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INTRODUCTION

In recent years, the notion of complex systems proved 
to be a very useful concept to define, describe, and 
study various natural phenomena observed in a vast 
number of scientific disciplines. Examples of scientific 
disciplines that highly benefit from this concept range 
from physics, mathematics, and computer science 
through biology and medicine as well as economy, to 
social sciences and psychology. Various techniques were 
developed to describe natural phenomena observed in 
these complex systems. Among these are artificial life, 
evolutionary computation, swarm intelligence, neural 
networks, parallel computing, cellular automata, and 
many others. In this text, we focus our attention to one 
of them, i.e. ‘cellular automata’.

We present a truly discrete modelling universe, 
discrete in time, space, and state: Cellular Automata 
(CAs) (Sloot & Hoekstra, 2007, Kroc, 2007, Sloot, 
Chopard & Hoekstra, 2004). It is good to emphasize 
the importance of CAs in solving certain classes of 
problems, which are not tractable by other techniques. 
CAs, despite theirs simplicity, are able to describe and 
reproduce many complex phenomena that are closely 
related to processes such as self-organization and 
emergence, which are often observed within the above 
mentioned scientific disciplines.  

BACKGROUND

We briefly explain the idea of complex systems and 
cellular automata and provide references to a number 
of essential publications in the field.

Complex Systems

The concept of complex systems (CSs) emerged simul-
taneously and often independently in various scientific 
disciplines (Fishwick, 2007, Bak, 1996, Resnick, 1997). 
This could be interpreted as an indication of their uni-
versality. Despite the diversity of those fields, there 
exist a number of common features within all complex 
systems. Typically a complex system consist of  a vast 
number of simple and locally operating parts, which are 
mutually interacting and producing a global complex 
response. Self-organization (Bak, 1996) and emergence, 
often observed within complex systems, are driven by 
dissipation of energy and/or information.

Self-organization can be easily explained with ant-
colony behavior studies where a vast number of identi-
cal processes, called ants, locally interact by physical 
contact or by using pheromone marked traces. There 
is no leader providing every ant with information or 
instructions what it should do. Despite the lack of such 
a leader or a hierarchy of leaders, ants are able to build 
complicated ant-colonies, feed their larvae, protect the 
colony, fight against other colonies, etc. All this is done 
automatically through a set of simple local interactions 
among the ants. It is well known that ants are respond-
ing on each stimuli by one out of 20 to 40 (depending 
on ant species) reactions, these are enough to produce 
the observed complexity. 

Emergence is defined as the occurrence of new 
processes operating at a higher level of abstraction then 
is the level at which the local rules operate. Each level 
usually has its own local rules different from rules op-
erating at other levels. An emergent, like an ant-colony, 
is a product of the process of emergence. There can 
be a whole hierarchy of emergents, e.g. as in the hu-
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man body, that  consists of chemicals and DNA, going 
through polypeptides, proteins, cellular infrastructures 
and cycles, further on to cells and tissues, organs, and 
bodies. We see that self-organization and emergence 
are often closely linked to one another.

Cellular Automata 

Early development of CAs dates back to A. Turing, 
S. Ulam, and J. von Neumann. We can define CA’s 
by four mutually interdependent parts: the lattice and 
its variables, the neighbourhood, and the local rules 
(Toffoli & Margolus, 1987, Toffoli, 1984, Vichniac, 
1984, Ilachinski, 2001, Wolfram, 2002, Wolfram 1994, 
Sloot & Hoekstra, 2007, Kroc, 2007). This is briefly 
explained below.

Lattices and Networks

A lattice is created by a grid of elements, for historical 
reasons called cells, which can be composed in one, 
two, three, or higher dimensional space. The lattice is 
typically composed of uniform cells such as, for instance 
squares, hexagons or triangles in two dimensions.

CAs operating on networks and graphs represent a 
generalization of classical CAs, which are working on 
regular lattices. Networks can be random or regular. 
Networks can have various topologies, which are clas-
sified by the degree of regularity and randomness. A 
lattice of cells can be interpreted as a regular network 
of vertices interconnected by edges. When we leave 
this regularity and allow some random neighbours, 
more precisely, if a major part of a network is regular 
and a smaller fraction of it is random, then we enter the 
domain of small-world networks. The idea of small-
world networks provides a unique tool, which allows 
us to capture many essential properties of naturally 
observed phenomena especially those linked to social 
networks and surprisingly to (metabolic and other) 
networks operating within living cells. Whereas small-
world networks are a mixture of regular and random 
networks, pure random networks have a completely 
different scope of use. It is worth to mention the concept 
of scale-free networks, which have a connectivity that 
does not depend on scale anymore (Kroc, 2007, Sloot, 
Chopard & Hoekstra, 2004).

Variables

A CA contains an arbitrary number of discrete vari-
ables. The number and range of them are dictated by 
the phenomenon under study. The simplest CAs are 
built using only one Boolean variable in one dimension 
(1D), see e.g. (Wolfram, 2002). Some of such simple 
1D CAs express even high complexity and are shown 
to be capable of the universal computation. 

Neighbourhoods

The neighbourhood, which is used to evaluate a local 
rule, is defined by a set of neighbouring cells including 
the updated cell itself in the case of regular lattices, 
Figure 1. Neighbours with relative coordinates [i, j+1], 
[i-1,j], [i, j-1], [i+1, j] of the updated cell [i, j] and 
located on North, West, South, and East, respectively, 
define the so called the von Neumann neighbourhood 
with radius r =1. The Moore neighbourhood with ra-
dius r =1 contains the same cells as the von Neumann 
neighbourhood plus diagonal cells located at relative 
positions [i-1, j+1], [i-1, j-1], [i+1, j-1], [i+1, j+1], i.e. 
North-west, South-west, South-east, and North-east, 
respectively.

There are many other types of neighbourhoods 
possible; neighbourhoods can even be spatially or 
temporally non-uniform. One example is the Margolus 
neighbourhood, used in diffusion modelling.

The boundaries for each CA can be fixed, reflecting 
or periodic. Periodic boundary conditions represent 
infinite lattices. Periodic means that, e.g. in one dimen-
sion, the most right cell of a lattice is connected to the 
most left lattice cell. Fixed boundary cells are kept at 
predefined values. Reflecting boundary cells reflect 
values back to the bulk of the lattice.

Local Rules

A local rule defines the evolution of each CA. Usu-
ally; it is realized by taking all variables from all cells 
within the neighbourhood and by evaluation of a set 
of logical and/or arithmetical operations written in the 
form of an algorithm. The vector s of those variables 
is updated according to the following local rule in the 
case of the von Neumann neighbourhood 

s[i,j] = f(s[i,j+1], s[i-1,j], s[i,j-1], s[i+1,j]),
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where i represents the x coordinate, j represents y co-
ordinate of the cell, and f the local rule. The updated 
cell has coordinates [i,j]. Figure 1 shows a 5x5 two-
dimensional CA with neighbourhoods having various 
radiuses.

Modelling

Computational modeling is defined as a mathematical, 
numerical and/or computational description of a natu-
rally observed phenomenon. It is essential in situations 
where the observed phenomena are not tractable by 
analytical means. Results are often validated against 
analytical solutions in special or simplified cases. Its 
importance has been shown in physics and chemistry 
and is continuously increasing in new fields such as 
biology, medicine, sociology, and psychology. 

CEllUlAR AUTOMATA MODEllING OF 
COMPLEX SYSTEMS

There is a constant influx of new ideas and approaches 
enriching the CA method. Within CA modelling of 
complex systems, there are distinct streams of research 
and their applications in various disciplines, these are 
briefly discussed in this section.

Classical cellular automata, with a regular lattice 
of cells, are used to model ferromagnetic and anti-fer-
romagnetic materials, solidification, static and dynamic 

recrystallization, laser dynamics, traffic flow, escape 
and pedestrian behaviour, voting processes, self-rep-
lication, self-organization, earthquakes, volcano activ-
ity, secure coding of information and cryptography, 
immune systems, living cells and tissue behaviour, 
morphological development, ecosystems, and many 
other natural phenomena (Sloot, Chopard & Hoekstra, 
2004, Kroc, 2007, Illachinski, 2001). CAs were first 
used in the modelling of excitable media, such as heart 
tissue. CAs often outperforms other methods as, e.g., 
the Monte-Carlo method, especially for highly dissipa-
tive systems. The main reason why CAs represents the 
best choice in modelling of many naturally observed 
complex phenomena is because CAs are defined above 
truly spatio-temporally discretized worlds. The inher-
ent CA properties brings new qualities in models that 
are not principally achievable by other computational 
techniques.

An example of an advanced CA method is the 
Lattice Boltzmann method consisting of a triangular 
network of vertices interconnected by edges where 
generalized ‘liquid particles’ move and undergo colli-
sions according a collision table. A model of a gas is 
created where conservation of mass, momentum and 
energy during collisions are enforced, which produce 
a fully discrete and simplified, yet physically correct 
micro dynamics. When operated in the right limits, they 
reproduce the incompressible Navier-Stokes equations 
and therefore are a model for fluid dynamics. Averaged 
quantities resulting from such simulations correspond 

Figure 1. Four types of neighbourhood is shown on the lattice of 5 x 5 cells: ( from left) the von Neumann with 
r =1, and r =2, the Moore with r =1, and finally a random one
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to solutions of the Navier-Stokes equations (Sloot & 
Hoekstra, 2007, Rivet & Boon, 2001).

Classical CAs, using lattices, have many advantages 
over other approaches but some known disadvantages 
have to be mentioned. One of the disadvantages of CAs 
could be in the use of discrete variables. This restric-
tion is by some authors removed by use of continuous 
variables, leading to generalized CAs. The biggest 
disadvantage of classical CAs is often found in the 
restricted topology of the lattice. Classical regular 
lattices fail to reproduce properties of many naturally 
observed phenomena. What led to the following de-
velopment in CAs.

Generalized cellular automata, Darabos, Giacobini 
& Tomassini in (Kroc, 2007), are built on general 
networks, which are represented by regular, random, 
scale-free networks or small-world networks. A regu-
lar network can be created from a classical CA and 
its lattice where each cell represents a node and each 
neighbour is linked by an edge. A random graph is 
made from nodes that have randomly chosen nodes as 
neighbours. Within scale-free networks, some nodes are 
highly connected to other points whereas other nodes 
are less connected. Their properties are independent 
of their size. The distribution of degree of links at a 
node follow a power law relationship P(k) = k– g, where 
P(k) is the probability that a node is connect to k other 
nodes. The coefficient g is in most cases between 2 and 
3. Those networks occur for instance in the Internet, 
in social networks, and in biologically produced net-
works such as gene regulatory networks within living 
cells or food chains within ecosystems (Sloot, Ivanov, 
Boukhanovsky, van de Vijver & Boucher, 2007).

In general, the behaviour of a given CA is unpredict-
able what is often used in cryptography. There exist 
a number of mostly statistical techniques enabling to 
study the behaviour of given CA but none of them is 
exact. The easiest way, and often the only one, to find 
out the state of a CA is its execution.

CASE STUDIES

Understanding morphological growth and branching of 
stony corals with the lattice Boltzmann method is a good 
example of studying natural complex system with CAs 
(Kaandorp, Lowe, Frenkel & Sloot, 1996, Kaandorp, 
Sloot, Merks, Bak, Vermeij, & Maier, 2005). A deep 
insight into those processes is important to assess the 

role of corals in marine ecosystems and, e.g., its relation 
to global climate changes. Simulation of growth and 
branching of a coral involves multiphysics processes 
such as, nutrient diffusion, fluid flow, light absorption 
by the zooxanthele that live in symbiosis with the coral 
polyps, as well as mechanical stress. 

It is demonstrated that nutrient gradients determine 
the morphogenesis of branching of phototropic corals. 
In this specific case, we deal with diffusion-limited 
processes fully determining the morphological shape of 
the growing corals. It is known from tank experiments 
and simulation studies that those diffusion dominant 
regions operate for relatively high flow velocities. It has 
been demonstrated that simulated coral morphologies 
are indistinguishable from real corals (Kaandorp, Sloot, 
Merks, Bak, Vermeij, & Maier, 2005), Figure 3.

Modelling of dynamic recrystallization represents 
another living application of CAs within the field of 
solid state physics (Kroc, 2002). Metals having poly-
crystalline form, composed from many single crystals, 
are deformed at elevated temperatures. The stored 
energy is increasing due to deformation, which is in 
turn released by recrystallization, where nuclei grow 
and form new grains. Growth is driven by the release 
of stored energy. The response of deformed polycrys-
talline material is reflected by complex changes within 
the microstructure and deformation curve.

Stress-strain curves measured during deforma-
tion of metallic samples exhibits either single peak 
or multiple peak behaviour. This complex response 
of deformed material is a direct result of concurrent 
processes operating within deformed material. CAs, so 
far, represents the only computational technique, which 
is able to describe such complex material behaviour 
(Kroc, 2002), Figure 3.

FUTURE TRENDS

There is a number of distinct tracks within CAs re-
search with a constant flux of new discoveries (Kroc, 
2007, Sloot & Hoekstra, 2007). CAs are used to model 
physical phenomena but they are increasingly used 
to model biological, medical and social phenomena. 
Most CAs are designed by hand but the future requires 
development of automatic and self-adjusting optimiza-
tion techniques to design local rules according to the 
needs of the described natural phenomena.
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It is important to stress that the CA technique is 
bringing a cross-fertilization among many scientific 
disciplines. It happened many times in past that two 
or more very similar techniques were developed in 
distinct scientific fields such as, e.g. physics and social 
science.

The spatial structure of CAs is evolving from 
regular lattices to networked CAs Darabos, Giacobini, 
Tomassini in (Kroc, 2007), and to multilevel CAs (Hoek-
stra, Lorentz, Fakone & Chopard, 2007). Updating 
schemes of CAs will address in the future two regimes: 
synchronous (the classical one), and asynchronous 
(Sloot, Overeinder & Schoneveld, 2001). 

CONClUSIONS 

We briefly discussed complex systems and demonstrate 
the usefulness of cellular automata in modelling those 
systems. It has been shown that cellular automata 
provide a simple but an extremely efficient numerical 
technique, which is able to describe and simulate such 
complicated behaviour as self-organization and emer-
gence. This extraordinary combination of simplicity and 
expressivity brings a constant flux of new discoveries 
in description of many naturally observed phenomena 
in almost all scientific fields. 

Figure 2. Morphological growth of coral Mandracis mirabilis obtained through 3D visualization of a CT-scan 
of the coral (top) and two simulated growth forms (bottom) with different morphological shapes are depicted 
(Kaandorp, Sloot, Merks, Bak, Vermeij, & Maier, 2005). Simulated structures are indistinguishable from real 
corals.
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Finally, it is good to emphasize that CAs represent 
a generic method often used in the development of 
prototypes of completely new numerical methods de-
scribing naturally observed phenomena. We believe that 
CAs have a great potential for the future development 
of computational modelling and the understanding of 
the dynamics of complex systems.
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KEy TERMS

Cellular Automaton: (plural: cellular automata.) A 
cellular automaton is defined as a lattice (network) of 
cells (automata) where each automaton contains a set 
of discrete variables, which are updated according to 
a local rule operating above neighbours of given cell 
in discrete time steps. Cellular automata are typically 
used as simplified but not simple models of complex 
systems.

Generalized Cellular Automaton: It is based on 
use of networks instead of regular lattices. 

Complex Network: Most of biological and social 
networks reflect topological properties not observed 
within simple networks (regular, random). Two ex-
amples are small-world and scale-free networks. 

Complex System: A typical complex system con-
sists of a vast number of identical copies of several 
generic processes, which are operating and interacting 
only locally or with a limited number of not necessary 



360  

Complex Systems Modeling by Cellular Automata

close neighbours. There is no global leader or controller 
associated to such systems and the resulting behaviour 
is usually very complex.

Emergence: Emergence is defined as the occurrence 
of new processes operating at a higher level of abstrac-
tion then is the level at which the local rules operate. 
A typical example is an ant colony where this large 
complex structure emerges through local interactions 
of ants. For example, a whole hierarchy of emergents 
exists and operates in a human body. An emergent is 
the product of an emergence process.

Lattice Gas Automata: Typically, it is a triangular 
network of vertices interconnected by edges where 
generalized liquid particles move and undergo colli-
sions. Averaged quantities resulting from such simu-
lations correspond to solutions of the Navier-Stokes 
equations.

Modelling: It is a description of naturally observed 
phenomena using analytical, numerical, and/or compu-
tational methods. Computational modelling is classi-
cally used in such fields as, e.g. physics, engineering. 
Its importance is increasing in other fields such as 
biology, medicine, sociology, and psychology.

Random Network: A neighbourhood of a vertex is 
created by a set of randomly chosen links to neighbour-
ing vertices (elements) within a network of vertices. 

Regular Lattice: A perfectly regular and uniform 
neighbourhood for each lattice element called cell 
characterizes such lattices. 

Self-Organization: Self-organization is a process 
typically occurring within complex systems where a 
system is continuously fed by energy, which is trans-
formed into a new system state or operational mode by 
a dissipation of energy and/or information. 

Self-Organized Criticality: A complex system 
expressing SOC is continuously fed by energy where 
release of it is discrete and typically occurs in the form of 
avalanches. Most of its time, SOC operates at a critical 
point where avalanches occur. Earthquakes and volcano 
eruptions represent prototypical examples of SOC ob-
served in many naturally observed phenomena.   

Small-World Network: A mixture of two differ-
ent types of connections within each neighbourhood 
characterizes small-worlds. Typically, a neighbourhood 
of given vertex is composed of a greater fraction of 
neighbours having regular short-range connectivity 
(regular network) and a smaller fraction of random 
connections (random network). Such type of neigh-
bourhood provides unique properties to each model 
built on the top of it.




