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Abstract. Crowd modeling is one of the key components of risk analysis and 
evacuation planning in emergency situations. This paper presents a simulation 
environment for experimenting with different city evacuation scenarios. The 
simulation couples a flood model with a crowd escape model. The developed 
agent-based crowd model mimics the behavior of pedestrians escaping from 
dangerous regions towards safe areas. The system is evaluated through a series 
of experiments, modeling the flooding of an area in St. Petersburg, Russia. 
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1 Introduction 

Global warming and rising sea levels have seen an increase in the severity and fre-
quency of urban floods worldwide. Governments are now struggling to understand 
and provision for possible future emergencies that may involve mass evacuation of 
large cities. This problem is especially true for countries with cities that lie close to 
sea level, and those cities with large surrounding water mass. St. Petersburg, Russia is 
one such city. With a large sprawling river system and a central island surrounded by 
water, the city has historically experienced a number of major floods, many of which 
have had significant impact [1]. In order to better prepare for such floods it is possible 
to use simulation as a means of understanding how different flooding scenarios might 
impact the city and how the flow of water might be controlled to mitigate the overall 
impact [2-8]. 

In some cases, particularly with increasing severity of flooding, there is real risk of 
fatalities in the city population. Understanding how best to evacuate or manage the 
people of the city should help reduce the likelihood and level of danger in such scena-
rios. Again, simulation can be used to help analyze these questions. In this context 
crowd modeling is one of the key components of risk analysis and evacuation plan-
ning for emergency situations. However, to fully analyze and prepare the correct 



evacuation measures it is essential to understand the interacting dynamics of the flood 
and the human populations. In particular we want to be able to understand for a varie-
ty of possible flood scenarios, what the best strategy is for ensuring the safety of the 
population, and how to adapt the environment in order to increase the survivability of 
the city populous. 

There are several well-known methods to assess the impact of the flood to the ur-
ban areas. Some of them consider the economical effects of flooding [9], while others 
focus on estimation of the number of fatalities [10-12]. Some of these use empirical 
models which try to predict the number of casualties by some heuristic rules. For 
example [11] uses numerical flood simulation to estimate the flood characteristics 
(depth, flow speed and so on) in the modeled area. They apply an empirical formula 
to estimate the fraction of fatalities (mortality function) for each spatial location. Giv-
en the initial population distribution this can provide a useful estimate of the number 
of loss of life events. 

Some authors use agent-based modeling (ABM) to employ more details of popula-
tion behavior into the simulation. For example [10] uses ABM to model the cycle of 
daytime routines being interrupted by a flood. The authors consider the case of ve-
hicle evacuation over a road network. The Life Safety Model [12] is another agent-
based model of flood evacuation; it uses a sophisticated set of rules to predict loss-of-
life events depending of agent’s health condition and actual location (building, ve-
hicle, pedestrian). 

In this paper we present an egress model which is coupled to the output of a flood 
simulation. This coupling of models provides a simulation environment with which 
different city evacuation scenarios can be evaluated. The main difference of this paper 
to the previous work is the strong orientation towards pedestrian crowd dynamics. 
Our model tries to reproduce the effects of junctions and different pedestrian path 
planning strategies. The simulation couples a flood model with a crowd escape model 
for a scenario of flooding of a region in St. Petersburg, Russia. 

The model consists of two main parts: a hydrodynamic flooding model and a 
crowd escape model. We use a Flood Simulator [9] adapted by the UrbanFlood 
project [2] from a DRFSM code developed by HR Wallingford for simulation of 
floodwater propagation. It receives water flow rates discharged into floodplain areas 
from breached or overtopped flood defenses and then spreads the water over the 
floodplain according to the city topography. The primary outputs of the Flood Simula-
tor are water levels and flow velocities in the area of the city. These outputs form the 
inputs to an agent-based model of egress that mimics the behavior of pedestrians 
heading from dangerous regions towards safe areas. More explicitly, it uses the output 
of the flood simulation to trigger the evacuation process, to compute available evacua-
tion paths and to identify those agents trapped in, or killed by, the flood. 

The remainder of this paper is organized as follows: in Section 2 we give an over-
view of our modeling approach; Section 3 describes the details of flood model intero-
peration; Section 4 explains the crowd behavior model, including the path planning 
and collision avoidance algorithms; in Section 5 we show simulation results for sev-
eral evacuation scenarios and model parameters; Section 6 concludes the paper 



 

 

2 Modeling Approach 

The novelty of our work is that we essentially couple two simulations: water spread-
ing on the lands due to overtopped defenses or breached dams, and an agent-based 
simulation of pedestrians trying to avoid the flood and to reach the safe areas. This 
section briefly describes both of those models and outlines the execution flow of the 
combined simulation environment.  

 

 

Fig.1. Outline of Flood/Evacuation simulation. 

The basic outline of the simulation execution is shown in Fig. 1. The first stage is to 
run a flood simulation, which generates output containing details of the flood dynam-
ics in the city. This data is used to instantiate the environment of the agent-based 
crowd model. 

Every agent in the crowd model is characterized by the following set of attributes: 

• Spatial position in continuous 2D space 
• Behavior state, one of: idle, running, safe, drowned 
• Desired speed 

Other agent parameters are given in Table 1. 
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Initially all agents are considered to be in the idle state. Currently we use a uniform 
initial distribution of agents in empty areas of the modeled region. 
 
The crowd model proceeds in a time-stepped fashion and takes the following actions 
at each time step of the simulation: 

• Flood simulation. Our model treats the flow simulator as an external component, 
which provides information about the flood at each time step. Currently the Flood 
Simulator described in [9] is used, but in principle it is possible to couple the 
agent-based simulation with any code for flood simulation. The output of the Flood 
Simulator is converted into a raster flood map, which is a binary image, marking 
grid sites that are considered to be flooded. Time steps of the flood simulation out-
put may be much longer, than the steps of agent-based crowd model, so we adopt a 
simple method of interpolation between subsequent generated flood maps. More 
details about the flood model and associated interpolation are given in section 3. 
 

• Global path planning. Next, a global path map to the safety zones is updated. We 
use a potential function path planning approach [13]. For this we compute a poten-
tial function on an obstacle map, combining static obstacles with non-traversable 
flooded areas. For performance reasons this calculation is performed only in a sub-
set of the iterations. Currently we specify a fixed predefined model time interval to 
define the frequency of this calculation. We cache the results of each execution of 
this step for use in subsequent runs of the model (with the same flood and path 
planning parameters).The use of global path planning rests on the assumption that 
all agents know the entire city map and the current flood situation. Such an ideal 
scenario is in principle possible, but would require some technology capable of 
providing complete real-time information transfer between the agents. A more de-
tailed description of our path planning algorithm and its variants can be found in 
section 4.1. 

 
• Agent state and desired velocity update. Following behaviours are executed: 

(a) Idle agents are stationary. If an agent senses the approaching water, its state is 
changed to running. We sample the state of the flood at the agent’s current po-
sition at a time shifted five minutes into the future. This way we emulate pre-
diction capabilities of an agent. If an agent observes another agent in the run-
ning state then the observing agent transits to a running state too with some 
predefined probability. 

(b) Running agents are heading towards the Safe Heavens. The potential-based 
navigation model causes agents to simply try to follow the negative gradient of 
the potential function, computed at the path planning stage. 

(c) Agents that manage to reach the Safe Heavens change their state to safe. 
Agents that happen to be in flooded areas are assumed drowned. Agents in ei-
ther of these states will be removed from the simulation. 



 

 

The output of this stage is a desired velocity vector for each agent. For running 
agents this vector points in a direction suggested by the path planning approach 
and has a magnitude equals to agent’s desired speed. 

• Collision resolution and agent position update. We use the RVO2 library [14] to 
implement agent-agent and agent-obstacle collision avoidance logic. The library 
uses the vector obstacle map to compute agent velocity vectors avoiding collisions. 
The details of scene data preparation and RVO operation are given in the section 
4.2. We then use the computed velocities to obtain new positions of agents for the 
next iteration of the simulation. 

3 Flood Simulation 

The flood simulation model receives water flow rates discharged into floodplain areas 
from breached or overtopped flood defenses and then spreads the water over the 
floodplain according to the city topography. We use a Rapid Flood-Spreading model, 
described in [9] for floodwater propagation. The model inputs are: 

• Raster height map of modeled area, 
• Positions and rates of floodwater discharges. 

The simulation splits the modeled region into so called impact zones (IZ); aggrega-
tions of a number of adjacent height map cells. The model iteratively updates the state 
of the impact zones. Periodically the model stores the amount of discharged water, 
water level and flux for each IZ affected by spreading flood into a database table. We 
convert the model data so as to form an output raster map of water levels on grid 
cells. Any other source of data which could be converted to this form can be used by 
the simulation. Each grid cell is classified as traversable or not traversable, depending 
on its flood condition. Currently we simply consider raster map cells with water level 
greater than zero as flooded and not traversable. 

As previously stated, the agent-based pedestrian crowd and flood models (in gen-
eral) may work on significantly different time-scales. A typical reasonable time step 
for an agent-based simulation of pedestrian behavior would be in the order of seconds 
(or sub-seconds). Large-scale flood models on the other hand will usually adopt a 
time-step on the order of minutes or even tens of minutes. Moreover, in some cases 
one might want to use historical flooding data, or data acquired from real world (life) 
observations, so low temporal resolution might be an inherited property of the data 
used. For these reasons it is desirable to have a method capable of interpolating be-
tween coarse flooding time steps. We use the following strategy to do this. Consider 
two consecutive flooding time steps at t0 and t1. Proceed through following steps to 
interpolate between them:  

• Build raster traversability maps for each of them: ��(�, �)  and ��(�, �) , 
where ��(�, �)  =  1, if raster grid cell is not traversable (flooded) and 0 oth-
erwise. We make an assumption that ∀�, � �� ≤ �� i.e. flooded areas don’t 
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Fig.2. Flood map spatio-temporal interpolation 
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• Demographics data, including population distribution of people across the 
modeled area, the distribution of walking speeds and other agent characteris-
tics. 

• Results of hydrodynamic modeling of the flood in the form of a traversabili-
ty mask for a current time step, as described in Section 3. 

We use the raster height map as a topography model of the region. This is the same 
height map that is used by the flood simulation. We classify all grid cells as either 
obstacles or empty spaces. In a used height map all elevations higher than 3 meters 
belong to buildings, this produces a reasonable obstacle map. For regions with more 
complex obstacles (high fences and low buildings) a more sophisticated strategy is 
necessary with tracking steep elevation gradients. 

Pedestrian behavior models often separate the logic of agent behavior into several 
layers [17, 18], where each subsequent layer controls the underlying layer and rece-
ives feedback from it. The decisions made by each layer depend of the agent state 
(memory) and perception. In our model we split the agent motion model into path 
planning and collision avoidance. Every time step, the path-planning subsystem com-
putes a desired velocity vector for each agent. Currently in our model this vector is 
guaranteed to lead running agents to the Safe Heavens. This is a simplified approach 
that can be replaced by a suboptimal path planning with intermediate destinations. 
The magnitude of the desired velocity vector is equal to the agent’s preferred speed. 
For agents in other states their desired velocity is assumed to be zero. Desired velocity 
vectors are passed to the collision avoidance subsystem, which assigns agents new, 
real velocities based on their desired velocities and current velocities of their neighbor 
agents. In the following subsections we describe approaches to control the agent’s 
behavior on both layers used in the model. 

4.1 Path Planning 

We use the Artificial Potential Fields (APF) method for the agents’ path-planning. 
This is a well-known path-planning tool [13], here the basic idea is to define a poten-
tial function φ over the modeled space in a way that following the negative gradient of 
φ leads agents to the destination, while avoiding collisions with static obstacles. There 
are many methods for constructing such functions discussed in the robotics literature 
[20]. Many of those papers discuss simple yet efficient techniques like using a super-
position of attractive APFs of one or more targets and repulsive APFs from obstacles. 

The advantages of such techniques are computational efficiency, implementation 
simplicity and the ability to produce smooth and safe paths. One of the major draw-
backs is the sensitivity to unwanted local minima of the used potential functions. 
There are some suggested strategies for addressing this issue that try to detect when 
the agent is stuck in spurious minimum and modify the APF in an attempt to eliminate 
it (e.g. by varying obstacle repulsive fields or avoiding previously visited locations).  

Another way to avoid the local-minima problem is to explicitly construct an APF 
with minima in destination points only. Several approaches for the construction of 
such functions (sometimes called navigation functions [21]) are commonly used, me-



thods based on eikonal [23] or Laplace [22] equations are particularly popular. Exam-
ples of different navigation functions are shown in Figure 3. 

 

Fig.3. Potential functions contour lines for: (a) eikonal equation with wall avoidance,  
(b) eikonal equation with wall following, (c) Laplace equation. 

In our work, the Eikonal equation is used. We solve a partial differential equation 
that governs the behavior of a potential function φ in spatial domain D: 

 ‖∇����‖ = ����, ���� > 0, � ∈ 	\
 (1) 
 ��x� = 0, x ∈ ∂
, 

where T denotes target regions and c(x) is a positive cost function. The cost function 
is equal to infinity in obstacle regions. In traversable space regions c(x) equals to unit 
cost (in time or fuel) of passing through a particular point. It is possible to modify an 
agents’ path-planning strategy by varying this cost function. For example, Fig.3a 
shows an example of heading to a destination while avoiding moving too close to 
obstacle boundaries. Fig. 3b shows an alternative strategy, where the agent tries to 
move along the obstacle boundaries. This is achieved by setting the cost function near 
obstacles to higher or lower value than in the open space.  

It can be shown [21], that for any point in D following the direction of −∇� will 
lead to a given destination region by a minimal cost path. Absence of unwanted local 
minima is guaranteed by explicitly setting ∇� ≠ 0 for all traversable space points. 

We use a numerical solver based on a modified Dijkstra algorithm to solve equa-
tion (1) on a two-dimensional Cartesian grid. Intuitively it can be described as a mod-
el of shock-wave propagation. The algorithm starts from target sites and adds nodes to 
a visited set one-by-one. Every time step, it takes a node with the smallest estimated 
wave front arrival time and re-calculates arrival time for the unvisited neighbors. 
More details can be found in [23]. While being reasonably efficient, this algorithm 
suffers from poor scalability due to its sequential nature. Parallel methods of solving 
equation (1) are preferable; some methods can even been adapted for GPU computing 
[24]. 

Figure 4 shows a close-up picture of an obstacle map. Black arrows indicate the di-
rection of the steepest decrease of the potential function. Grey cells indicate grid sites 
marked as obstacles. It can be seen on the figure that the navigation function is de-
fined even for obstacle cells. This is done because we approximate raster obstacle 
contours with simplified polygons used by the collision avoidance model. Some cells, 



 

 

marked as obstacles may fall of this approximation. We use the Douglas–Peucker 
algorithm [16], which guaranties that the resulting polygonal approximation lies with-
in a certain given threshold from the initial contour. Very low thresholds generate 
contours that follow the raster defects of the obstacle map. To avoid this we use a 
higher threshold value (one pixel in this example), which gives a more realistic con-
tours but causes some boundary obstacle pixels to fall off the polygonal obstacle 
boundary approximation. If an agent gets to such point it still needs a defined naviga-
tion direction to continue its motion. However our path planning algorithm stops on 
raster obstacle boundaries and does not provide any meaningful direction inside them. 
To avoid confusion we provide some reasonable moving direction for grid sites 
marked as obstacles. To do this, we run two path planning passes: one for empty 
spaces with destinations in the Safe Heavens and the other one for obstacles with 
destination in empty spaces. The combined navigation map is shown in Figure 4. 

 

Fig.4. Part of obstacle map (buildings are shown in grey) with vectorized obstacles 
and navigation map directions 

4.2 Collision Avoidance 

We use the collision method implemented in the Optimal Reciprocal Collision Avoid-
ance (ORCA) method [14] for local collision avoidance between agents. The imple-
mentation uses RVO2 library. The library analyses each agent’s neighborhood and for 
each neighboring agent or obstacle the library computes a subset of allowed veloci-
ties, which avoid collision with this particular agent or obstacle in a given time inter-
val. If the intersection of these subsets is non-empty, the library uses 2D convex linear 
programming to find allowed velocity vector closest to the agent’s preferred velocity. 
Otherwise it tries to find a velocity that minimizes the overlap of the agents. In this 
case the new agent’s velocity doesn’t depend on its preferred velocity and it “goes 
with the flow”. In our simulations interpenetrations between agents were reasonably 
small even in crowded conditions. 

The standard RVO2 library uses polygonal representations for static obstacles. We 
use the vectorization procedure described earlier. Note that we vectorize static ob-
stacles only. Avoiding flooded regions is achieved by path planning only, not using 
collision avoidance. 



5 Results 

In this section we describe the results of extensive runs of our model with varying sets 
of parameters. An example of simulation results is shown in Figure 5. At the begin-
ning of the simulation all agents are IDLE and evenly distributed in the streets. Then 
some agents start evacuating as the alert zone (shown in grey) spreads from the left 
part of the scene. 

Agents move towards the safe zones and alert other agents of their way. This 
process spawns an avalanche of evacuating agents. Our default simulation settings are 
based on trying to provide reasonable values for all parameters. Table 1 gives a list of 
used model parameters: 

Table 1. Default model parameters. 

Model parameter Value 
Number of simulated agents 10000 
Grid size (heightmap, path map, obstacle map) 782x531 
Grid step 9.42 m 
Agent preferred velocity (mean, std) 4.0 km/h, 0.2 km/h 
Agent maximum velocity 8.0 km/h 
Probability of a running agent to alert the neighbors within 
a second 

0.02 

Agent alert neighborhood radius 36 m 
Crowd simulation time step 0.5s 
Radius of a circle approximating agent body size 0.5m 
Path map update interval 30 s of model time 

Our default settings allowed almost all agents to escape the flood. The evolution of 
agents’ states over time is shown in Figure 6. 

The number of casualties equals 57 for this simulation. Interestingly, most of these 
casualties are the result of agents being cut off from the evacuation routes due to the 
rapid flood spreading. 

To study the influence of simulation parameters on the simulation results, we con-
ducted a series of model runs with varying mean agent desired velocities and alert 
radices. Resulting numbers of casualties for different simulation parameters are 
shown in Figure 7. 

As expected the number of drowned agents decreases as mean velocity increases. It 
can be observed that for small agent velocities (or a rapidly approaching flood) the 
ability of agents to spread information about the flood can play an important role in 
decreasing the number of casualties. For example, for a mean velocity equal to 0.7 
m/s, increasing the alert radius leads to more than a two-fold decrease in casualties.  

The agent alerting capability is far less important when the velocity of agents is 
sufficient to avoid the approaching flood water, even without preliminary notification. 
These cases are shown to the right of the dashed line in Figure 7. 

 



 

 

Fig.5. Two time steps of the evacuation simulation. Evacuation is triggered as a 
reaction to the flooding of Vasilievsky Island in St
flooded zones. Gray zones are "alert zones" where agents see the flood and start ev
cuating. Orange points are the running agents. Grey points are agents unaware 
approaching flood. 

 

Fig.6. Agents’ states evolution in time for default 
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Fig.7. Number of drowned agents for different agent parameters. 

The current distance-based alerting approach is quite sensitive to the initial distri-
bution of agents. The experiments were conducted by initializing agents using a uni-
form distribution in empty areas of the modeled region. Results may become very 
different for different agent density (this currently depends on the number of agents) 
or distribution structure (e.g., sparse set of dense clusters). 

5.1 Junction Effects 

Our simulation region has enough room to provide uncongested flow of agents eva-
cuating from the flooded areas to the safe zones. In order to test the behavior of our 
model in crowded scenarios we reduced the grid step parameter of the simulation 
from 9.5 to 2.0 meters, leading to a more than 22 times region area decrease. This led 
to a rapid spread of the flood alert, since the agent alert radius was not modified. As 
Figure 8 shows, all the agents quickly run towards the exits, causing congestion in 
narrow passages. 

Road junctions limit the rate of agents leaving the modeled area. The line separat-
ing the IDLE and RUNNING zones is much steeper than the RUN-SAFE line in 
Fig.8a. Compare this to Fig.6, where the number of evacuated agents almost follows 
the number of alerted agents up to the delay introduced by agents traveling time. 

Fig.8b shows an example of a close up of such road junction. While the RVO colli-
sion avoidance model behaves reasonably well in low and medium crowd density 
conditions, it allows some agent interpenetration at high density condition. Such 
zones of crowd “thickening” might be the signs of dangerous regions, where high 
pressure levels may cause injures. However, the geometrical nature of the RVO mod-
el does notconsider such agent properties as mass, force, friction, etc. Therefore it 
does not provide a quantative way to measure the level of pressure inside a crowd. 
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Fig. 8. (a) Agents’ states evolution for a crowded scenario

5.2 Performance 

Our system handles scenarios containing up to 10000 evacuating agents at 
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These observations emphasize the importance of careful evacuation path planning, 
especially when considering the possible scenarios of flood development. One impo
tant factor that was shown to influence the results of evacuation is the ability of agents 
to sense the approaching flood. Related to this observation, we found the ability of 
agents to spread the flood alert further around the island can improve survival in some 
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cases. The importance of this ability decreases to being almost insignificant in cases 
where agents are able to run fast enough to escape the approaching flood, hence re-
ducing the need for prior alert.  

In future we plan to make a few important extensions to our model, such as indi-
vidual randomized graph based path planning, more sophisticated information transfer 
between agents, incorporation of social relations and walking-in-water models. One 
final, and most important, open question is the model validation. We plan to investi-
gate the possibility of conducting an experiment by reproducing some historical 
events (e.g. [1]).  
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