
ARTICLE IN PRESS

J. Parallel Distrib. Comput. () –
www.elsevier.com/locate/jpdc

A Grid-based Virtual Reactor: Parallel performance and
adaptive load balancing

Vladimir V. Korkhova,b,∗, Valeria V. Krzhizhanovskayaa,b, P.M.A. Sloota

aUniversity of Amsterdam, Section Computational Science, Netherlands
bSt. Petersburg State Polytechnic University, Russia

Received 10 June 2006; received in revised form 16 August 2007; accepted 31 August 2007

Abstract

We address the problem of porting parallel distributed applications from static homogeneous cluster environments to dynamic heterogeneous
Grid resources. We introduce a generic technique for adaptive load balancing of parallel applications on heterogeneous resources and evaluate
it using a case study application: a Virtual Reactor for simulation of plasma chemical vapour deposition. This application has a modular
architecture with a number of loosely coupled components suitable for distribution over the Grid. It requires large parameter space exploration
that allows using Grid resources for high-throughput computing. The Virtual Reactor contains a number of parallel solvers originally designed
for homogeneous computer clusters that needed adaptation to the heterogeneity of the Grid. In this paper we study the performance of one
of the parallel solvers, apply the technique developed for adaptive load balancing, evaluate the efficiency of this approach and outline an
automated procedure for optimal utilization of heterogeneous Grid resources for high-performance parallel computing.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Grid; Adaptive load balancing; Heterogeneous resources; Benchmarking; Virtual Reactor; PECVD

1. Introduction

Porting complex distributed applications to Grid poses a chal-
lenge to computer and computational sciences, mostly due to
the dynamical and decentralized nature of the Grid. Involving
parallel computational solvers further complicates the prob-
lem because of a severe heterogeneity of Grid resources char-
acterized by a wide range of processing power and network
links bandwidth. The scientific community has been investing
a lots of effort into the development of Grid-aware problem-
solving environments (PSE) for complex applications [1,26].
The importance of fully integrated simulators is recognized by
various research groups and scientific software companies [2].
The Virtual Reactor used here as a test case was developed for

∗ Corresponding author. University of Amsterdam, Section Computational
Science, Netherlands.

E-mail addresses: vkorkhov@science.uva.nl (V.V. Korkhov),
valeria@science.uva.nl (V.V. Krzhizhanovskaya),
sloot@science.uva.nl (P.M.A. Sloot).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.08.010

simulation of plasma enhanced chemical vapour deposition
(PECVD), a multiphysics process spanning a wide range
of spatial and temporal scales [15,16]. Simulation of three-
dimensional flow with chemical reactions and plasma discharge
in complex geometries is one of the most resource-demanding
problems in computational science, requiring both high-
performance and high-throughput computing.

Grid computing technologies opened up new opportunities
to access virtually unlimited computational resources, and in-
spired many researchers to develop new methodologies and
algorithms for parallel distributed applications on the Grid.
The PECVD Virtual Reactor discussed in this paper has also
been on its way to the Grid [15]. It serves as a test-case driving
and validating the development of the Russian–Dutch Grid
(RDG) computational for distributed high performance simu-
lation [14,22]. The Virtual Reactor is particularly suitable for
porting to the Grid since it can be decomposed into a number
of functional components (services). In addition to that, this
application requires large parameter space exploration, which
can be efficiently organized on the Grid. Tools to support dis-
tributed parametric modelling on the Grid are being developed,

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://www.elsevier.com/locate/jpdc
mailto:vkorkhov@science.uva.nl
mailto:valeria@science.uva.nl
mailto:sloot@science.uva.nl
http://dx.doi.org/10.1016/j.jpdc.2007.08.010

2 V.V. Korkhov et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

in particular the Nimrod-G middleware [20] which is used in
this project. Current work on porting the Virtual Reactor to the
Grid started within the framework of the CrossGrid EU project
[26] and the Virtual Laboratory for e-Science [27]. Some re-
sults of these efforts were reported in [15]. The RDG Grid is
the successor of the CrossGrid in a sense that it uses many of
the CrossGrid infrastructure services and operates as a testbed
for the Virtual Reactor application. The final Grid-based Virtual
Reactor PSE aims at being a collaborative system, a distributed
scientific workbench with advanced interaction and visualiza-
tion facilities.

In this paper we address the issue of porting an existing com-
plex PSE from homogeneous cluster environment to dynamic
heterogeneous Grid resources. The RDG provides a strong
hardware background for this research as it contains sites with
both homogeneous and heterogeneous computing and network-
ing resources. To build a Grid-enabled PSE based on a modu-
lar application, a proper functional decomposition of modules
is required. To assure that the components—especially com-
putational modules—are distributed efficiently, it is necessary
to evaluate their performance and behaviour, tracking the de-
pendencies on the input data and computational parameters,
pinpointing the scalability and evaluating the influence of the
infrastructure parameters.

A countless number of parallel applications have been devel-
oped for traditional (i.e. static homogeneous) parallel systems.
The real problem in porting such applications to Grid environ-
ments is to keep up a high level of parallel efficiency. To as-
sure efficient utilization of Grid resources, special methods for
workload distribution control should be applied. Proper work-
load optimization methods should take into account two as-
pects: (1) the application characteristics (e.g. the amount of data
transferred between the processes, amount of floating point op-
erations and memory consumption) and (2) the resource char-
acteristics (e.g. processors, network and memory capacities, as
well as the level of heterogeneity of the dynamically assigned
resources). The method should be computationally inexpensive
so as to not impose too high overheads. In this paper we present
such a method and validate it using one of the parallel solvers
of the Virtual Reactor.

The issue of load balancing in a Grid environment is ad-
dressed by a number of research groups. A lot of studies on
load balancing consider distribution of processes to computa-
tional resources on the system/library level with no modifica-
tions in the application code [3,9]. Less often, load-balancing
code is included into the application source code to improve
performance in specific cases [21,23]. Some research projects
concern load-balancing techniques that use source code trans-
formations to improve the execution of the application [5]. We
employ an application-centric approach where the balancing
decisions are taken by the application itself. The algorithm that
estimates the resources and suggests the optimal load balancing
of a parallel job is generic and can be employed in any parallel
application to be executed on heterogeneous resources.

A detailed description of global load optimization ap-
proaches for heterogeneous resources and adaptive mesh
refinement applications is given in [18,19,29]. However, in

[19,29] no network links heterogeneity was considered and
only static resource estimation (initialization) was performed
in [19,18]. These two issues are the major challenges of Grid
computing: (1) the heterogeneity of the network links can be
an order of magnitude higher that of the processing power; and
(2) Grid resources are inherently dynamic. While developing
our algorithm, we tried to facet specifically these two corner-
stones. The approaches discussed in [19,29] are only valid
for batch sequential applications (specifically for the queuing
systems and computer cluster schedulers), whereas our effort
is directed towards parallel programs utilizing heterogeneous
resources.

The paper is organized as follows: Section 2 describes the
algorithm for adaptive workload balancing (AWLB) on hetero-
geneous resources. Section 3 outlines the architecture of the
Virtual Reactor application and the RDG testbed infrastruc-
ture. Section 4 presents the results of testing one of the parallel
solvers on the RDG homogeneous sites. Section 5 shows the
results of applying the load-balancing technique to our case
study application. Section 6 draws conclusions and presents
directions for future research.

2. Adaptive load balancing on heterogeneous resources

One of the factors that determine the performance of parallel
applications on heterogeneous resources is the quality of the
workload distribution, e.g. through functional decomposition
or domain decomposition. Optimal load distribution is char-
acterized by two things: (1) all processors have a workload
proportional to their computational capacity and (2) communi-
cations between the processors are minimized. These goals are
conflicting since the communication is minimized when all the
workload is processed by a single processor and no commu-
nication takes place, and distributing the workload inevitably
incurs communication overheads. Thus, it is necessary to find
a balance and define a metric that characterizes the quality of
workload distribution for a parallel problem. One of the existing
methods is to introduce a cost function reflecting the applica-
tion execution time. Minimization of this function corresponds
to minimization of the application runtime. The function should
be simple and independent of the details of the code. A generic
form of the cost function is [6–8]:

H = Hcalc + �Hcomm. (1)

Hcalc is minimized when the workload distribution among the
processors is proportional to the processors capacity (or equal
in case of homogeneous processors), Hcomm is minimized when
the communication time is minimal and � is a parameter that can
be varied in order to tune the balance between the calculation
and communication terms. This parameter is dependent on both
the application requirements and the resources characteristics.

The main generic parameters that influence a parallel appli-
cation performance are:

• The application parameter fc ∼ Ncomm/Ncalc, where Ncomm
is the total amount of application communications, i.e. data
to be exchanged (measured in bit) and Ncalc is the total

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

ARTICLE IN PRESS
V.V. Korkhov et al. / J. Parallel Distrib. Comput. () – 3

amount of computations to be performed (measured in
Flop);

• The resource parameter � ∼ tcomm/tcalc, where tcomm is the
typical time taken to communicate a single word between the
processors and tcalc is the time required to perform a generic
floating point calculation.

The product of these two parameters fc� is often called the
fractional communication overhead [8].

The goal of load balancing is to minimize the cost func-
tion (1). Parameter � in this expression is an aggregated value
related to the application and resource-specific parameters fc

and �. Knowledge of these application and resource properties
allows constructing an appropriate form of parameter � to per-
form suboptimal load distribution [7]. Unfortunately, in most
real-life complex simulation problems, it is not possible to the-
oretically calculate the application specific parameter fc with
a reasonable precision. Even a detailed analysis of the algo-
rithms and codes can fail in many practical cases, when the
code has multiple logical switches and completely different al-
gorithms and computational schemes are used for different ini-
tial conditions and computational parameters. Estimation of the
resource-specific parameter � also poses a challenge on hetero-
geneous Grid resources, since there is a multitude of processors
with the ratio of communication to computation performance
spanning a few orders of magnitude. Moreover, the Grid ex-
hibits dynamic network and processor performance; therefore,
static domain decomposition is not applicable. To ensure effi-
cient load balancing of a parallel application on the Grid, it is
necessary to estimate � experimentally. There are two possible
approaches to that: (1) directly measure the lumped value of
� for the application on the allocated resources and (2) sepa-
rately benchmark the resources, estimate � and then find out the
application-specific parameter fc that would provide an optimal
workload distribution on a given set of resources. The first ap-
proach requires serious intrusion into the application code. This
is certainly not desirable, especially when targeting to build a
generic load-balancing system which tries to abstract from the
application specifics. We have chosen the second approach, for
it is more generic and requires minimal modifications in the
application code.

We have developed a meta-algorithm for AWLB on hetero-
geneous resources based on benchmarking the resource per-
formance (defined as a set of individual resource parameters
� = {�i}) and experimental estimation of the application pa-
rameter fc. The target is to find the value of fc minimizing the
execution time, i.e. providing the best workload distribution for
the application mapped to the resources characterized by the
parameter set �.

The outline of the load-balancing meta-algorithm is as
follows:

1. Benchmark the resources dynamically assigned to the par-
allel application; measure the resource characteristics that
constitute the set of resource parameters � (available pro-
cessing power, memory and links bandwidth).

2. Estimate the range of possible values of the application
parameter fc. The minimal value is f min

c = 0, which

corresponds to the case when no communications occur
between the parallel processes of the application. The upper
bound can be calculated based on the following reasoning:
For the parallel processing to make sense, that is to ensure
that running a parallel program on several processors is
faster than sequential execution, the calculation time should
exceed communication time. For homogeneous resources
this can be expressed as follows:

Tcomm

Tcalc
< 1 ⇔ Ncommtcomm

Ncalctcalc
< 1 ⇔ f max

c = 1/�.

Analogously, for heterogeneous resources the upper limit
can be found as

f max
c = max(t icalc)/ min(t icomm).

3. Search through the range of possible values of fc in
[0 . . . f max

c] to find the optimal value f ∗
c minimizing the

application execution time. For each value of fc calculate
the corresponding load distribution based on the resource
parameters � determined in step 1 (details on calculating
the load distribution weights will follow this algorithm).
With this distribution perform one time step (iteration), and
measure the execution time—the target optimization func-
tion. Selection of the next value of fc can be done by any
optimization method for unimodal smooth functions; for
instance a simple line-search method can be used.

4. Execute further calculations using the discovered f ∗
c .

5. In the case of dynamic resources where performance is in-
fluenced by other factors (which is generally the case on the
Grid), a periodic re-estimation of resource parameters � and
load re-distribution shall be performed during run-time of
the application. Re-balancing shall be invoked if the appli-
cation performance over the last step drops more than a cer-
tain user-defined threshold (expressed as a relative change
in the execution time).

6. If the application is dynamically changing (for instance due
to adaptive meshes, moving interfaces or different combi-
nations of physical processes modelled at different simula-
tion stages) then f ∗

c must be periodically re-estimated on the
same set of resources.

Periodic re-estimations in steps 5 and 6 can be easily orga-
nized for iterative, time-stepping or discrete-event simulations.
After each step (iteration) the resource characteristics are au-
tomatically updated, and in case of significant application per-
formance drop (below the user-defined threshold), the next step
starts with an adapted load distribution. For other types of ap-
plications (continuous and not divided into logical steps), load
re-balancing can be organized via check-pointing, which is a
necessary capability for efficient fault-tolerant computing on
the Grid.

The combination of � and f ∗
c determines the distribution of

the workload between the processors. To calculate the amount
of workload per processor, we assign a weight factor to each
processor according to its processing power, memory and net-
work connection. A similar approach was applied in [23,25]
for heterogeneous computer clusters, but the mechanism for

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

4 V.V. Korkhov et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

adaptive calculation of the weights and application require-
ments was not developed there. Moreover, the tools developed
for cluster systems cannot be used in Grid environments with-
out modifications since static resource benchmarking is not
suitable for dynamic Grid resources, where the weights shall
be calculated every time the solver is started on a new set of
dynamically assigned processors.

Let us assume that for the ith processor: pi is the avail-
able processor performance (e.g. in Flop/s), mi is the available
memory (in MB) and ni is the available network bandwidth
to the processor (in MB/s). An individual resource parameter
�i then can be represented using the values of pi , mi , ni . In
a simple case when memory is considered only a constraining
factor (and not driving the load-balancing process) it is �i =
pi/ni . This resource parameter is widely used in scientific ap-
plications where the most important factor is the ratio of the
computational power to the network bandwidth. In a more gen-
eral case, two parameters shall be considered, �i and mi . And
for the memory-driven applications, the ratio of the available
memory to the network capacity of that processor mi/ni should
play a major role in resource evaluation.

To reflect the processor capacity, we introduce a weighting
factor wi for each processor. It determines the final workload
for a processor given by: Wi = wiW , where W is the total
workload.

To derive an expression for the weighting factors, we intro-
duce parameters cp, cm and cn that reflect computational, mem-
ory and communication requirements of the application. Then
the weight of each processor is calculated using the following
expression:

wi = cppi+cmmi+cnni normalized to ensure that
∑

i

wi=1.

(2)

This weighting factor wi reflects a relative capacity of the re-
sources according to the measured infrastructure parameters
�i = �(pi, mi, ni) and the application parameter fc. The in-
frastructure parameters �i can be initially estimated by a set
of benchmarks before the actual calculations start (but after
the resources have been assigned to the application). Searching
through fc with fixed values of �i gives us the optimal value
f ∗

c which corresponds to the optimal mapping of the workload
to the resources.

Parameters cp, cm and cn depend not only on the application
characteristics but also on the heterogeneity of the resources.
Let us analyse how these parameters and weighting factors wi

are related to fc and �i . Consider a traditional situation when
memory is only a constraining factor (cm = 0). Then param-
eters cp and cn shall be proportional to the amount of appli-
cation communications (computations) and the heterogeneity
factors:

cp = Ncalc�proc, cn = Ncomm�net. (3)

Here �proc and �net are the heterogeneity metrics of proces-
sors and network links. In case of equal network links the
weighting should be done only according to the processors

capacity; therefore, the network heterogeneity parameter is nul-
lified: �net = 0. Analogously, for homogeneous processors
�proc = 0. The heterogeneity metrics of the network and com-
puting resources can be expressed as a standard deviation of
the set of normalized dimensionless resource parameters:

�net =
∑N

i=1 (ni − navg)
2

Nn2
avg

, �proc =
∑N

i=1 (pi − pavg)
2

Np2
avg

.

Substituting cp and cn in Eq. (2) with expressions (3), the
weights can be re-written as

wi = Ncalc�procpi + Ncomm�netni.

In trivial cases,

�net = 0 (the network is homogeneous):

wi = Ncalc�procpi ∼ pi,

�proc = 0 (the processors are homogeneous):

wi = Ncomm�netni ∼ ni,

otherwise

wi = Ncalc�procpi + Ncomm�netni

= Ncalc�proc(pi + nifc�net/�proc).

Defining � = �net/�proc as an aggregated heterogeneity metric
of resources, keeping in mind that �i = pi/ni and omitting the
constant multiplier Ncalc�procbefore the brackets (which will
be cancelled while calculating the normalized dimensionless
weights), yields wi = pi(1 + fc�/�i). Introducing ϑi = �i/�
that combines the characteristics of resource performance and
heterogeneity, we get wi = pi(1 + fc/ϑi), and the normalized
dimensionless weights will be

w
′
i = wi

/ ∑
wi. (4)

Knowing the fractional overhead of the application and the
heterogeneity level of the resources, we can optimize the work-
load distribution using this fast weighting technique.

To evaluate the efficiency of the workload distribution we
introduce the load-balancing speedup � as

� = Tnon.balanced

Tbalanced
· 100%, (5)

where Tnon-balanced is the execution time without load balanc-
ing, and Tbalanced is the execution time using load balancing on
the same set of resources (the time taken to execute the algo-
rithm itself is included). This metric is used to estimate the f ∗

c

that provides the best performance on given resources, i.e. the
largest value of � in a given range of fc. In a non-trivial case
we expect to find a maximum of � and thus an optimal f ∗

c for
some workload distribution. Finite non-zero value of f ∗

c means
that the application requirements best fit the resources in this
particular workload distribution, which minimizes the total run-
time of the application. The case of f ∗

c = 0 while � �= 0 means

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

ARTICLE IN PRESS
V.V. Korkhov et al. / J. Parallel Distrib. Comput. () – 5

Fig. 1. Functional scheme of the Virtual Reactor application.

that the application is computation dominated, i.e. the amount
of communications is negligible, and the optimal workload dis-
tribution will be proportional only to the computational power
of the processors. �net = 0 means that we consider heteroge-
neous processors connected by homogeneous network links. In
this case the value of fc does not influence the distribution,
which shall be proportional only to the processing power.

In the discussion presented above while deriving Eq. (4),
we considered a simple case when memory requirements put
only a Boolean constraint to the allocation of processes on the
resources: either there is enough memory to run the application
or not. But it can play a role in the load-balancing process, being
one of the determining factors of application performance. This
is the case for applications that are able to control memory
requirements according to the available resources. In this case
there will be additional parameters analogous to fc and �i (or
these functions will be more complex), but the idea and the
load-balancing mechanism remain the same.

3. Case study on adaptive load balancing: the Virtual
Reactor

3.1. The Virtual Reactor overview and its implementation on
the Grid

A complex PSE usually has a modular architecture and con-
sists of a number of loosely or tightly coupled components
[28]. Our test case, the Virtual Reactor, includes the basic
components for reactor geometry design; computational mesh
generation; plasma, flow and chemistry simulation; editors of
chemical processes and gas properties connected to the corre-
sponding databases; pre- and postprocessors, visualization and
archiving modules [15]. The aim of our research is to virtual-
ize separate modules of the application to run them efficiently
as services and access them on the Grid.

The application components perform one (or a few) of
the following functions: problem description, simulation,

visualization and interaction. This is schematically shown in
Fig. 1, where we emphasize the simulation components.

The core components are modules simulating plasma
discharge, gas flow, chemical reactions and film deposition
processes occurring in a PECVD reactor. The details on numer-
ical methods and parallel algorithms employed in the solvers
are described in [12]. The most important features relevant to
the Grid implementation are as follows: for stability reasons,
implicit finite volume schemes were applied, thus forcing us
to use a sweep-type algorithm for solving equations in every
“beam” of computational cells in each spatial direction of the
Cartesian mesh. A special parallel algorithm was developed
with beams distributed among the processors. Communica-
tions are organized exploiting a Master–Slave model, where at
each simulated time step the Master prepares instructions for
the Slaves, sends them the data to be processed, receives the
results and processes them before proceeding to the next step.
The algorithm was implemented in an SPMD model, using the
MPI message passing interface with MPI Barrier points for
synchronization. Data exchange between the Master and the
Slaves is repeated every time step, and simulation proceeds for
thousands to millions time steps. In the testbed we use generic
MPICH-P4 built binaries that can be executed on all the testbed
machines using the Globus job submission service. To study
the influence of various parameters on the simulated processes
we run a number of simulations in parallel (shown in Fig. 1 as
“Simulation 1” … “Simulation N” blocks) with the assistance of
Nimrod-G [20].

To provide efficient execution of a parallel application on
heterogeneous resources, it is necessary to first test the appli-
cation performance dependencies on homogeneous resources.
This gives an insight into the application scalability, induced
fractional overhead, dependency of the communication and cal-
culation time on the number of processors used, etc. The results
of such tests can help estimating and predicting the behaviour
of the application on heterogeneous resources, thus simplifying
the adaptation process.

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

6 V.V. Korkhov et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

3.2. RDG testbed infrastructure

Generally the infrastructure of a site within a Grid testbed can
be of one of the following types depending on the underlying
resources:

(I) traditional homogeneous computer cluster architecture:
homogeneous worker nodes and uniform interconnection
links;

(II) homogeneous worker nodes with heterogeneous intercon-
nections;

(III) heterogeneous worker nodes with uniform interconnec-
tions;

(IV) heterogeneous nodes with heterogeneous interconnec-
tions.

A complete Grid infrastructure is always of the Type IV, char-
acterized by severe heterogeneity with a wide range of proces-
sor and network communication parameters. As we show later
in this paper, the type of resources allocated to a parallel ap-
plication significantly influences its performance, and different
load-balancing techniques shall be applied to different combi-
nations of the resources.

Currently the RDG testbed consists of six sites with
different infrastructures: Amsterdam-1 (contains 3 nodes,
4 processors)—Type IV; Amsterdam-2 (32 nodes, 64
processors)—Type I; St. Petersburg (4 nodes, 6 processors)—
Type IV; Novosibirsk (4 processors)—Type II; Moscow-1
(13 nodes, 26 processors)—Type I; Moscow-2 (12 nodes, 24
processors)—Type I.

The RDG testbed is built with the CrossGrid middle-
ware [26] based on the LCG-2 distributions and sustains the
interoperability with the CrossGrid testbed. More detailed in-
formation on the RDG testbed can be found in [22]. The RDG
Virtual Organization (VO) is included into the CrossGrid VO,
thus allowing the RDG certificate holders to access the Cross-
Grid resources and services. The CrossGrid testbed consists
of 16 sites with the infrastructures of all four types and offers
over 400 processors.

4. Application performance on homogeneous sites

4.1. Testing approach

Benchmarking a complex application is required to evaluate
its performance and reveal the dependencies of its behaviour
on the underlying infrastructure. We use a structural approach
to benchmark the Virtual Reactor. Within this approach, the
overall functionality of the whole system is studied, followed by
performance measurements of the individual components while
they are not influenced by activities of the other components.

Benchmarking the components allows evaluating their per-
formance depending on various parameters like input data and
the resources used. This helps to predict the performance of
a given component and organize efficient resource allocation,
thus improving the overall resource management within the
whole application.

The earlier tests of the Virtual Reactor performed on the
CrossGrid testbed showed that most of the interactive com-
ponents of the Virtual Reactor do not put restrictions on the
computer systems and network bandwidth and can be efficiently
executed on distributed Grid resources [15]. Next, we focused
on benchmarking the simulation modules. Each simulation con-
sists of two basic components: one for plasma simulation and
another for reactive flow simulation (see Fig. 1). These two
components exchange only a small amount of data every hun-
dred or thousand time steps; therefore, the network bandwidth
is not critical for their communication. Finally, we concentrate
on benchmarking the individual parallel solvers, starting from
a 2D PECVD solver which maintains all the features of the 3D
one, but takes less time to estimate the solver behaviour on the
Grid.

4.2. Test setup

The goal of our benchmarks is to determine the scalability
of the application, find out the limitations on the efficiency
posed by the application architecture, resources and types of the
simulations. Uncovering such details will allow us to optimize
resource management strategy for allocating the application
components within the whole Virtual Reactor PSE.

The solver operates a reactor geometry that is composed of
a number of connected blocks. Different types of simulation
can be performed within a single geometry: a chemically in-
active flow and a flow with chemical and plasma processes.
Physically the problem type is determined by the gas mix-
ture composition, temperatures, pressures and the plasma dis-
charge operation mode. From the computational point of view
these types of simulations differ by the ratio of computations to
communications: in case of simulating chemical processes the
computational load is significantly higher.

We started from a light-weight problem not simulating the
chemical and plasma processes, with a simplified reactor ge-
ometry consisting of a single block that allows easy tracking
of parameter influence on the execution time. To measure the
dependency of the solver performance upon the input data, mul-
tiparameter variation has been applied. We measured the solver
execution time, speedup and communication time depending
on the combinations of input parameters: the computational
mesh size, number of simulation time steps and number of
processors.

The benchmark tests had to be automated because the pa-
rameter variation leads to a large number of job submissions.
To solve this problem we have built an execution environment
to support series of parameter-sweep Globus job submissions.
The environment is generic and can be used for any kind of
performance benchmarks with user-defined metrics and param-
eters to be analysed. Within this environment, the application
to benchmark is described using some templates that are filled
with particular application data (e.g. Globus RSL template for
job submission which also contains the list of input and output
files). One of the functionalities of this execution environment
is the support for parameter-sweep runs, analogous to what

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

ARTICLE IN PRESS
V.V. Korkhov et al. / J. Parallel Distrib. Comput. () – 7

Fig. 2. Light-weight (no chemistry) simulation: total execution time and speedup for different computational mesh sizes.

Nimrod-G or Condor-G provides. The advantage of our im-
plementation is that we can specify the parameters (and their
ranges) that shall be changed, as well as the characteristics to
be measured and visualized automatically to analyse the influ-
ence of those parameters.

In these tests, a single-block topology was used. The block
was subdivided into a (ncell × ncell) number of computational
mesh cells, with ncell running from 40 to 100, thus forming
1600–10 000 cells. We also performed some tests with real re-
actor geometries in order to check whether reactor topology
influences parallel performance, since potentially it can intro-
duce some load imbalance.

4.3. Influence of the number of time steps and reactor topology

Experiments with a different number of time steps showed
that the execution time and other measured parameters are lin-
early proportional to the number of time steps, provided that
this number is high enough and the standard output and hard
disk operations are kept minimal (that means no excessive log-
ging, no storing the 2D fields or other additional files every
time step). All the results presented below are measured for
100 time steps.

Along with the single-block geometry, we studied the per-
formance of the solver with a complex multi-block PECVD
reactor topology, which consists of an equivalent number of
computational mesh cells. The results showed that all the mea-
sured characteristics (execution time, speedup, computation and
communication time) on the same resources coincide for the
single-block and multi-block topologies of equal number of
cells within 1% accuracy. This assures us that the parallel al-
gorithm used in the solver provides a good load balancing even
in cases of complex topologies. Further we test the influence
of the problem size (the number of mesh cells) with the single-
block reactor geometry, since it is easier to vary the mesh size
arbitrarily with a single-block geometry than with a multi-block
complex topology.

4.4. Speedup of the chemistry-disabled and chemistry-enabled
simulations

The measurements were carried out on all the Grid sites
within the RDG testbed. The parallel solver showed a noticeable
speedup on the Moscow and Amsterdam sites of Type I (ho-
mogeneous cluster with uniform communication links). Figs. 2
and 3 demonstrate the total execution time and speedup of the
parallel solver for different types of simulation: A chemistry-
disabled “light-weight” simulation (Fig. 2) and a chemistry-
enabled “heavy” simulation (Fig. 3).

We observe different trends of the solver performance: for
the light-weight simulation the speedup decreases with the in-
crease in the mesh size (see the different curves in Fig. 2,
right), while for the chemistry-enabled simulation the speedup
increases with the problem size (Fig. 3). Different trends in
the speedup dependency on the problem size are discussed and
explained in detail in Sections 4.6 and 4.7.

The same parallel solver tested on homogeneous Grid sites
with a higher ratio of the inter-process communication band-
width to the processor performance achieved much higher
speedups, for instance on lisa.sara.nl with Infiniband inter-
connections it was 3 times higher for the large problem size
simulations. The type of MPI library also influences the par-
allel efficiency of a program: a specialized library optimized
for the native communication technology (e.g. MPICH-GM
for Myrinet communications on das2.nikhef.nl) increases the
speedup up to two times compared to the generic MPICH-P4
or MPICH-G2.

4.5. Communication time trends

The time spent on inter-process communications within the
solver is shown in Fig. 4 for different mesh sizes. The com-
munication time was calculated as a sum of MPI Send/MPI
Receive time on the master node over the total number of
iterations.

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

8 V.V. Korkhov et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

Fig. 3. Chemistry-enabled simulation: total execution time and speedup for different computational mesh sizes.

Fig. 4. Dependency of the communication time on the computational mesh size for different numbers of processors “proc”. Light-weight simulation.

We observe that communication time grows super-linearly
with the mesh size increase, although the amount of data is
linearly proportional to the number of mesh cells. This will be
discussed in Section 4.7. The fact that the MPI_Recv time is
less than the MPI_Send time is explained by the amount of data
sent from the slaves to the master: it is approximately half of
what the master sends to the worker nodes.

If we plot the communication time versus the number of pro-
cessors, then some peculiarities can be observed (see Fig. 5):
(1) The communication time grows non-monotonically with
the number of processors, but drops down a little with an
even number of processors and (2) the time of MPI Receive
calls is an order of magnitude higher for the larger meshes on
the first few processors. These observations are discussed in
Section 4.7.

4.6. Computation to communication ratio

In Fig. 6 the total execution time is presented along with the
contributions of calculation and communication. For a smaller

computational mesh (Fig. 6, left), the communication time
makes a relatively small contribution to the total execution time
even for a large number of processors involved. For a larger
mesh (Fig. 6, right), communication makes up to 30% of the
execution time. This result confirms that the network band-
width is not sufficient for this type of problem (see also the
explanations to Fig. 3).

As it was mentioned in the previous Section, the solver can
simulate the chemical and plasma processes within the reac-
tor along with the gas flow. Fig. 7 demonstrates the ratio of
computation to communication time for different mesh sizes
with different types of the simulation. The higher the ratio is
the less communications are required, which obviously offers
a better parallel efficiency and application scalability. The ra-
tios in Fig. 7 explain the different speedup trends observed
in Figs. 2 and 3 for chemistry-enabled and chemistry-disabled
(light-weight) simulations. From the presented graphs we can
see that the behaviour of this ratio does not depend on the mesh
size for the chemistry-enabled simulations, while this behaviour

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

ARTICLE IN PRESS
V.V. Korkhov et al. / J. Parallel Distrib. Comput. () – 9

Fig. 5. Dependency of the communication time on the number of processors for different computational mesh sizes. Light-weight simulation.

Fig. 6. Total execution time and contributions of the calculation and communication depending on the number of processors for different computational mesh
sizes (light-weight simulation).

Fig. 7. The ratio of the computation to communication time for chemistry-enabled and light-weight simulations.

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

10 V.V. Korkhov et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

for the light-weight simulations significantly differs for small
and large mesh sizes. For a small mesh size, the ratio stays
high, and for 6 processors and more it reaches the level of the
chemistry-enabled simulations. For a larger mesh, the computa-
tion/communication ratio for the simulations with no chemistry
is very low, thus diminishing the overall parallel efficiency.

4.7. Discussion of the results for homogeneous resources

The results presented in Section 4.4 show that the parallel
speedup is lower for a larger problem size for the simulations
with no chemistry (see Fig. 2). This fact indicates that the ratio
of the inter-process communication bandwidth to the processor
performance was not high enough for light-weight problems
with relatively small number of operations per computational
cell. It means that for an optimal usage of computing power,
a large number of processors for one parallel run shall only
be used for relatively small computational meshes. Thus the
communication technology puts a limit to the scalability of the
solver for this problem type. On the other hand, the simulation
of the flow with chemical processes shows higher speedup with
larger meshes (see Fig. 3). Here the amount of computations
brought by simulating the chemistry changes the behaviour of
the solver qualitatively. This leads us to the conclusion that
different resource allocation strategies should be applied for
different types of simulation and meshes used.

The results in Fig. 5 reflect the network and node features of
the tested Grid site:

1. Since the site consists of dual nodes, the network chan-
nels work more efficiently for data transfers between the
Master and a Slave processor if a connection was already
established with another Slave processor on the same node.
This can be explained by implementation of the MPI library
which saves network resources while opening and maintain-
ing connections for concurrent processes on the same node.

2. The “peaks” of the MPI Receive time for the first few pro-
cessors (see Fig. 5, right) are caused by the constraints on
the portions of data that could be accommodated at once.
The constraining factors could be the network bandwidth
distribution, the processor cache size, the memory available
on the node or a combination of these factors.

5. Application performance on heterogeneous resources

5.1. Performance of the original parallel solver on
heterogeneous resources

The RDG sites with heterogeneous processors and/or
network links (Types II, III, IV) provided only a limited
parallel speedup or even a slow-down of the original solver
with a homogeneous parallel algorithm (data not shown).
This was inevitable since in addition to the low-bandwidth
links, these sites are characterized by very diverse resources:
the processor and network parameters differ by orders of
magnitude.

The parallel algorithm used in the solver was originally
developed for homogeneous computer clusters with equal pro-
cessing power, memory and inter-processor communication
bandwidth. In case of submitting equal portions of a parallel
job to the nodes with different performance, all the fast pro-
cessors have to wait at the barrier synchronization point till the
slowest ones catch up, thus the effect of slow-down on hetero-
geneous resources is not surprising. The same problem occurs
if the network connection from the Master processor to some of
the Slave processors is much slower than to the others. As we
have shown in the previous section, for communication-bound
simulations (chemistry-disabled simulation with large compu-
tational meshes), the communication time on low-bandwidth
networks is of the order of the calculation time; therefore, the
heterogeneity of the inter-processor communication links is a
hindrance as considerable as the diversity of the processing
power. One of the natural ways to adapt the solver to the het-
erogeneous Grid resources is to distribute the portions of job
among the processors according to the processor performance
and network connections, taking into account the application
characteristics. To adapt the parallel solver, we applied the
approach presented in Section 2.

5.2. Experimental results of the workload-balancing algorithm

To illustrate the approach described in Section 2 we present
the results obtained for different types of simulation (chemistry-
disabled and enabled) of a reactor geometry with 10 678 cells
on the St. Petersburg Grid site. This site is heterogeneous
in both the CPU power and the network connections of the
processors (Type IV). There are two 1.8 GHz nodes (nwo1,
nwo2) and two dual 450 MHz nodes (crow2, crow3), all hav-
ing 512 MB RAM. One of the dual nodes (crow3) is placed
in a separate network segment with 10 times lower bandwidth
(10 Mbit/s against 100 Mbit/s in the main segment). The load-
balancing tests were performed with a moderate-size problem
which does not pose restrictions on required memory, thus the
memory influence parameter cm was reduced to zero and the
exploration was done for the application parameter fc. The
link bandwidth between the Master and Slave processors was
estimated by measuring the time of MPI_Send transfers of a
predefined data block (with the MPI buffer size equal to 106

of MPI_DOUBLEs) during the solver execution, after the re-
sources have been allocated. In these measurements the same
logical network topology was used as employed in the solver.
The CPU power and available memory were obtained by a func-
tion from the perfsuite library [17]. To validate the approach
presented in Section 2 we applied the workload-balancing
technique for a single simulation running on different sets of
heterogeneous resources. The estimation of performance for
different possible values of the parameter fc (hence, different
weighting and workload distribution) was carried out. For one
simulation type we expect to obtain approximately the same
value of the parameter f ∗

c (that provides the best performance,
see Section 2) on different sets of resources. Fig. 8 (left) illus-
trates the load-balancing speedup � achieved by applying the

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

ARTICLE IN PRESS
V.V. Korkhov et al. / J. Parallel Distrib. Comput. () – 11

Table 1
Distribution of processors and balancing weights providing the best load-balancing speedup for different sets of resources.

Sets of Weights assigned to each processor Heterogeneity Best
resources metrics balancing

speedup

nwo1, crow2/1, crow3/1, crow2/2, nwo2, crow3/2, �proc �net � (%)
1.8 GHz/ 450 MHz/ 450 MHz/ 450 MHz/ 1.8 GHz/ 450 MHz/
100 Mb/s 100 Mb/s 10 Mb/s 100 Mb/s 100 Mb/s 10 Mb/s

Set I,
3 processors 0.580 0.274 0.146 – – – 0.618 0.606 196
Set II,
4 processors 0.452 0.218 0.112 0.218 – – 0.638 0.502 182
Set III,
5 processors 0.314 0.146 0.080 0.146 0.314 – 0.591 0.439 201
Set IV,
6 processors 0.278 0.160 0.062 0.160 0.278 0.062 0.618 0.606 207

Fig. 8. Dependency of the balancing speedup � on the parameter fc . Left: single simulation on different sets of resources. Right: different types of simulation
on one set of resources.

workload-balancing technique for different values of the pa-
rameter fc on several fixed sets of heterogeneous resources for
a light-weight (chemistry-disabled) simulation. In Table 1 we
summarize the combinations of processors dynamically allo-
cated in four tests (different sets of resources) and the weights
assigned to each processor for the values of f ∗

c providing the
best execution time, thus the maximal balancing speedup (see
Fig. 8, left).

Fig. 8 (left) shows that for a given simulation the best perfor-
mance is delivered by weighting the resources with the value
of fc ≈ 0.3.0.4. Noticeably, this corresponds to the value ob-
tained for this simulation during the preliminary analysis on
homogeneous resources (compare to results for similar sim-
ulations in Section 4.6, Fig. 7). The algorithm increases the
speedup up to 207% compared to the initial non-balanced ver-
sion of the code on the tested sets of resources. We can see
that the distribution of the workload proportional only to the
processing power (fc = 0) also gives a significant increase

in the performance, but introduction of the dependency on
application-specific communication/computation ratio fc and
resource infrastructure parameters �i adds another 40% to the
balancing speedup �.

Fig. 8 (right) shows the dependency of the balancing speedup
� for different types of simulation (chemistry-enabled and
chemistry-disabled) on the same set of resources (set III from
Table 1). The chemistry-disabled simulation has a higher com-
munication/computation ratio (as was shown also in Section
4.6, Fig. 7). This is clearly seen in the experimental results
where chemistry-disabled simulation obtains the highest bal-
ancing speedup � at higher fc values. Moreover, the gain in
the balancing speedup (maximal value of �) is higher for the
simulation with a larger fraction of communications. These
results illustrate that the introduced algorithm for resource
AWLB can bring a valuable increase in the performance for
communication-intensive parallel programs running on hetero-
geneous resources.

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://dx.doi.org/10.1016/j.jpdc.2007.08.010

12 V.V. Korkhov et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

5.3. Discussion and suggestions for generalized automated
load balancing

The introduction of the load-balancing technique allowed us
to increase the efficiency of the parallel solver on heterogeneous
resources. The proposed method of successive benchmarking
the resource infrastructure parameters �i and estimating the ap-
plication parameter fc shows the possibility of automatic load
balancing for applications whose internal structure (computa-
tions and communications) is not known.

Analysis of the results achieved with the workload-balancing
algorithm suggested that the following issues shall be addressed
in order to optimize the balancing technique:

1. To measure the inter-process communication rate, we sent
a fixed amount of data from the Master to each Slave pro-
cessor. However, in some cases the response of the com-
munication link’s to the increasing amount of data is not
linearly proportional as shown in Fig. 4. For the slower net-
works this tendency is even more pronounced. This brings
us to a conclusion that the amount of data sent to measure
the link’s performance shall be close to the amount really
transferred within the solver for every particular mesh size,
geometry and solver type. Another option to estimate the
inter-processor communication rate is to analyse the itera-
tion data transfer time during the actual execution. How-
ever, this requires significant code modifications and might
be undesirable.

2. To properly take into account the memory requirements of
each particular instance of a parallel solver, similar reason-
ing shall be applied to the choice of the cm coefficient as
to the selection of cp and cn.

3. The specialty of the memory factor is that in addition to
this resource dependency it is strongly influenced by the
application features. To take into account the memory re-
quirements of a parallel solver, the weighting algorithm
must be enriched by the function measuring the memory
requirements per processor for each simulation on each set
of resources. In case of sufficient memory on allocated pro-
cessors, the load balancing can be performed taking into
account all the factors (CPU, memory and network) where
memory factor is a constraint. After this, another check
of meeting the memory requirements on each processor
must be performed. In the unfavourable case of insufficient
memory on some of the processors, they must be disre-
garded from the parallel computation or replaced by other,
better-suited processors. This must be done preferably out-
side the application, on the level of job scheduling and
resource allocation. This brings us to the conclusion that
ideally a combined technique shall be developed, where
the application-centred load-balancing approach is coupled
with a system-level resource management.

6. Conclusions

One of the most challenging problems in porting parallel dis-
tributed applications from homogeneous cluster environments

to heterogeneous resources is to keep up a high level of paral-
lel efficiency of the computational components. To tackle this
problem, we developed a theoretical approach and a generic
workload-balancing technique that takes into account specific
parameters of the resources dynamically assigned to a parallel
job, as well as the application requirements. We validated the
proposed algorithm by applying it to the Virtual Reactor parallel
solvers running on the RDG testbed. It is worth noting that the
load-balancing speedup goes through a maximum at fc = f ∗

c as
shown in Fig. 8. This indicates that the load-balancing strategy
does find an optimum in the complex parameter space of the
heterogeneous application/architecture combination. The clear
maximum gives an unbiased guide towards automatic load bal-
ancing. The developed approach is well suited for either static
or dynamic load balancing, and can be combined with the Grid
performance prediction models or application-level scheduling
systems [4,24].

In order to optimize the resource management strategy for
the Virtual Reactor, we benchmarked the individual compo-
nents on a set of diverse RDG resources, and extensively stud-
ied the behaviour of the parallel solvers with various problem
types and input data on different resource infrastructures. The
results clearly show that even within one solver different trends
can exist in the application requirements and parallel efficiency
depending on the problem type and computational parame-
ters; therefore, distinct resource management and optimization
strategies shall be applied, and automated procedures for load
balancing are needed to successfully solve complex simulation
problems on the Grid.

To further test the load-balancing algorithm, we have de-
veloped a synthetic application with tuneable characteristics.
It allows one to model applications with different computation
and communication requirements and logical network topolo-
gies. Some results of that work have been published in [13].
In [10,11] we compared the theoretically derived optimization
parameters for some specific topologies of parallel applications
with those predicted by our heuristic algorithm. Currently we
are integrating the adaptive load-balancing algorithm with the
DIANE user-level scheduling system, which will extend our
testing ground to the multitude of real applications executed on
the EGEE grid.

Acknowledgments

The authors would like to thank Irina Shoshmina, Alfredo
Tirado-Ramos and the RDG Grid deployment team for their
assistance. The research was conducted with financial support
from the Dutch National Science Foundation NWO and the
Russian Foundation for Basic Research under project numbers
047.016.007 and 047.016.018, and with partial support from
the Virtual Laboratory for e-Science Bsik project [27].

References

[1] Available from: 〈proj-openlab-datagrid-public.web.cern.ch〉, 〈www.nbirn.
net〉, 〈www.fusiongrid.org〉, 〈www.globus.org/alliance/projects.php〉,
〈ca.sandia.gov, www.us-vo.org〉.

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://proj-openlab-datagrid-public.web.cern.ch
http://www.nbirn.net
http://www.nbirn.net
http://www.fusiongrid.org
http://www.globus.org/alliance/projects.php
http://cmcs.ca.sandia.gov
http://www.us-vo.org
http://dx.doi.org/10.1016/j.jpdc.2007.08.010

ARTICLE IN PRESS
V.V. Korkhov et al. / J. Parallel Distrib. Comput. () – 13

[2] Available from: 〈www.cfdrc.com〉, 〈www.fluent.com〉, 〈www.semitech.
us〉, 〈www.softimpact.ru〉.

[3] A. Barak, G. Shai, R. Wheeler, The MOSIX distributed operating system,
load balancing for UNIX, Lecture Notes in Computer Science, vol. 672,
Springer, Berlin, 1993.

[4] F. Berman, et al., Adaptive computing on the grid using appLeS, IEEE
Trans. Parallel Distributed Systems 14 (4) (2003) 369–382.

[5] R. David, et al., Source code transformations strategies to load-balance
grid applications, Lecture Notes in Computer Science, vol. 2536,
Springer, Berlin, 2002, pp. 82–87.

[6] J.F. de Ronde, A. Schoneveld, P.M.A. Sloot, Load balancing by redundant
decomposition and mapping, Future Generation Comput. Systems 12 (5)
(1997) 391–407.

[7] J.F. de Ronde, Mapping in high performance computing. A case study on
finite element simulation, Ph.D. Thesis, University of Amsterdam, 1998.

[8] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker, Solving
Problems on Concurrent Processors, vol. 1, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[9] K.A. Iskra, F. van der Linden, Z.W. Hendrikse, B.J. Overeinder, G.D. van
Albada, P.M.A. Sloot, the implementation of dynamite—an environment
for migrating PVM tasks, operating systems review, Association for
Computing Machinery, Special Interest Group on Operating Systems,
vol. 34(3), July 2000, pp. 40–55.

[10] V.V. Korkhov, V.V. Krzhizhanovskaya, Workload balancing in
heterogeneous Grid environment: a virtual reactor case study.
Proceedings of the Second International Conference on Distributed
Computing and Grid Technologies in Science and Education. JINR,
Dubna, 111-2006-167, ISBN 5-9530-0138-X, 2006, pp. 103–113.

[11] V. Korkhov, V. Krzhizhanovskaya, Benchmarking and adaptive load
balancing of the Virtual Reactor application on the Russian–Dutch
Grid, Lecture Notes in Computer Science, vol. 3991, Springer,
Berlin/Heidelberg, 2006, pp. 530–538.

[12] V.V. Krzhizhanovskaya, et al., Distributed simulation of silicon-based
film growth, Lecture Notes in Computer Science, vol. 2328, Springer,
Berlin, 2002, pp. 879–888.

[13] V.V. Krzhizhanovskaya, V.V. Korkhov, Dynamic load balancing of black-
box applications with a resource selection mechanism on heterogeneous
resources of the Grid, Lecture Notes in Computer Science, vol. 4671,
2007, pp. 245–260.

[14] V.V. Krzhizhanovskaya, V.V. Korkhov, A. Tirado-Ramos, D.J. Groen, I.V.
Shoshmina, I.A. Valuev, I.V. Morozov, N.V. Malyshkin, Y.E. Gorbachev,
P.M.A. Sloot, Computational engineering on the Grid: crafting a
distributed Virtual Reactor, Second IEEE International Conference
on e-Science and Grid Computing (e-Science’06), Amsterdam, The
Netherlands, December 4–6 2006, IEEE Computer Society Press, Silver
Spring, MD, 2006, p. 101.

[15] V.V. Krzhizhanovskaya, P.M.A. Sloot, Yu.E. Gorbachev, Grid-based
simulation of industrial thin-film production, Simulation: Trans. Soc.
Modeling Simulation Internat. 81 (1) (2005) 77–85.

[16] V.V. Krzhizhanovskaya, M.A. Zatevakhin, A.A. Ignatiev, Y.E. Gorbachev,
W.J. Goedheer, P.M.A. Sloot, A 3D virtual reactor for simulation of
silicon-based film production, Proceedings of the ASME/JSME-PVP
Conference, ASME PVP, vol. 491-2, PVP2004-3120, 2004, pp. 59–68.

[17] R. Kufrin, PerfSuite: An Accessible, open source performance analysis
environment for Linux, 6th International Conference on Linux Clusters,
Chapel Hill, NC, 2005.

[18] Z. Lan, V.E. Taylor, G. Bryan. Dynamic load balancing of SAMR
applications on distributed systems, Proceedings of the ACM/IEEE
Conference on Supercomputing, 2001.

[19] C. Lu, S.-M. Lau, An adaptive load balancing algorithm for
heterogeneous distributed systems with multiple task classes,
International Conference on Distributed Computing Systems
(ICDCS’96), 1996.

[20] Nimrod-G: 〈http://www.csse.monash.edu.au/∼davida/nimrod/〉.
[21] G. Shao, R. Wolski, F. Berman, Master/slave computing on the grid,

Proceedings of Heterogeneous Computing Workshop, IEEE Computer
Society Press, Silver Spring, MD 2000, pp. 3–16.

[22] I. Shoshmina, et al., Experience of exploiting the RiDGrid segment.
Proceedings of the Second International Conference on Distributed
Computing and Grid Technologies in Science and Education, JINR,
Dubna, D11-2006-167, ISBN 5-9530-0138-X, 2006.

[23] S. Sinha, M. Parashar, Adaptive runtime partitioning of AMR
applications on heterogeneous clusters, Proceedings of 3rd IEEE
International Conference on Cluster Computing, 2001, pp. 435–442.

[24] X.-H. Sun, M. Wu, Grid harvest service: a system for long-term,
application-level task scheduling, Proceedings of IEEE International
Parallel and Distributed Processing Symposium, 2003.

[25] J.D. Teresco, et al., Resource-aware scientific computation on a
heterogeneous cluster, Comput. Sci. Eng., vol. 7(2), 2005, pp. 40–50.

[26] The CrossGrid EU Science project: 〈http://www.eu-CrossGrid.org〉.
[27] The Virtual Laboratory for e-Science project: 〈http://www.vl-e.nl〉.
[28] D.W. Walker, M. Li, O. Rana, M.S. Shields, Y. Huang, The

software architecture of a distributed problem-solving environment,
Concurrency—Practice Experience 12 (15) (2000) 1455–1480.

[29] Y. Zhang, K. Hakozaki, H. Kameda, K. Shimizu, A performance
comparison of adaptive and static load balancing in heterogeneous
distributed systems, Proceedings of the 28th Annual Simulation
Symposium, 1995, p. 332.

Vladimir Korkhov is a PhD candidate at the
Faculty of Science of University of Amsterdam.
He received his Master’s degree in mathemat-
ics and computer science from St. Petersburg
Institute of Fine Mechanics and Optics, Russia.
His research interests include grid computing,
distributed software systems, resource manage-
ment and workload balancing in heterogeneous
environment, workflows on the grid; he is the
author of more than 20 conference and journal
papers.

Valeria Krzhizhanovskaya is a researcher
at the University of Amsterdam (UvA), The
Netherlands, and a senior lecturer at St. Peters-
burg State Polytechnic University (StPSPU),
Russia. She received the MSc degree in Ap-
plied Mathematics and Physics from StPSPU
and is finalizing her PhD in Computational
Science at the UvA. Valeria has published
over 40 papers, worked as a guest editor of
4 special issues of the International Jour-
nal of Multiscale Computational Engineering,
organized 5 international symposia on Sim-
ulation of Multiphysics Multiscale Systems

http://www.science.uva.nl/∼valeria/SMMS/, served as a program committee
member and a reviewer in over 20 conferences and 6 international journals,
participated in more than 40 conferences, and worked in about 20 interna-
tional projects. Her research interests include parallel distributed computing
in heterogeneous systems, Grid computing, problem solving environments;
modeling, simulation and numerical methods in physics.

Prof. Peter M.A. Sloot is a full professor
in Computational Sciences at the University
of Amsterdam, the Netherlands. He has been
the General Chair of the ICCS series of con-
ferences on Computational Sciences since
2002. Dr. Sloot is the Editor in Chief of
Elsevier’s science journal: Future Generation
of Computing Systems and Associate editor
of The International Transactions on Systems
Science and Applications. More information:
http://www.science.uva.nl/∼sloot

Please cite this article as: V.V. Korkhov, et al., A Grid-based Virtual Reactor: Parallel performance and adaptive load balancing, J. Parallel Distrib. Comput.
(2007), doi: 10.1016/j.jpdc.2007.08.010

http://www.cfdrc.com
http://www.fluent.com
http://www.semitech.us
http://www.semitech.us
http://www.softimpact.ru
http://www.csse.monash.edu.au/davida/nimrod/
http://www.eu-CrossGrid.org
http://www.vl-e.nl
http://www.science.uva.nl/valeria/SMMS/
http://www.science.uva.nl/sloot
http://dx.doi.org/10.1016/j.jpdc.2007.08.010

