Commission of the European Communities

okkokkekkkdkekskkskokskok

ESPRIT III

PROJECT NB 6756

okkokkekkkdkekskkskokskok

CAMAS

COMPUTER AIDED MIGRATION OF
APPLICATIONS SYSTEM

sk Rk skekkk sk skokskokok

CAMAS-TR-2.1.1.4
Parasol I Technical Report

ckskockososk skoskeskesk sk sk sk sk skek

Date: March 1994 — Review 3.0

ACE - Univ. of Amsterdam - ESI SA - ESI GmbH - FEGS - PARSYTEC -
Univ. of Southampton

CONTENTS CONTENTS
Contents

1 Proposed Goal 2

2 Machine Model Description 2

2.1 TheSections 0 e e e 3

2.2 Global Machine Parameters 3

2.3 Processor Parameters 3

2.3.1 Instruction Timings 4

2.3.2 CacheParameters, 4

2.3.3 Combined Processor Parameters 5

2.4 Machine Combinations 5

2.5 Topology Parameters 5

2.5.1 Processor Typesinthe Topology 6

2.5.2 Individual Link Descriptions 6

2.6 SPMD Supporting Programming Models 6

2.7 Measured Values 7

2.8 Expressions with References 7

2.9 References to Machine Parameters 8

3 Using the Machine Model 9

3.1 Acquiring Accurate Timings 9

3.1.1 The Individual Instruction 10

3.1.2 The Timing Call 11

3.1.3 Interference by Parallel Tasks 11

3.2 Interaction with the Machine Model 11

3.2.1 The Interface Between Plutand the User 12

3.2.2 Changing Processor Parameters 12

3.2.3 Changing Topology Parameters 12

3.2.4 Changing SPMD Supporting Model Parameters 13

3.2.5 The Interface Between PIUuT and Parasol II 13

4 Current state of Parasol 1 13

A The BNF Grammar 14

Arjan de Mes, Marcel Beemster, Jan de Ronde and Peter Sloot March 1994
Faculty of Mathematics and Computer Science
University of Amsterdam, The Netherlands

2 MACHINE MODEL DESCRIPTION

1 Proposed Goal

The goal of the Parasol project is make a rough estimate of the execution time of a program,
given the program source code and the machine that will execute the program. This estimate
must be given in a very short time, short enough to call the estimators response ‘interactive’.

The traditional method of estimating or calculating the execution time of a program
involves stepping through the program while the state transitions are being monitored and
simulated. The behaviour of the (possibly virtual) machine must be specified in the greatest
detail. Simulating the execution of a program on a virtual machine introduces at least
one order of magnitude overhead to the real execution time of the program, which makes
simulation unsuitable for the Parasol project.

The solution that is chosen, is to analyse the program source code and reduce it to a
summation of execution times of the instructions in the program. To do this, the program
code (Fortran) is translated into an expression called the ‘Symbolic Application Descrip-
tion’, SAD for short. Due to this translation, most of the context in which the instructions
are executed is lost.

Another global restriction, is the type of programs that can be handled. Parasol can
only handle ‘SPMD’ programs. This stands for Single Program Multiple Data-streams. In
the context of Parasol this indicates that the programs, of which the execution time is to be
estimated, have a common calculation cycle and a common communication cycle in all the
processes. At one point in time all processors in the machine will be:

- calculating or waiting for the other processors to finish calculating
- communicating or waiting for the other processors to finish communicating

Part 1 of the Parasol project (Parasol I) is to provide information about the machine
on which the code is executed. Information must be gathered concerning the arithmetic
speed of the processor(s) and communication speeds. These speeds will be used free of
context by the application reducing the SAD expression. A statement in the source code
of the program being analyzed, suchas a = b + c, will inevitably lead to the request
“How much time is needed for one addition?” and “How much time is needed for one
assignment?” These requests will come from part 2 of the Parasol project (Parasol II). This
approach indicates that there is no information available as:

- if any of the variables are stored in registers,
- if any of the variables are stored in cache,
- and if the code being executed is in instruction cache

These are problems typical of approaches where the compilation and optimization process
is skipped.

In this technical report the state of the Parasol I will be presented and described in detail.

2 Machine Model Description

The model of the machine must describe all parameters of the machine that could influence
the performance of an SPMD program running on it. For Parasol I the parameters have
been split into three main groups;

¢ a description of the processors in the machine,
o a description of the possible topologies,

o and a specification of the behaviour of the SPMD supporting functions in the PVM,
Express and MPI programming models.

2 MACHINE MODEL DESCRIPTION 2.1 The Sections

The parameters for the machine are collected in one datastructure, which can also be
saved to disk. In this section the parameters of the machine model are presented and
discussed, while traversing the BNF grammar for the file format. The complete BNF
grammar for the file format is collected in Appendix A.

2.1 The Sections

The various sections in the machine are described as follows:

machine = begin machine n/ machfield+ machsection+
machsection procsection | mcombsection | topsection |
pvimsection | expresssection | mpisection

procsection = begin processor nl procspec+ end processor nl

mcombsection = begin machinecombinations n/ mcombspec--
end machinecombinations »/

topsection == begin topology nl topspec+ end topology nl

pvmsection 2= begin pvm nl pvmspec+ end pvm nl

expresssection = begin express nl expressspec+ end express nl

mpisection == begin mpi n/ mpispec+ end mpi nl

The start symbol for the machine description is machine. From within this main section
the processors (procsection), the machine combinations (mcombsection), the topologies
(topsection) and the SPMD supporting programming models (pvmspec, expresssection and
mpisection) can be specified. Multiple processors and topologies can be defined, the other
sections are expected once each. If the sections that are expected once are defined more
than once, the last definition will be the one used.

2.2 Global Machine Parameters

A few machine parameters do not fit in any of the above mentioned sections, or are
considered ‘global’ to the machine:

machfield = id | name | proccount | topcount
id = id = integer nl

name = name = string nl

proccount = Pprocessors = integer nl
topcount = topologies = integer nl

The id, name, proccount and fopcount fields are each expected to be defined exactly once. If
defined more than once, the last definition will be the one used. The definitions for integer
and string can be found in Appendix A.

The id field defines a reference key for this machine. When applications working with
the Parasol I model refer to a machine, it should be done using this integral number.

The name field defines a character string name for the machine. This field is for
interactive applications that wish to present the name of the machine.

The proccount and topcount fields are defined for reference purposes; references are
described in section 2.9. The proccount field defines the number of processor types in the
machine, it has no reference to the number of processors in the machine. The topcount field
defines the number of (possibly virtual) topologies specified for this machine.

2.3 Processor Parameters

For each processor in the machine, parameters may be defined. These parameters are split
up into four types; timings of instructions (and intrinsic functions), specification of the

2 MACHINE MODEL DESCRIPTION 2.3 Processor Parameters

cache, combined processor parameters and parameters that do not fit in the former three
types. The latter is discussed first:

id | name | sloopspdup |

begin timings nl rimings+ end timings n/ |

begin cache n/ cache+ end cache n/ |

begin combinations nl combined- end combinations !/
id w= id = integer nl

name name = string nl

sloopspdup smallloopspeedup = timing nl

procspec

Within the processor specification, no parameters are expected to be defined more than
once; if any of them is defined more than once, the last definition will be the one used.

The id and name parameters fulfill the same purpose for the processor, as they do for
the machine in section 2.2.

The sloopspdup parameter defines the average speedup of instructions (as specified in
section 2.3.1) if they are present in the instruction cache. How this parameter is to be used
is discussed in section 3.2. The BNF reference timing is discussed in section 2.7; it is a
measured value.

2.3.1 Instruction Timings

The performance of a machine is greatly influenced by the performance of the processors in
the machine. The most frequently executed instructions by Fortran programs are arithmetic
instructions, flow control instructions and intrinsic functions. Instead of presenting the BNF
grammar for this section (which can be found in Appendix A), the separate parameters are
discussed here according to these three categories.

The arithmetic instructions commonly used in Fortran programs are addition (and
subtraction), multiplication, division, power with integer exponent and power with real ex-
ponent. For ease of use, assignments and memory transfers are also classified as arithmetic
instructions. The seven arithmetic instructions listed above are present in the Parasol I ma-
chine model for the following numeric types: integer, float, double precision and complex.

The flow control instructions commonly found in Fortran programs are either simple
goto statements, computed goto statements or procedure call statements. The overhead
introduced by loops is also classified as a flow control parameter.

The Fortran intrinsic functions, except for those that do character handling, are all
specified in the model for each datatype they operate on.

All the instructions listed here are measured using benchmarks, this is described later
in section 3.1. The results of these measurements are timings; the number of seconds
required to execute the instruction. These include instruction fetch and parameter fetch.
For representation of measured values see section 2.7.

2.3.2 Cache Parameters

The cache parameters are purely provided to specify a more complete model of the machine.

cache = size = integernl |
speed = timing nl |
speedratio = expr nl

The cache speed is already incorporated in the instruction timings and together with the
cache access speed ratio over normal memory they provide little extra information for
performance estimation. They do however provide for a better insight for humans as to
how the machine is set up. The cache speed is the time needed to retrieve one word (the
bandwidth) from cache.

2 MACHINE MODEL DESCRIPTION 2.4 Machine Combinations

The cache size is useful in combination with the small loop speedup factor presented
in section 2.3. When estimating the performance of a program, the estimator might decide
that the loop in the program is so small, it fits into the cache. It can then use the small
loop speedup factor to see what happens to the performance. This is explained further in
section 3.2.

2.3.3 Combined Processor Parameters

In this section parameters concerning the processor speed are compared to communication
parameters. It is common practice to specify such ratios.

combined = combparams = expr nl
combparams = ia_spd | im_spd | da_spd | dm_spd | dd_spd | ds_spd | dp_spd

These parameters stand for integer addition, integer multiplication, double precision addi-
tion, double precision multiplication, double precision division, double precision sine and
double precision power respectively divided by the maximum amount of bytes that can be
output by the processor per second.

The BNF reference expr is explained in section 2.8. The expressions used in these
definitions usually consist of a reference to a processor timing (section 2.3.1) multiplied by
a reference to the topology (section 2.5). Defining these parameters in the processor section
might not seem logical, since they combine parameters from this section with those from
the topology section, but for ease of reasoning one might say: the maximum output speed
is also processor dependant.

2.4 Machine Combinations

Very few parameters give a global impression of the machine. [Markatos92] presents
the sum of the maximum transfer rates of all the processors as a useful index for the
communications performance. This parameter is therefore specified in de model, though
it provides little extra information for performance estimation. This parameter has the
following BNF grammar:

mcombspec = maxtotalspd = expr nl

The BNF reference expr is explained in section 2.8.

2.5 Topology Parameters

Multiple topologies may be specified in one machine. In this manner virtual topologies can
be specified and described per link.

topspec = id | name | hardware | create | proccount | linkcount |
begin procid nl procident+ end procid n! |
begin linklist n/ link+ end linklist n/

id w= id = integer nl

name = name = string nl
hardware = hardware= (0| 1) n/
create := creation = timing nl
proccount = Pprocessors = integer nl
linkcount = links = integer nl

The above parameters are all expected to be defined once per topology. If any of them is
defined more than once, the last definition will be used.

The id and name parameters fulfill the same purpose for the topology, as they do for the
machine in section 2.2.

2 MACHINE MODEL DESCRIPTION 2.6 SPMD Supporting Programming Models

The hardware parameter defines if this topology is the hardware topology or a virtual
topology. This parameter is not likely to be used in performance estimation, but indicates
the default topology for the machine.

The create parameter defines the amount of time needed to setup this topology. If a
program of which the execution time is to be estimated uses this topology, the creation
time must be added. The BNF reference timing is discussed in section 2.7; it is a measured
value.

The proccount field defines the number of processors used in this topology. This is
opposed to the proccount field in the global machine parameters (section 2.2) where it
indicated the number of types of processors in the machine. For each topology a processor
type must be defined for every processor, this is discussed in section 2.5.1.

The linkcount field defines the number of links in this topology. Each link must be
defined separately. This is discussed in section 2.5.2.

2.5.1 Processor Types in the Topology
A processor type description has the following BNF grammar:
procident = plinteger] = integer nl

For each processor — as defined by proccount in section 2.5 — a processor type must be
defined. The processor number (the first integer) must be between one and the value for
proccount (inclusive). The processor type (the second infeger) must be defined in the same
machine definition, though the processor type may be defined after the topology is defined.

2.5.2 Individual Link Descriptions

Each link in the topology is defined separately. They are listed in one block as defined in
section 2.5. A link description has the following BNF grammar:

link
linkelt

begin link 7/ linkelt+ end link nl
id = integer | latency = timing nl |
speed = riming nl | connect = integer+ nl

For each link an id is specified. This is for reference purposes only and must be a number
between one and the value of linkcount (inclusive) as defined in section 2.5. The links need
not necessarily be defined in id-order.

The latency is a measured time (see section 2.7) and represents the time that passes
between the moment of the send call and the moment that the entire message arrives (and
can be used) at its destination.

The speed field defines the time required to send one byte over this link and is expressed
in seconds.

The connect field defines connectivity of this link and is specified as follows: the first
integer following the assignment defines the number of processors connected to this link.
This should be a number greater than one. The integral numbers following the first specify
the processor numbers that are connected. These numbers must be between one and the
value for proccount (section 2.5).

2.6 SPMD Supporting Programming Models

To make a parallel program usable on many different types of computers, it is common
practice to write such programs in a standard parallel programming model. Currently, the
PVM, Express and MPI platforms are commonly accepted as standards. The Parasol 1
model defines the behaviour of the functions in these platforms that are needed for SPMD

2 MACHINE MODEL DESCRIPTION 2.7 Measured Values

application programs. This usually involves functions for send and receive, packing and
unpacking the data before and after these calls.

The SPMD model functions that will be present in the final model represented by
Parasol I will not be exactly what is specified here. The feasibility of representing all three
models still needs further research. What is presented here is implemented in the model,
but the fields are not yet filled in for any of the SPMD models. Until further research is
done, the BNF grammar is as follows:

pvmsection 2= begin pvm nl pvmspec+ end pvm nl
pvmspec = pvmfunc = expr nl
pvmfunc = sync | broadcast | multicast | send | receive |

packbyte | packdouble | packfloat | packint |
packlong | packstring | unpackbyte | unpackdouble |
unpackfloat | unpackint | unpacklong | unpackstring

expresssection = begin express nl expressspec+ end express nl
expressspec = expressfunc = expr nl
expressfunc = sync | broadcast | multicast | send

receive | exchange | combine | concat
mpisection = begin mpi nl mpispec+ end mpi nl
mpispec = mpifunc = expr nl
mpifunc = send | receive

All the SPMD model parameters are specified with expressions (see section 2.8). These
expressions will contain many references to other machine parameters since the SPMD
functions are implemented using lower level instructions (represented in other sections of
the Parasol I model).

2.7 Measured Values

A timing in the Parasol I model is specified by a real number specifying the time in
seconds (except when explicitly defined differently). The measurement of the execution
time of one instruction or other measurable action can vary due to clock grain size, system
dependant optimization, cache hits and missed, and so forth. Therefore multiple samples
of the instructions execution time are taken and averaged. The standard deviation of these
measurements is also calculated.

So a timing in the Parasol I model consists of an average time and to provide an
impression of the accuracy of the measurement, the standard deviation may also be specified.

timing = float float?
The first value of the timing is the average value, the second value is the standard deviation

of the measured samples.

2.8 Expressions with References

Expressions as machine parameters are used to define how the execution time of the
function being described is constructed from other machine parameters. An expression in
the Parasol I model has the following BNF grammar:

2 MACHINE MODEL DESCRIPTION 2.9 References to Machine Parameters

expr = expr binaryop expr | unaryop expr | (expr) |
Junction (expr) | reference | float | integer

binaryop = .|+ |% /]| % |xx|==|>=|>|<=]|<|!=]|
>>|<< | & ||| && | I

unaryop = =|!]~

function = abs | acos | asin | atan | cos | cosh | double |

exp | floor | int | log | logl0 | round | sgn |
sin | sinh | sqrt | tan | tanh
float = 2digitt . digitk(e(-|+)2digit+)?

integer = digirt | Oxhexdigit-+
digit = 0|1]|2]3|4|5|6/7|8]9
hexdigit = digit|A|B|C|D|E|F

References (reference) are explained in section 2.9. These expressions can express a wide
range of complexities. The precedence of the operators is the same as is defined in the C
programming language.

An example expression with references could look like:
(4=pt(1).ila + 2=pt(1).ils + pt(1).goto) / pr(1).smallloopspeedup

This example could represent the execution time used for one pass through a non-terminating
loop, with the code

10 a=b+c+d+ e
b=a+ a
goto 10

Thus: four integer additions and two assignments, both with local parameters. Added to
this is one goto instruction and this loop code is considered to be in cache so the resulting
time is divided by the small loop speedup factor.

2.9 References to Machine Parameters
References are basically pointers to other fields in the machine description.

reference = ma.(id|processors|topologies) |
pr{integer).(id|smallloopspeedup) |
pt(integer).timeparams |
pc(integer).(size|speed|speedratio) |
po(integer).combparams |
mc.maxtotalspd |
to(integer).(id|hardware|creation|processors|links) |
tp(integer)(integer) |
tl(integer)(integer).(id|latency |speed|connect(integer)) |
pv.pvimfunc | ex.expressfunc | mp.mpifunc

A few BNF terms are not mentioned here, they can be found in Appendix A. The ma prefix
stands for a global machine parameter (section 2.2). The fields from that section can be
referred to using this prefix. The pr, pt, pc and po prefixes are references to a processor
definition; global (2.3), timing (2.3.1), cache (2.3.2) and combined (2.3.3) respectively.
To refer to the correct processor, these four prefixes must be followed by a processor id
number.

The me prefix refers to the combined machine parameters. The only field that can be
defined in the mcombsection section is the maxtotalspd field.

The to, tp and tl prefixes are references to the topology definition; global (2.5), processor
definitions (2.5.1) and link descriptions (2.5.2) respectively. The integral number following

3 USING THE MACHINE MODEL

the prefix defines the topology id number referred to. The tp prefix is followed by a
second integral number; this is the number of the processor in the topology. It refers to the
processors type. For the tl prefix the second integral number refers to the link id number
being referenced.

Referring to the connectivity of a link needs some extra attention. A connectivity
reference with parameter 0 refers to the number of processors connected to the link. Other
references to the connectivity, with a number between one and tI(...)(...).connect(0),
return what processors in the topology are connected to the link.

The pv, ex and mp prefixes refer to the PVM, Express and MPI programming models
respectively; of which only the SPMD supporting functions are modelled. References to
expressions return the value represented by the expression.

3 Using the Machine Model

This section describes how the Parasol I model will be filled with data representing a
(possibly virtual) machine and how Parasol I will interface with Parasol II.

3.1 Acquiring Accurate Timings

To explain how the correct data is acquired for the Parasol I model, an example is presented
in pseudo code; the actual code is in Fortran:

// first run

start = gettime ()

loop index = 1 to samplesize
value_A = datal[index] [1]
value_B = datal[index] [2]
value C = datalindex] [3]
result = value_A + value B

endloop
end = gettime ()
firsttime = end - start

// second run
// determine increment due to extra addition

start = gettime ()
loop index = 1 to samplesize
value A = datalindex][1]
value B = datalindex][2]
value C = datalindex] [3]
result = value_ A + value_B + value_C
endloop
end = gettime ()
secondtime = end - start

// addtime is average time needed for an add instruction
// where one argument is retrieved from memory

addtime = (secondtime - firsttime) / samplesize

In the following subsections the problems in measuring the timings are discussed.

3 USING THE MACHINE MODEL 3.1 Acquiring Accurate Timings

3.1.1 The Individual Instruction

In the Parasol I model, the abstraction level makes it difficult to separate the time needed
to execute an instruction into all the phases that are passed at the machine level. Instead,
the timings presented for the instructions include instruction fetch (from memory) and
parameter fetch (if present from data cache).

Whether or not an instruction is in the instruction cache depends on the context in which
the instruction is executed; a loop that fits into instruction cache will execute faster than a
loop that exceeds said cache. If loops fit into instruction cache depends on different factors;
the amount of source code in the loop, what the compiler does with it and of course the size
of the instruction cache.

Parasol does not work with compiled code, but with the Fortran source code. Therefore
it is very hard to determine how much Fortran code will result in how much machine code.
The way Parasol works around this is by defining a speedup factor for ‘small loops’. In the
example code (at the beginning of section 3.1), the loop size is increased by repeating the
lines with result = alarge number of times, thereby forcing the loop code to become
larger than the cache.

The most accurate solution would be providing a context in which the instruction is
being executed. A context is easily made available during simulation, but that is not the
intention of this project. In Parasol II all instructions are seen without context.

The timings in the model incorporate argument fetch times. These arguments can be in
registers, data cache or memory. Where the arguments, needed for an instruction, are,
depends on the source code, the compiler, the operating system (are application programs
permitted to operate the cache?) and again: the size of the data cache. Because compiler
actions are not modelled, there is no way to determine when data is in registers. To
determine what arguments are in data cache context is needed.

To get realistic behaviour of the model nonetheless, an average value for the time needed
to execute the instruction should be used. To get the perfect average, one would have to
know how many cache hits, misses and register optimizations there are in the application
being modelled on the machine being modelled. This is very unfortunate since the goal
is to model a large group of SPMD application programs. This implies having to run the
application program to get enough information about it, to estimate its execution time.

In the Parasol project there is no special solution for this problem. The example at the
beginning of section 3.1 shows that it is very likely that all arguments to the instruction are
fetched from cache (when the machine being modelled has a data cache).

Where the arguments to an instruction can be found also depends on where the programmer
defined the variable being used. In the model, a distinction is made between local and
global variables. In the above example, this distinction can be made by defining the
variables value_A, value_B, and value_C in or outside the subroutine. In Fortran,
outside the subroutine means using a COMMON block to share the variables.

For the Fortran intrinsic functions modelled no distinction is made as to the locality of
the parameters. Fortran implements these functions with a function call

Instructions may take more or less time, depending on the value of their arguments. With an
instruction such as mul it is apparent that the evaluation can be done faster when one of
the arguments is 1 (one) or O (zero). Based on the lack of context attained in the Parasol II
project, the assumption is made that it is not necessary to consider this type of exception
when measuring the execution time for these instructions. Therefore, when measuring time
for low level instructions, only more complex arguments are passed to the instructions.

A stable and usable average instruction time can only be measured using different argu-
ments to the instruction. The average should then be taken over the collective time used by
these instructions. This average is not guaranteed to be the same as the average of the corre-

3 USING THE MACHINE MODEL 3.2 Interaction with the Machine Model

sponding application program. Large arrays containing the precalculated random numbers
are used to avoid having non-deterministic behaviour of functions such as random () in
the loop. The time to index an array has been taken into account in the example (at the
start of section 3) by executing the same array references in both loops, so value_C is
assigned values in the first loop that are never used.

3.1.2 The Timing Call

The system call to retrieve the time also occupies some time. In the example presented
above, these delays are eliminated because they are present in the same form in both
loops. The difference in execution time of the loops is used as time needed to execute the
instructions in the loop thereby ignoring time occupied during time calls.

A problem with the clock is the grain size. The shortest measurable time greater than zero
may be so large that it exceeds the execution time of an instruction. For example consider
a Transputer (say Inmos T805) with a clock speed of 20 MHz. The high priority timer on
the Transputer makes one tick every microsecond, i.e. one tick every 20 processor cycles.
This makes it difficult to measure if an instruction (e.g. add) takes 1, 2, or many more
cycles to execute.

As explainedin section 3.1.1 the loop size had to be increased to overflow the instruction
cache. The problem of the clock grain size does not need further attention because the in-
structions needed to fill a cache usually occupy quite a few clock ticks. When no instruction
cache is present (as in the Inmos T805) the clock grain size forces more instructions into
the loop or more iterations of the loop.

3.1.3 Interference by Parallel Tasks

All machines that are likely to be modelled in the Parasol project have the possibility to
run multiple processes on one processor at ‘the same’ time. More processes running on the
same processor will reduce the time given to a process. Task switching may be very cheap,
and other processes might be idle but there is still a delay imposed by parallel execution
of jobs. It is therefore essential to use time calls that return the number of time used by
the measuring process only, or to make sure that there are no other processes running on
the machine that wouldn’t be running when the application, whose performance is to be
estimated, is running.

The model should be filled with realistic figures; how fast would the machine work
under a normal workload. On almost al machines there will be an operating system or
some other interface layer. This layer is very likely to start parallel jobs, or cause delay in
execution speed at unpredictable occasions. Asynchronous communication, for example,
is usually implemented by starting a separate process to send or receive the message. Until
this process terminates, it will delay other processes on the processor; when communicating,
it causes a greater delay than when it is waiting for an acknowledgement or a connection.

When measuring timings for instructions, the machine should be monitored very care-
fully (but so that no cpu time is used).

3.2 Interaction with the Machine Model

The setup of the Parasol project is to make an interactive performance estimator. Part of the
interaction has to come from an interface between the user (the software developer) and the
machine description. The other part of the interactive interface is that between the user and
Parasol II, which handles and analyses the Fortran code. The user interface that interacts
with the machine description is called the Parasol I User Interface (for short P1ut). The PIUI
is based on Tk/Tcl combined with the C programming language. Tk/Tcl is a programming
system for developing and using graphical user interface (GUI) applications [Ousterhout93].
The Tk/Tcl used for the PIUI runs under X-windows.

11

3 USING THE MACHINE MODEL 3.2 Interaction with the Machine Model

3.2.1 The Interface Between PIUT and the User

The PIUI enables the user of the interactive environment to change parameters in the
machine and observe what happens to the performance. The user can change the machine
parameters at different levels; the time needed to execute one specific instruction can be
modified, but the user may also choose to change the overall floating point performance, the
overall multiplication performance, or even all the processor timings, which would suggest
a higher clock speed. In this section the parameters and groups of parameters that may be
changed are discussed. What the graphical interface looks like is not discussed.

3.2.2 Changing Processor Parameters

The processor parameters can be changed individually or in groups.

Changing one processor parameter is possible in the PIUL It can represent an optimization
in the way the processor handles that specific instruction. The processor parameters may
also be changed in groups. The effect of changing a group of parameters can be more
meaningful than changing just one. In the PIUI several — non disjunct — groups are defined:

e The machine parameters that operate on local instructions. Modifying this group
could suggest better register allocation for the variables, or — because the effect on
the performance is presented interactively — provide the user with an idea of the gain
that would be achieved with more or less variables being defined locally.

¢ The machine parameters that operate on global instructions. Depending on the
implementation this could indicate memory access speeds.

e The machine parameters that operate on one mathematical function such as add
(for example). This could indicate a change in the performance of the arithmetic unit
(ALU or FPU).

o The machine parameters that work on one data type. This could be the effect of
changes in the way the data type is handled or represent.

o All the processor timings. An effect typical of changing the clock speed. Changing
the cache speed should be done by changing one single parameter: the smallloop-
speedup.

The explanations of what the groups might represent is not complete; many other meanings
may be identified, the user is considered to have considerable knowledge of the system
and source code being modelled and may have totally different intentions when changing
parameter groups and viewing the results in performance.

The definition of the elements that can be changed with these groups is predefined. The
user is not provided with the possibility to specify own groups.

3.2.3 Changing Topology Parameters

The topology parameters can also be changed individually or in groups.

Changing one topology parameter is possible in the PIUL Increasing the speed of one link
could relieve a bottleneck or decreasing the latency might represent an increased efficiency
in the routing algorithm. The PIUI provides the following options for changing topology
parameters in groups:

¢ All the link speeds.

¢ All the link speeds for one type of processor.

4 CURRENT STATE OF PARASOL I

e All the link latencies.
o All the link latencies for one type of processor.

¢ The connectivity can not be changed using the Prut. Topology connectivity must be
specified by editing the machine description in memory or in the file. This can not be
done graphically. Large topologies with many links can be generated using a small
dedicated program.

3.2.4 Changing SPMD Supporting Model Parameters

The description of the SPMD supporting instructions in the Parasol I model is done using
expressions (as explained in sections 2.6 and 2.8). Providing a graphical interface to modify
these complex expressions is far sought and would probably not be easy to use. Actually
changing these parameters would indicate a modification in the implementation of the
SPMD supporting model on the machine.

As a result, it is not possible to change the expressions that represent the behaviour of
the SPMD model functions. What can be changed is a multiplication factor for a single
function in the SPMD model, or all the functions in the entire SPMD model. The latter
would indicate a more or less efficient implementation of said model.

3.2.5 The Interface Between PIUT and Parasol 11

The interaction with Parasol II will be done using standard procedure calls. This will
eventually be implemented using UNIX Remote Procedure Calls (RPC). Parasol 11 is able
to access all the fields defined in the Parasol I model. It can also receive a signal from the
PIUI to indicate that a field in the model has changed. Parasol II can then request the new
value and evaluate the program that it is analyzing to present a new performance estimate
through its own GUL

4 Current state of Parasol I

The Parasol I machine model is currently in a beta testing phase. Operations on the machine
model data structure and file format are supported and functioning.

Several problems in obtaining correct machine timings have been identified. The
timings for the arithmetic parameters have been completed for several Sun Sparc stations.
The code to measure flow control instructions and the Fortran intrinsic functions is being
constructed. When all processor parameters have been measured for the Sun Sparc station,
the code can easily be ported to measure the parameters for the Inmos T805 Transputer.

The topology and SPMD supporting models still need to be studied before the parameters
can be filled in. The topology for a network of Sun Sparc workstations is easily specified.
The throughput and latency will be measured under a normal (and realistic) workload.

The pruI is still under construction. The user interface concerning the processor param-
eters is in alpha testing phase. The interaction with the topology parameters and the SPMD
supporting models is not yet implemented.

The interaction with Parasol II has been implemented for the processor parameters.
This can be extended easily when Parasol II is ready to accept more fields for the machine
description. The PIUI is not yet capable of signalling Parasol II that machine parameters
have been changed.

A THE BNF GRAMMAR

A The BNF Grammar

machine

machfield

id

name
proccount
topcount
machsection

procsection
procspec

sloopspdup
timings
timeparams

cache
combined
combparams
mcombsection
mcombspec

topsection
topspec

hardware

begin machine nl machfield- machsection+

end machine n/

id | name | proccount | topcount

id = integer nl

name = string nl

processors = integer nl

topologies = integer nl

procsection | mcombsection | topsection |

pvmsection | expresssection | mpisection

begin processor 1/ procspec+ end processor nl

id | name | sloopspdup |

begin timings nl rimings+ end timings n/ |

begin cache nl cache+ end cache n! |

begin combinations n/ combined+ end combinations n/
smallloopspeedup = timing nl

timeparams = timing nl

absc | absd | absi | absr | aimagc | aintd | aintr | anintd | anintr |
argld | arrl | arr2 | arr3 | arrd | arr5 | arr6 | arr7 | asind | asinr |
atand | atanr | cga | cgd | cge | cgm | cgs | cgt | cgx | chari | cla |
cld | cle | clm | cls | clt | clx | cmplx2d | emplx2i | cmplx2r |
cmplxc | emplxd | emplxi | emplxr | conjge | dblec | dbled | dblei |
dbler | dga | dgd | dge | dgm | dgs | dgt | dgx | dimd | dimi | dimr |
dla | did | dle | dlm | dls | dit | dIx | dprodr | expc | expd | expr |
gcom | goto | iga | igd | ige | igm | igs | igt | igx | ila | ild | ile | ilm |
ils | ilt | ilx | intc | intd | inti | intr | 1ga | lgcc | lgdce | lgic | lgre |
la | llce | lide | Llic | Nre | logl0d | logl0r | loge | logd | logr |
loopil | loopin | loopohl | loopohn | maxd | maxi | maxr | modd |
modi | modr | nintd | nintr | peall | reale | reald | reali | realr |
rga | rgd | rge | rgm | rgs | rgt | rgx | rla|rld | rle | rlm | rls | rlt |
rlx | signd | signi | signr | sinc | sind | sinhd | sinhr | sinr | sqrtc |
sqrtd | sqrtr | tand | tanhd | tanhr | tanr

size = integer nl |

speed = timing nl |

speedratio = expr nl

combparams = expr nl

ia_spd | im_spd |

da_spd | dm_spd | dd_spd | ds_spd | dp_spd

begin machinecombinations nl mcombspec+

end machinecombinations n/

maxtotalspd = expr nl

begin topology nl topspec+ end topology nl

id | name | hardware | create | proccount | linkcount |

begin procid nl procident+ end procid n! |

begin linklist ! link+ end linklist n/

hardware = (0| 1) n/

14

A THE BNF GRAMMAR

create
linkcount
procident
link
linkelt

pvmsection
pvmspec
pvmfunc

expresssection
expressspec
expressfunc

mpisection
mpispec
mpifunc
expr

binaryop

unaryop
Sfunction

timing
reference

float
integer
digit
hexdigit
string
character
nl

creation = timing nl

links = integer nl

plinteger] = integer nl

begin link ! linkelt+ end link n/

id |

latency = timing nl |

speed = timing nl |

connect = integer+ nl

begin pvim 1/ pvmspec+ end pvin nl

pvmfunc = expr nl

sync | broadcast | multicast | send | receive |
packbyte | packdouble | packfloat | packint |
packlong | packstring | unpackbyte | unpackdouble |
unpackfloat | unpackint | unpacklong | unpackstring
begin express 1/ expressspec+ end express n/
expressfunc = expr nl

sync | broadcast | multicast | send

receive | exchange | combine | concat

begin mpi nl mpispec+ end mpi nl

mpifunc = expr nl

send | receive

expr binaryop expr | unaryop expr | (expr) |
Sunction (expr) | reference | float | integer
el /] % [wx| == >=]> | <=| <| 1= |
>> | << | &|1]|"]| && | I

s

abs | acos | asin | atan | cos | cosh | double |
exp | floor | int | log | logl0 | round | sgn |
sin | sinh | sqrt | tan | tanh

float floar?

ma.(id|processors|topologies) |
pr{integer).(id|smallloopspeedup) |
pt(integer).timeparams |
pc(integer).(size|speed|speedratio) |
po(integer).combparams |

me.maxtotalspd |
to(integer).(id|hardware|creation|processors|links) |
tp(integer)(integer) |
tl(integer)(integer).(id|latency |speed|connect(integer)) |
pv.pvmfunc | ex.expressfunc | mp.mpifunc
digit-+.digit(e(-|+)digit+)?

digit+ | Oxhexdigit+
0/1]2|3|4]|5]6|7|81|9
digit|A|B|C|D|E|F

"character+"'

any character other than newline

newline | vertical tab | 3

REFERENCES

REFERENCES

References

[Andrews91]

[Dimpsey91]

[Markatos92]

[Muller93]

[Ousterhout93]

[Rosen76]

[Saavedra89]

[Sarkar89]

[Sunderam89]

[Tanenbaum§88]

J. B. Andrews and C. D. Polychronopoulos. An Analytical Approach to
Performance / Cost Modeling of Parallel Computers, Center for Super-
computing Research and Development University of Illinois at Urbana-
Champaign, Journal of Parallel and Distributed Computing, 1991.

R. T. Dimpsey and R. K. Iyer. Performance Prediction and Tuning on
a Multiprocessor, Center for reliable and high-performance computing,
University of Illinois at Urbana-Champaign, ACM, 1991.

E. P. Markatos and T. J. LeBlanc. Shared-Multiprocessor Trends and
the Implications for Parallel Program Performance, University of
Rochester, Computer Science Department, Rochester, New York, May
1992.

H. Muller. Simulating Computer Architectures, Faculty of Mathematics
and Computer Science, University of Amsterdam, Amsterdam, 1993.

J. K. Ousterhout. Tel and the Tk Toolkit, Computer Science Division,
Department of Electrical Engineering and Computer Science, University
of California, Berkeley, 1993.

S. Rosen. Lectures on the Measurement and Evaluation of the Perfor-
mance of Computing Systems, Purdue University, Philadelphia, Penn-
sylvania, STAM, 1976.

R. H. Saavedra-Barrera, A. J. Smith and E. Miya. Machine Characteri-
zation Based on an Abstract High-Level Language Machine, Computer
Science Division, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, IEEE Transactions on Com-
puters, 1989.

V. Sarkar. Determining Average Program Execution Times and Their
Variance, IBM Research, Watson Research Center, Yorktown Heights,
New York, ACM, 1989.

V. S. Sunderam. PVM: A Framework for Parallel Distributed Com-
puting, Department of Math and Computer Science, Emory University,
Atlanta, Concurrency: Practice and Experience, 1989.

A. S. Tanenbaum. Computer Networks, Prentice Hall, Englewood Cliffs,
New Jersey, 1988.

16

