sound,‘[t} =0 :: 1 ¢P38[t]'

where Uf=1 is the time ordered union ofp=1to NP 3)

A period consists of a sequence of sin2 periods dampened by a staircase function and
followed by a delay. The duration of a sin2 period and the dampening is fixed within a
period (see Figure 1). Within a sound, the duration of the sin2 period, the delay and the
amplitude may vary. These characteristics of a sound are described by a parameter set of
12 numbers. These parameters are:

Ts = The duration of the first sin2 period of the first period of the sound s

di, = NPg(Tps - Tp.15) = the increase of T, over the sound s

D, = Delay of the first period of the sound s

db = NPg(Dps - Dpyy15) = the increase of Dy over the sound s(see Figure 3)

AM, = Amplitude of Modulation of D,

As = Amplitude of the first sin? period of the first period of sound s

dA;, = NPy(Aps - Api1s) = increase of A, over the sound s

Qs =Quench factor of the staircase shaped attenuation of the amplitude of the sin2
periods in one period (0 < Q, < 1)

Ns = Number of sin2 periods in one period

MM; = Modulation Method. 0 = sin modulation, 1 = random modulation.(see Figure
3)

NM; = Number of Modulation periods in the sound s (see Figure 3)

NP; = Number of Periods in sound s

The sound sg is parameterised by these 12 parameters:
Sound.s{l} = (L Tﬂl’ dT’s. Dgx‘ dD‘g‘ AMQ »

g
Asg dAsg, Qsg, Nog, MMy, NM,5, NP,,) “)
A period is parametensedi:y S5 parameters:
¢pug(u =, Tpap nggu Apagg ng; Qag) oT (5)
pdT,.
Aps=Asg* Tp,w 6 Tpug=Tyg+ NP,y @)
pdD
DPSS=D‘5+—NP—:f+usE(AMsg, MM, NM, ) @)
e . 2np
W,g-—- 0: AMSSS W} (9)
MM“: i: q-AM's, AMS;)

U is the uniform distribution.
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‘4, COMPUTATIONAL ASPECTS.

From section 3 it can be seen that the structure of the VOSIM algorithm is partly self-
similai (see e.g. Figure 2), operations on the signal level are reflected by operations on
the generator level which are in turn reflected by operations on the sound and period
level. method results in a typical data driven algorithm. Farming is a typical
parallelization paradigm well suited for this type of data driven, self-similar algorithms
(19). From the description of VOSIM it seems that we have a set of basic tasks on three
functional levels: (1) period level, (2) sound level and (3) generator level

Sounds, periods and generators are all described by independent parameter sets,
although the possibility of random modulation of the delay allows for uncertainties in
the duration of the sounds. This information concerning the history of previous sounds
or periods must be passed on to the next sound or period, making it impossible to
calculate successive sounds or periods at the same time. The generators however do
have this history information and can therefore be calculated in parallel. This view of the
algorithm leads to the following parallelization scheme: (see Figure 4).

G
L G;\,z,mc

04

Figure 4. Decomposition of VOSIM. The input is a process or a file giving the parameters of all the
generators. The control process distributes these parameters over the generators G1 .. GN. The output of
the generators is then added and send to a DA convertor.

A program that implements a VOSIM generator performs two tasks. First, the
samples that represent the desired sound must be created. For the generation of the sin?
periods we use a table lookup algorithm because this is the fastest and easiest to
implement. Samples representing the delay have a value equal to zero. All the generators
keep a copy of the sin? table in their memory. Next, the parameters necessary t0
generate the sin? periods (internal parameters as step size and phase) must be derived
from the parameters describing the periods and sounds. To do this, the parameters
describing the sounds are fetched from disk or an interface. The parameters for the
periods are derived from the parameters describing the sounds according to the
mathematical description of VOSIM. From the description of the periods the internal
parameters are calculated, and finally the sin? samples are generated.

The samples produced by the synthesizer must be offered to the DA convertor at a
rate that is equal to the sample rate. To meet this demand the samples and the processes
that produce them must be synchronised to the sample clock. In our hardware the DA
convertor is synchronised by a clock. The handshake protocol of the transputer link is
used to signal the sample generating processes when a new sample must be send to the
DA convertor. The notion that samples must be available when the DA convertor needs
them and that the link protocol takes care of the synchronization leads to the conclusion
that if samples are produced at a rate that is equal to or higher than the sample rate, the
samples arrive at the correct rate and that undistorted sounds are produced.

The samples produced by the generators are packed into packets to reduce the time
involved in setting up the communication for the samples. Also, if buffers are used, full
advantage is taken of the transputer’s capability to handle communication and
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computation simultaneously. The generators are implemented as a two stage pipeline,
where a packet of samples is generated parallel to the transmission of a packet to the
farmer or another worker.

The farming paradigm can be implemented in two different ways. In the first
implementation the workers implement one or more generators and the farmer takes care
of the distribution of the parameter sets over the generator processes and the gathering
and adding of the results. The result of the addition is then send to the DA convertor
(see Figure 5).

Input Farmer .—)I DAC Input Farmer
LT v N\
Worker| »-= | Worker | - | Worker Worker —» Worker |~ Workerf—3» DAC

Figure 5. Farming of VOSIM. The farmer  Figure 6. Farming of VOSIM. The farmer distributes

distributes the input over the workers, adds  the input over the workers. The workers add the re-

the results, and sends the output to the DA sults of their left neighbours, and send the results to

convertor. their right neighbours. The rightmost worker sends
the results to the DA convertor.

In the second possible implementation the output of the workers is send to the other
workers in a pipeline fashion. The workers also add their output to the output send to
them. The last worker sends the output to the DA convertor (see Figure 6).

The development of the VOSIM synthesizer was done using a Macintosh IIx with an
internal TPM Mac Transputerboard (1 T800 + 2 Mbyte RAM). Connected to this
Transputerboard are the Audio Sample Convertor (ASC) and a system based on a VME
backplane with several T800 Transputers (see Figure 7).

Apple Maciutosh T VME Crate Audio Sample Convertor | .
N T800" Link — oA
eowT—— ( Rl ST . TR gl

- —
Figure 7. The ASC converts a digital signal supplied by a transputer to an analog signal. The ASC was
developed at the electronics department of our faculty. [20] It consists of three parts, (1) a link interface,
(2) logic to convert the byte wide link interface to the bit serial input of (3) the four times oversampling
filter and digital to analog convertor (DAC). The ASC accepts 48000 32 bits words / sec. Each word
consists of a 16 bit right- and left channel sample.

5. TIME COMPLEXITY.

Splitting a sequential algorithm into a number of parallel tasks generates overhead
that stems from the calculations involved in the farmer (the division of the input data in
tasks, and the distribution of these tasks over the slaves) and the communication
between the farmer and the slaves. The VOSIM algorithm can be split up in the
following operations:

1. Vector initialisation

2. Parameter transformation

3. Initialisation of internal parameters

4. Sin2 sample generation

5. Delay generation

6. Adding sounds

7. Sending the sounds to the DA convertor
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For the complexity analysis we need to find an expression for the relation between
the expected number of calculations and the time necessary to perform these
calculations. In Table 1 the number of calculations per operation is listed, yielding the
following expression for the time necessary to calculate ¢ sounds and p periods on a
sequential machine Tgeq:

Tseq (N) = N(Tg + Tadd + Tsounds) + Tsamples (10)
where Tg is the time necessary to calculate ¢ sounds and p periods per generator:

TG (Teales Teomms Tsetup) = ((22p + 1)0 + 264000) Tcalc (11)
Tsamples i the time necessary to send the samples to the DA convertor or a farmer:

Tsamples = (48000/packetsize)Tsewup (12)
Tada is the time necessary to add two samples together:

Taga = 48000t a1c (13)
Tsounds i the time necessary to send s parameter sets to a generator or a farmer:

Tsounds = 240Tcomm + OTsetup (14)

Teales Teomm ANd Tgerup are the times to execute one floating point operation, one byte
communication and one communication set-up. Decomposing the VOSIM algorithm
according to the first farming scheme described in the previous section leads to the
following expression for the execution times on a parallel machine T:

NT
Tg (N,p)= Ts " N(Twunds+ Tadd)+'|N + 1T gamples (15)

When the VOSIM algorithm is decomposed according to the second farming scheme the
expression for the execution time is Tg:

NT
TN, p)= _pl + NTgounas + Toulpu‘N Pl (16)
Since the worker processes are implemented as a two stage pipeline where a packet of
samples is calculated in parallel with the communication of the previous packet, and the
fact that during one sample calculation at least two samples can be send, we may assume
that the communication of packets is completely hidden behind the generation of the
packets. Therefore no time is lost in sending the packets from worker to worker, except
for the last packet. The time to send the last packet through the workers is

p(48000/packetsize)Teomm- This time however is negligible. Toypu: then is the time
necessary to communicate packets between the workers:

N :
T output (N.P) = [_F-;] T+ P(48000/packetsize) T, . an
Basic Operations | Number of Number of Bytes | Number of times | Number of Basic
FLOP's communicated to initiate Operations per

communication | second

1 24 1 o

2 8 op

3 4 op

4 8 28000

5 2 20000

6 N 2 48000

7 2 1/packetsize 48000

Table 1. Amount of Floating Point Operations (FLOP’s). For the basic operation mentioned above the
numbuofFLOP'swpufomﬂmcopamﬁmamﬁmd.uweﬂuﬂxmdmmicaﬁm
involved.

In the analysis we assume a sample frequency of 48000 Hz and a sin? to delay ratio

of 1.4:1. The samples are created using a lookup table. ¢ and p are the mean number of
sounds and periods per second.
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We estimate the figures for Tege, Teomm and Tserp based on the figures for a Meiko

machine used by the department [21] :

Teale = 3.04 1S, Teomm = 1.8 s, Tsetwp = 8.1 s

(18)

The estimated execution time, speed-up and efficiency for the three different

implementations are

given in Figures 8 ,9 and 10. The values for O, p and packetsize

are fixed to respectively 10, 400 and 100, Figure 11 shows the expected speed-up per
processor if N is kept constant. The speed-up S is defined as: Tseq/Ts where i € (1,2).

The efficiency (€) then becomes S/p.
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Figure 8. Execution times of sequential implemen-
tation and the two parallel implementation, N = p-
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Figure 10. Efficiency of the two parallel
implementations. N = p,

6. SONIFICATION MODEL.
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Figure 9. Speed-up of the paralle] implementations
over the sequential implementation. N = p-

T (sec)

%

T T N=20

T iR N=20

P

0 10

20 30

Fxgurell.Exucuﬁmmneofﬂletwofxmjng
implementations, N = 20,

Data from an experiment [22] can be represented by a three parameter box (3 x 64

channels). The data is assumed

1o contain several clusters. By slicing the box in planes
we get 64 elements that can be sonified in a time sequence.

A plane can contain local
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maxima. Each local maximum is sonified with a combination of two sounds. Pitch
(frequency on a log scale) is used to indicate the vertical position, horizontal position is
mapped to the formant frequencies and the stereo positions of these two sounds. One
formant scales from 350 to 880 Hz. and the other scales from 4400 down to 900 Hz.
(see Figure 12). This gives the timbre a vowel like quality. The size of the clusters is
mapped to the amplitude. All transformations are on a log scale to fit to the human

perception.

5 -1 @|!
e s
Pitch
& ® Al
2 ¥
—-————
Sonification Time sequences Stereo position & Timbre

F;gmelZ.Sqﬁﬁcaﬁmupeﬂmm.Apamnmbothinwmsequm.Thmdmewqmm
mmnﬁndtoam.iﬂﬂﬁmmﬁdel(mtext).

7. RESULTS & DISCUSSION.

At the conference we will give a demonstration of the VOSIM model applied to
sonification of a real 3D dataset. In this demonstration the location and size of clusters in
3D space is shown both visually and through sonification. Although a general sound
design toolset that uses formal methods is not yet implemented, some well defined
l.rans%;nnations from the dataset to the input parameters of the VOSIM model are
possible.

In the time complexity analysis and decomposition of the VOSIM model we have
assumed that the calculation load per generator is random distributed in time, but equal
for all generators. Therefore we have choosen the unbalanced farming paradigm. In the
future, we will investigate this assumption and possible refinements of the synthesis
model (i.e. load balancing).

The basic grain size of the VOSIM decomposition is the generator. A smaller
grainsize is difficult to achieve because of the history information that must be
exchanged between periods and sounds. If however, we need to find more parallelism,
we should look for a different paradigm because the self-similarity ends at the period
level.

The VOSIM model does not specify how sounds should be synchronised. We
therefore have not implemented an explicit synchronization method. In practice it should
be possible to specify a time when a number of sounds should commence. This need for
global synchronization changes the functionality of the sound synthesis model
drastically and may enforce a paradigm different from farming.

Finally, the wish to develop a sound synthesis system that is capable of producing
samples in real time, raises questions about delay and real time characteristics. This also
calls for a refinement of our model.
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