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Abstract. Crowd modeling is one of the key components of @sklysis and
evacuation planning in emergency situations. Thigep presents a simulation
environment for experimenting with different cityaeuation scenarios. The
simulation couples a flood model with a crowd egcamdel. The developed
agent-based crowd model mimics the behavior of gtedas escaping from
dangerous regions towards safe areas. The systewalisated through a series
of experiments, modeling the flooding of an are&tinPetersburg, Russia.
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1 Introduction

Global warming and rising sea levels have seemarease in the severity and fre-
quency of urban floods worldwide. Governments awe rstruggling to understand
and provision for possible future emergencies thay involve mass evacuation of
large cities. This problem is especially true fountries with cities that lie close to
sea level, and those cities with large surrouneliater mass. St. Petersburg, Russia is
one such city. With a large sprawling river systemd a central island surrounded by
water, the city has historically experienced a nemif major floods, many of which
have had significant impact [1]. In order to beftezpare for such floods it is possible
to use simulation as a means of understanding liff@reht flooding scenarios might
impact the city and how the flow of water might dmntrolled to mitigate the overall
impact [2-8].

In some cases, particularly with increasing seyaritflooding, there is real risk of
fatalities in the city population. Understandingahbest to evacuate or manage the
people of the city should help reduce the likelith@md level of danger in such scena-
rios. Again, simulation can be used to help analymse questions. In this context
crowd modeling is one of the key components of @sklysis and evacuation plan-
ning for emergency situations. However, to fullyaBmze and prepare the correct
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evacuation measures it is essential to understanthteracting dynamics of the flood
and the human populations. In particular we wartd@ble to understand for a varie-
ty of possible flood scenarios, what the best atpatis for ensuring the safety of the
population, and how to adapt the environment ireotd increase the survivability of
the city populous.

There are several well-known methods to assessrbact of the flood to the ur-
ban areas. Some of them consider the economieaitefdf flooding [9], while others
focus on estimation of the number of fatalities-[2]. Some of these use empirical
models which try to predict the number of casusltiy some heuristic rules. For
example [11] uses numerical flood simulation tareate the flood characteristics
(depth, flow speed and so on) in the modeled drbay apply an empirical formula
to estimate the fraction of fatalities (mortalitynttion) for each spatial location. Giv-
en the initial population distribution this can pige a useful estimate of the number
of loss of life events.

Some authors use agent-based modeling (ABM) to @mpbre details of popula-
tion behavior into the simulation. For example [18ks ABM to model the cycle of
daytime routines being interrupted by a flood. Euthors consider the case of ve-
hicle evacuation over a road network. The Life 8afdodel [12] is another agent-
based model of flood evacuation; it uses a sophitsd set of rules to predict loss-of-
life events depending of agent’s health condition actual location (building, ve-
hicle, pedestrian).

In this paper we present an egress model whicbupled to the output of a flood
simulation. This coupling of models provides a detion environment with which
different city evacuation scenarios can be evathafe main difference of this paper
to the previous work is the strong orientation tomgapedestrian crowd dynamics.
Our model tries to reproduce the effects of junti@nd different pedestrian path
planning strategies. The simulation couples a flomdiel with a crowd escape model
for a scenario of flooding of a region in St. Psberg, Russia.

The model consists of two main parts: a hydrodyeafttoding model and a
crowd escape model. We use a Flood Simulator [@ptatl by the UrbanFlood
project [2] from a DRFSM code developed by HR Waljford for simulation of
floodwater propagation. It receives water flow satéscharged into floodplain areas
from breached or overtopped flood defenses and #meeads the water over the
floodplain according to the city topography. Thawary outputs of the Flood Simula-
tor are water levels and flow velocities in theaaod the city. These outputs form the
inputs to an agent-based model of egress that raithie behavior of pedestrians
heading from dangerous regions towards safe aké@® explicitly, it uses the output
of the flood simulation to trigger the evacuationgess, to compute available evacua-
tion paths and to identify those agents trappedrifjlled by, the flood.

The remainder of this paper is organized as follawsection 2 we give an over-
view of our modeling approach; Section 3 describesdetails of flood model intero-
peration; Section 4 explains the crowd behavior ehoihcluding the path planning
and collision avoidance algorithms; in Section 5skew simulation results for sev-
eral evacuation scenarios and model parameteripB8&cconcludes the paper



2 Modeling Approach

The novelty of our work is that we essentially deufwo simulations: water spread-
ing on the lands due to overtopped defenses orchegadams, and an agent-based
simulation of pedestrians trying to avoid the flomad to reach the safe areas. This
section briefly describes both of those models autines the execution flow of the
combined simulation environment.
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Fig.1. Outline of Flood/Evacuation simulation.
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The basic outline of the simulation execution iswh in Fig. 1. The first stage is to
run a flood simulation, which generates output aomihg details of the flood dynam-
ics in the city. This data is used to instantidte environment of the agent-based
crowd model.

Every agent in the crowd model is characterizethbyfollowing set of attributes:

e Spatial position in continuous 2D space
e Behavior state, one aidle, running, safe, drowned
e Desired speed

Other agent parameters are given in Table 1.



Initially all agents are considered to be in tbke state. Currently we use a uniform
initial distribution of agents in empty areas oé tlnodeled region.

The crowd model proceeds in a time-stepped fashiwhtakes the following actions
at each time step of the simulation:

* Flood simulation. Our model treats the flow simulator as an extecoanponent,
which provides information about the flood at ediale step. Currently the Flood
Simulator described in [9] is used, but in prineipt is possible to couple the
agent-based simulation with any code for flood $ation. The output of the Flood
Simulator is converted into a raster flood map,chhs a binary image, marking
grid sites that are considered to be flooded. Tstees of the flood simulation out-
put may be much longer, than the steps of agemebamwd model, so we adopt a
simple method of interpolation between subsequeneated flood maps. More
details about the flood model and associated intatjpn are given in section 3.

« Global path planning. Next, a global path map to the safety zones datga. We
use a potential function path planning approach. [E8r this we compute a poten-
tial function on an obstacle map, combining statistacles with non-traversable
flooded areas. For performance reasons this céilonles performed only in a sub-
set of the iterations. Currently we specify a fiygddefined model time interval to
define the frequency of this calculation. We cattteresults of each execution of
this step for use in subsequent runs of the modlith the same flood and path
planning parameters).The use of global path plannésts on the assumption that
all agents know the entire city map and the curfiaatd situation. Such an ideal
scenario is in principle possible, but would requsome technology capable of
providing complete real-time information transfetween the agents. A more de-
tailed description of our path planning algorithnmddts variants can be found in
section 4.1.

» Agent state and desired velocity update. Following behaviours are executed:

(a) Idle agents are stationary. If an agent senses the agipng water, its state is
changed taunning. We sample the state of the flood at the agent‘seat po-
sition at a time shifted five minutes into the fi@uThis way we emulate pre-
diction capabilities of an agent. If an agent obssranother agent in than-
ning state then the observing agent transits touaning state too with some
predefined probability.

(b) Running agents are heading towards the Safe Heavens. atemtial-based
navigation model causes agents to simply try to¥okhe negative gradient of
the potential function, computed at the path plagmtage.

(c) Agents that manage to reach the Safe Heavens chhegestate tosafe.
Agents that happen to be in flooded areas are asbdrowned. Agents in ei-
ther of these states will be removed from the Satiorh.



The output of this stage is a desired velocity edor each agent. Fawunning
agents this vector points in a direction suggestedhe path planning approach
and has a magnitude equals to agent’s desired speed

« Collision resolution and agent position update. We use the RVO?2 library [14] to
implement agent-agent and agent-obstacle collismsidance logic. The library
uses the vector obstacle map to compute agentityel@rtors avoiding collisions.
The details of scene data preparation and RVO tiparare given in the section
4.2. We then use the computed velocities to obtain positions of agents for the
next iteration of the simulation.

3 Flood Simulation

The flood simulation model receives water flow satiéscharged into floodplain areas
from breached or overtopped flood defenses and #meeads the water over the
floodplain according to the city topography. We asRapid Flood-Spreading model,
described in [9] for floodwater propagation. Thedabinputs are:

* Raster height map of modeled area,
e Positions and rates of floodwater discharges.

The simulation splits the modeled region into skkedampact zones (1Z2); aggrega-
tions of a number of adjacent height map cells. Moeel iteratively updates the state
of the impact zones. Periodically the model stahes amount of discharged water,
water level and flux for each IZ affected by spiagdiood into a database table. We
convert the model data so as to form an outpuerasap of water levels on grid
cells. Any other source of data which could be ested to this form can be used by
the simulation. Each grid cell is classified ay#¢rsable or not traversable, depending
on its flood condition. Currently we simply considaster map cells with water level
greater than zero as flooded and not traversable.

As previously stated, the agent-based pedestrandcand flood models (in gen-
eral) may work on significantly different time-seal A typical reasonable time step
for an agent-based simulation of pedestrian behaviwld be in the order of seconds
(or sub-seconds). Large-scale flood models on therchand will usually adopt a
time-step on the order of minutes or even tens iolutes. Moreover, in some cases
one might want to use historical flooding datadata acquired from real world (life)
observations, so low temporal resolution might heirdnerited property of the data
used. For these reasons it is desirable to havethoah capable of interpolating be-
tween coarse flooding time steps. We use the fafigwgtrategy to do this. Consider
two consecutive flooding time stepstatandt;. Proceed through following steps to
interpolate between them:

e Build raster traversability maps for each of thefyix,y) andf,(x,y),
wheref;(x,y) = 1, if raster grid cell is not traversable (flooded)d O oth-
erwise. We make an assumption thiaty f, < f; i.e. flooded areas don't



become traversable again durithe simulation. We need to interpoli
smoothly between binary functiof, andf; for values of € [t,, t{].

e Build two distance transforms: dy(x,y) of function 1 — f,(x,y) and
d,(x,y) of functionf; (x,y). Distance transforntomputes the diance to
nearest zero pixel for each pixeltheinput image in terms of given distan
function (we use Euclidian normrWe use an OpenCV [19%nplementatior
of analgorithm described in15] for the construction of thdistance tras-
form.

e Compute amorph coefficient w = d,/(d, + d,) for each pixel in the tn-
sition zone wheref, # f;. Then the interpolated traversability functi

fo fo=N1
fix,y) ={ 1 fo #fiw=sw
0, fo# fiw>w;
where w, = (t — ty)/(t; — ty) is a morphing threshold for a particule
time value.

— flood front at ¢,
— flood front at ¢,
interpolated flood

Fig.2. Flood map spatio-temporal interpatat

4  City Evacuation M odel

Our agent-based crowd model mimics the behavior of pedestrians heading
from dangerous regions towards the predefined safe areas. Inputs of the model
are:

< City topography data, including raster height n(also used for flood nd-
eling), and avector obstacle map, which contains locations afdimgs,
fences and other obstacles. Scbuildings or map areaare marked as Sa
Havens.



« Demographics data, including population distribatiof people across the
modeled area, the distribution of walking speeds @ther agent characteris-
tics.

e Results of hydrodynamic modeling of the flood ie form of a traversabili-
ty mask for a current time step, as described oii&@e 3.

We use the raster height map as a topography noddbEe region. This is the same
height map that is used by the flood simulation. ¥&ssify all grid cells as either
obstacles or empty spaces. In a used height mageathtions higher than 3 meters
belong to buildings, this produces a reasonabléacless map. For regions with more
complex obstacles (high fences and low buildingshae sophisticated strategy is
necessary with tracking steep elevation gradients.

Pedestrian behavior models often separate the tgagent behavior into several
layers [17, 18], where each subsequent layer cientine underlying layer and rece-
ives feedback from it. The decisions made by eag®rl depend of the agent state
(memory) and perception. In our model we split #gent motion model into path
planning and collision avoidance. Every time stép, path-planning subsystem com-
putes adesired velocity vector for each agent. Currently in our model this vedsor
guaranteed to leadinning agents to the Safe Heavens. This is a simplifiggt@ach
that can be replaced by a suboptimal path planmniitly intermediate destinations.
The magnitude of thdesired velocity vector is equal to the agent’s preferred speed.
For agents in other states their desired velosigssumed to be zero. Desired velocity
vectors are passed to the collision avoidance stdasy which assigns agents new,
real velocities based on their desired velocities eurrent velocities of their neighbor
agents. In the following subsections we describgr@gches to control the agent's
behavior on both layers used in the model.

4.1  Path Planning

We use the Artificial Potential Fields (APF) methfd the agents’ path-planning.
This is a well-known path-planning tool [13], hehe basic idea is to define a poten-
tial functiong over the modeled space in a way that followingrtbgative gradient of
¢ leads agents to the destination, while avoidintisions with static obstacles. There
are many methods for constructing such functiossutised in the robotics literature
[20]. Many of those papers discuss simple yet igffictechniques like using a super-
position of attractive APFs of one or more targetd repulsive APFs from obstacles.
The advantages of such techniques are computatéfficiency, implementation
simplicity and the ability to produce smooth anéegaaths. One of the major draw-
backs is the sensitivity to unwanted local mininfattee used potential functions.
There are some suggested strategies for addretbéingsue that try to detect when
the agent is stuck in spurious minimum and modify APF in an attempt to eliminate
it (e.g. by varying obstacle repulsive fields opiaing previously visited locations).
Another way to avoid the local-minima problem isetplicitly construct an APF
with minima in destination points only. Several egathes for the construction of
such functions (sometimes calladvigation functions [21]) are commonly used, me-



thods based oekonal [23] or Laplace [22] equations are particularly popular. Exam-

ples of different navigation functions are showtrigure 3.
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Fig.3. Potential functions contour lines for: (a) eikorglation with wall avoidance,
(b) eikonal equation with wall following, (c) Lape equation.

In our work, the Eikonal equation is used. We sawvgartial differential equation
that governs the behavior of a potential functi}an spatial domai:

IVe(Oll = c(x), c(x) >0,x € D\T 1)
@(x) =0, x€JT,

whereT denotes target regions ao) is a positive cost function. The cost function
is equal to infinity in obstacle regions. In trasaile space regiom$x) equals to unit
cost (in time or fuel) of passing through a pattcyoint. It is possible to modify an
agents’ path-planning strategy by varying this chstction. For example, Fig.3a
shows an example of heading to a destination wdi@ding moving too close to
obstacle boundaries. Fig. 3b shows an alternatiagegy, where the agent tries to
move along the obstacle boundaries. This is acHibyesetting the cost function near
obstacles to higher or lower value than in the cgpace.

It can be shown [21], that for any pointhfollowing the direction of-V¢ will
lead to a given destination region by a minimalt gth. Absence of unwanted local
minima is guaranteed by explicitly settikigp # 0 for all traversable space points.

We use a numerical solver based on a modified Dgkalgorithm to solve equa-
tion (1) on a two-dimensional Cartesian grid. Ititgily it can be described as a mod-
el of shock-wave propagation. The algorithm stldsn target sites and adds nodes to
a visited set one-by-one. Every time step, it take®de with the smallest estimated
wave front arrival time and re-calculates arriviahe for the unvisited neighbors.
More details can be found in [23]. While being @eably efficient, this algorithm
suffers from poor scalability due to its sequentiature. Parallel methods of solving
equation (1) are preferable; some methods can leeen adapted for GPU computing
[24].

Figure 4 shows a close-up picture of an obstacle. BEck arrows indicate the di-
rection of the steepest decrease of the potentigition. Grey cells indicate grid sites
marked as obstacles. It can be seen on the figpatethie navigation function is de-
fined even for obstacle cells. This is done becamseapproximate raster obstacle
contours with simplified polygons used by the siln avoidance model. Some cells,



marked as obstacles may fall of this approximatie use the Douglas—Peucker
algorithm [16], which guaranties that the resultpalygonal approximation lies with-
in a certain given threshold from the initial camtoVery low thresholds generate
contours that follow the raster defects of the atlst map. To avoid this we use a
higher threshold value (one pixel in this examplejch gives a more realistic con-
tours but causes some boundary obstacle pixelgltooff the polygonal obstacle
boundary approximation. If an agent gets to sudhtpbstill needs a defined naviga-
tion direction to continue its motion. However qath planning algorithm stops on
raster obstacle boundaries and does not providengayingful direction inside them.
To avoid confusion we provide some reasonable ngpwdirection for grid sites
marked as obstacles. To do this, we run two paginrphg passes: one for empty
spaces with destinations in the Safe Heavens amdttier one for obstacles with
destination in empty spaces. The combined navigatiap is shown in Figure 4.

Fig.4. Part of obstacle map (buildings are shown in gvétf) vectorized obstacles
and navigation map directions

4.2  Collison Avoidance

We use the collision method implemented in the @atiReciprocal Collision Avoid-
ance (ORCA) method [14] for local collision avoidanbetween agents. The imple-
mentation uses RVO?2 library. The library analysasheagent’s neighborhood and for
each neighboring agent or obstacle the library ageypa subset of allowed veloci-
ties, which avoid collision with this particularexg or obstacle in a given time inter-
val. If the intersection of these subsets is noptgthe library uses 2D convex linear
programming to find allowed velocity vector clos&sthe agent’s preferred velocity.
Otherwise it tries to find a velocity that minimi&éhe overlap of the agents. In this
case the new agent’s velocity doesn't depend opritgerred velocity and it “goes
with the flow”. In our simulations interpenetratohetween agents were reasonably
small even in crowded conditions.

The standard RVO?2 library uses polygonal represenis for static obstacles. We
use the vectorization procedure described eaflete that we vectorize static ob-
stacles only. Avoiding flooded regions is achiewsdpath planning only, not using
collision avoidance.



5 Results

In this section we describe the results of extensims of our model with varying sets
of parameters. An example of simulation resultshewn in Figure 5. At the begin-
ning of the simulation all agents are IDLE and dyetstributed in the streets. Then
some agents start evacuating as the alert zonevifsimogrey) spreads from the left
part of the scene.

Agents move towards the safe zones and alert @gents of their way. This
process spawns an avalanche of evacuating ageuntsle@ault simulation settings are
based on trying to provide reasonable values fggaabmeters. Table 1 gives a list of
used model parameters:

Table 1. Default model parameters.

M odel parameter Value

Number of simulated agents 10000

Grid size (heightmap, path map, obstacle map) 78Px5

Grid step 9.42m

Agent preferred velocity (mean, std) 4.0 km/h, kn2h
Agent maximum velocity 8.0 km/h

Probability of arunning agent to alert the neighbors withjiird.02
a second

Agent alert neighborhood radius 36 m

Crowd simulation time step 0.5s

Radius of a circle approximating agent body size 5mD.

Path map update interval 30 s of model time

Our default settings allowed almost all agentsdcape the flood. The evolution of
agents’ states over time is shown in Figure 6.

The number of casualties equals 57 for this sinarainterestingly, most of these
casualties are the result of agents being cutroffifthe evacuation routes due to the
rapid flood spreading.

To study the influence of simulation parametergh@nsimulation results, we con-
ducted a series of model runs with varying meamtagesired velocities and alert
radices. Resulting numbers of casualties for differsimulation parameters are
shown in Figure 7.

As expected the number of drowned agents decreasmean velocity increases. It
can be observed that for small agent velocitiesa(oapidly approaching flood) the
ability of agents to spread information about tleod can play an important role in
decreasing the number of casualties. For examptea fmean velocity equal to 0.7
m/s, increasing the alert radius leads to more ¢havo-fold decrease in casualties.

The agent alerting capability is far less importaiien the velocity of agents is
sufficient to avoid the approaching flood watereewithout preliminary notification.
These cases are shown to the right of the dashedhliFigure 7.



Fig.5. Two time steps of the evacuation simulation. Evacuatsotriggered as
reaction to the flooding of Vasilievsky Island it. Petersburg. Dark regions show
flooded zones. Gray zones are "alert zones" whgeeta see the flood and stara-
cuating. Orang@oints are the running agents. Grey points aretagerawareof the
approaching flood.
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Fig.6. Agents’ states evolution in time for defamodel parameters
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The current distance-based alerting approach te geinsitive to the initial distri-
bution of agents. The experiments were conductenhibiglizing agents using a uni-
form distribution in empty areas of the modeledioag Results may become very
different for different agent density (this curdgndepends on the number of agents)
or distribution structure (e.g., sparse set of datigsters).

5.1 Junction Effects

Our simulation region has enough room to provideongested flow of agents eva-
cuating from the flooded areas to the safe zomesrder to test the behavior of our
model in crowded scenarios we reduced the grid peepmeter of the simulation
from 9.5 to 2.0 meters, leading to a more thanir22g region area decrease. This led
to a rapid spread of the flood alert, since thenagéert radius was not modified. As
Figure 8 shows, all the agents quickly run towatus exits, causing congestion in
narrow passages.

Road junctions limit the rate of agents leaving tedeled area. The line separat-
ing the IDLE and RUNNING zones is much steeper ttta RUN-SAFE line in
Fig.8a. Compare this to Fig.6, where the numbeswaicuated agents almost follows
the number of alerted agents up to the delay iored by agents traveling time.

Fig.8b shows an example of a close up of such juraation. While the RVO colli-
sion avoidance model behaves reasonably well in doe¢d medium crowd density
conditions, it allows some agent interpenetratiorhigh density condition. Such
zones of crowd “thickening” might be the signs @fhderous regions, where high
pressure levels may cause injures. However, thenggiral nature of the RVO mod-
el does notconsider such agent properties as rfass, friction, etc. Therefore it
does not provide a quantative way to measure the té pressure inside a crowd.
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5.2 Performance

Our system handles scenarios containing up to 1@086uating agents 77 compu-
tational time stepper secon( With a time step of 0.5 sye simulate evacuatio38
times faster thaneal time. We run path map update proceduegsry 30 seconds
model time. Calculations of the path map took at% ofthe execution time. Not
thatwe cache computed path maps, so subsequent rung afiodel with the sarr
environment and path planning parameters ran ad@Wt faster. Theremaining ex-
ecution time is dominated ksensing (querying agent neighboas)d avoiding coi-
sions. Performanceas measured can Intel Core i7 2.93GHz quambre CPL.

6 Conclusion and Future Plans

In this paper we have presented a model o-scale evacuation which is coupled t
rapid flood dynamics model. Through experimentatiom have showthatthe pro-
posed mdel is capable of producing visually adequate &tmans of crowd evaa@-
tion. Beyond this, our experiments offer a numbkemteresting insights which w
plan to investigate in the future. Below we summmathese key observatio

While an increase iagent velocities allows more agents to escapeldloe fthere
is still a residual number of casualties (Fig. Qe of these may be avoided Im-
proving the agent path planning strategy, botth@rhodel and reality. For examp
avoiding zones that ¢ expected to be flooded soon, via some form of fastanight
be one way to improve the survival rate. Anothepantant source of casualties
groups of agents trapped in isolated areas dueittal irapid spreading of the floo
These observations ehasize the importance of careful evacuation pagmrphg,
especially when considering the possible scenafidl®od development. One imr-
tant factor that was shown to influence the reaflsvacuation is the ability of ager
to sense the approach flood. Related to this observation, we found thditshof
agents to spread the flood alert further arounddlaed can improve survival in sor



cases. The importance of this ability decreasdseing almost insignificant in cases
where agents are able to run fast enough to edbapapproaching flood, hence re-
ducing the need for prior alert.

In future we plan to make a few important extensitm our model, such as indi-
vidual randomized graph based path planning, mapéisticated information transfer
between agents, incorporation of social relatiomd walking-in-water models. One
final, and most important, open question is the ehadlidation. We plan to investi-
gate the possibility of conducting an experiment reproducing some historical
events (e.g. [1]).
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