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were lower for the lattice-Boltzmann simulations (details can be found in Ref.
[9]). It can be argued that the longer computationat time of LBM is a direct con-
sequence of the transient nature of this scheme. In this article, we will present
a new technique, namely the Iterative Momentumn Relaxation technique (IMR),
which can significantly reduce the saturation titne. In this technique the body
force which is often used to drive a flow in lattice-Boltzmann simulations, is ad-
Justed dyaamically by caleulating the average loss of momentum due to viscous
furces.

In section IT we first veview thie basics of the jattice-Boltzinann method and
the IMR teclmique. In section II1 we discuss a benchmark application, namely
Huid flow in the SMRX reactor, and finally we present the results obtained with
the IMR technique.

2 Simulation method

2.1 The lattice-Boltzmmann BGK method

Basically, the time evolution of the lattice-Boltzmann model consists of a prop-
agation phase, where particles move along lattice bonds from a lattice node to
one of its neighbors, and a collision phase with a local redistribution of the par-
ticle densities subject to conservation of mass and momentuin. The simplest and
currently the most widely used lattice-Boltzmann model is the so-called lattice
BGK (Bhatnagar-Gross-Krook) model. Here the collision operator is based on a
single-time relaxation to the local equilibrium distribution [2, 13].
The time evolution of the lattice-BGK model is given by [13]

et ent+1) = £i(r,0 + 2000 - fite,0), (1)

whete f,(r,t) is the density of particles moving in the ¢; direction, T is the BGK
relaxation parameter, b.AST.v t) is the equilibrium distribution function towards
which the particle population is relaxed. The hydrodynamic fields, such as the
density p and the velocity v, are obtained from moments of the discrete velocity
distribution fi(r,t) (here N is the number of links per lattice point):

N N
-3, d e p) = Do il e,
suﬁu., 3 - =0 &..A—._ 3 nd ﬁn.. nu B MT.. nv

' (2}

and a common choice for the equilibrium distribution function is [13],

1 1
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F9 = p(1 +
Pl 52
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Cs

wlhere t; is a weight factor depending on the length of the vector c;, and ¢, is the
speed of sound. The lattice-Boltzmann model presented here yields the correct
hiydrodynamic behavior for an incompressible fluid in the limit of low Mach and
Knudsen numbers [13].
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Beside the computational kernel described above, flow simulations require a
consistent set of houndary conditions for the solid walls and the in- and outlets.
In Lattice-Boltzmann simulations solid walls are often imposed by using the
bounce-back method, while inlet and outlets can be implemented by using pres-
sure/ velocity houndaries or body-forces[16, 17]. In the case of pressure/velocity
boundaries the particle densities f; at the inlet and outlet are chosen such that
they yicld somc consistent values for the velocity or pressure. In the body-foree
approach, which is somewhat restricted to problems with a periodic geometry,
the flow is driven by adding a fixed amount of momentum along the flow direc-
tion at each lattice point. The overall effect is that a pressure gradient is imposed
between the inlet and outlet. For low Reynolds number flows, it has been shown
for several benchmark problems that in the stationary state the hydrodynamic
behavior of both the body-force and pressure/velocity boundaries are similar[17}.

2.2 The lterative Momentum Relaxation (IMR) Technique

As stated in our previous section, lattice-Boltzmann flow simulations are often
driven by a body force. According to Newton’s second law, the net force acting
on the fluid phase during the simulation is equal to the rate of change of the
total momentum,

dP(¢)

dt

where P(t) is the total momentum, Q is the total body-force and T(t) is the
total viscous friction force due to the obstacles. In standard lattice-Boltzmann
simulations the body-force is kept constant during the simulation, while the
friction force depends on the velocity field and the geometry of the problem.
A steady-state solution is reached when the total body force Q acting on the
fluid is completely cancelled by the viscous friction force T due to the walls and
obstacles.

The main idea of the IMR technique is to reduce the saturation time by
adjusting the applied body force during the iteration depending on the change
of fluid momentum at the iteration step considered. For some fixed amount of
iteration steps (considered as a time interval in IMR) the momentum loss is
computed and used to calculate the friction force acting on the fluid during that
time interval as follows,

=Q - T(t), (4)

T(t) = Q1) - &“|Mc. - (8)

The body-force for the next time interval is then set equal to this guess. No-
tice that in this formulation, the body-force is no longer constant. Moreover,
this strategy does not influence the explicit character of the Lattice-Boltzmann
algorithm and thus its efficient and easy parallelization.

In summary, the IMR technique can be described by the following algorithm,
First a flow is initialized. After every t,., time steps, the following iterative
procedure (where k denotes the iteration counter of the IMR-loop) is repeated:
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1. Caleulate the momentum change (AP, of the fluid phase in the direction

of the body force during the next time step,

2. Calculate the average momentum loss Ti = Qe — (AP), (Q4 is the total
body force at the iteration step k) of the fluid due to the viscous forces

during this time step,
3. Choose a new body force as Ceyr = T,

The new body force Q41 accelerates the fluid during tstep time steps before
returning to step 1. The simulation is carried out until the body force @ and the
total momentum reaches an acceptable degree of convergence. This is similar to
the heuristical approach for the vonvergence criteria used in standard lattice-
Boltzmann simulations,

3  Simulation results

To validate the IMR technique, we have simulated fluid flow in an SMRX static
mixer reactor {see Ref. [9] for details}). The SMRX static mixer reactor is a
technology introduced 15 — 20 years ago, which has gained more and more in
popularity within the chemical industry over recent years. It is a plug-flow type
reactor filled with a series of SMRX static mixer elements (see Figure 1) turned
at 90 degrees with respect to each other.

Fig. 1. The SMRX static mixer element. The reactor consists of an SMRX elemnent
placed in a rectangular duct. The inlet and outlet sections are of the same size as

the element itself. The flow is from left to right. The streasmlines illustrate the mixing
process along the reactor.

The mixer element consists of specially designed stationary obstacles which
promotes mixing of fluid Howing through it. Its mixing mechanism relies on split-
ting, stretching, reordering and recombination of the incoming fluid streams. In

_ . J——
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this communication we focus on only one SMRX m_miwz_: Uﬂ.E to usually rather
complex flows and geometries, only few 3D numerical m_-::_m:ozm.m of mo¢.< wr.no:m—.
static mixers were performed in the past [15]. We have ﬁw.wmn n—:m. application as
a benchmark, since it is one of the very few cases of fluid mo_._q in complex ge-
ometries with well documented results from traditional numerical methods and
experimental data.
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Fig. 2. Left: Body-force as a function of the time iteration. Right: the time m<or..;.o=
of the total x-momentum along the SMRX reactor for the m.,.wnn__.wa LBGK algorithm
and the IMR teclinique is shown. 7 = 1 and the element dimensions are 56 X 56 x 56
lattice points.

The time evolution of the body-force and the total momentum along the flow
direction for the lattice-Boltzmann simulations s..;:.m constant Uo&rmo—.nm and
the IMR technique is shown in Fig. 2. These simulations were um_..no_.amm for an
element discretization of 56 x 56 x 56 lattice points and Em relaxation v,E.mEmamn
T was equal to 1. It is clear that the damping of ﬁ:_m wmn_:wﬁonw behadior of .:.m
momentum is enhanced by the IMR technique. This is a result of the feedback
of the flow field on the body-force. Moreover, both approaches clearly converge
to the same value for the total momentum.

The time evolution of the relative difference in the total momentum along ﬁ._.m
flow direction, _.»bw.uﬁ:& (AP, is coniputed between two results of J_f.o md.._nnmmm_ﬁ
IMR trials), for the standard LBGK algorithm .w:& the IMR technique is m_rﬂsﬂ
in Fig. 3. From this figure, it is evident that with the IMR method the relative
difference converges faster to some level of tolerance.
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Fig. 3. The relative difference (in %) in the total momentum along the flow direc-
tion, __D'.uvh_:; as a function of time, for the standard LBGK algorithm and the IMR
technique. T = 1 and the element dimensions are 56 x 56 x 56 lattice points. In both
cases the oscillatory behavior is due to a non-zero initial velocity field. In the case of
the IMR technique more oscillations are present due to the iterative refinement of the

body-force.

In Fig. 4 we show the relative difference in the mean velocity along the reactor
(in %) for different time-steps, in the case of the standard LBGK method (on the
left) and the IMR technique (on the right). As reference data we have used the
simulation results obtained after 1500 time-steps, as then the simulations were
completely saturated in both cases. With the IMR technique 1% accuracy in
the velocity and the pressure fields compared to the reference data, was already
reached after 550 time steps, whereas the constant body-force method required
around 1000 time steps to reach a similar accuracy. Moreover, the steady state
solution of both approaches are very close to each other (data not shown). The
relative difference in the mean velocity along the reactor, between the stationary
state of both approaches, is smaller then 0.07%. In Ref. [9] we have shown in
detail that the results of the standard LBGK method are also in good agreement
with Finite Element calculations and experimental data. Thus we can conclude
that the results obtained by the IMR technique are also consistent with experi-
mental data.

In this test case we have used tyr.p = 50. Tests with some other values of t;.,
did not show significant improvements in the overall benefit gained by the IMR
technique. Similar speed up results were also found for other Reynolds numbers
provided that the flow is laminar. More detailed investigation and application of
the IMR technique to other problems will be reported elsewhere[17].
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Fig. 4. On the left the relative difference in the mean velocity (in %) of the standard
LBGK method is shown for ¢t = 900, ¢t = 950 and t = 1000. On the right the relative
difference in the mean velocity (in %) of the IMR technique is shown for t = 500,
t = 550 and ¢ = 600. In both cases the relative difference is computed with respect to
the simulation result at ¢ = 1500 time-steps (simulation is then completely saturated)
and the mean velocity is computed at different cross-sections along the reactor. v =1
and the element dimensions are 56 x 56 x 56 lattice points. The relative error is higher
at the inlet and outlet, because the mean-velocity is smaller at those locations.

4 Conclusions

In many lattice-Boltzmann simulations, the complete time evolution of the sys-
tem is computed with a constant body force starting from some initial velocity
and pressure fields. The number of time steps which is required to reach the
steady state can then be very large in some cases. We presented a new technique
for reducing the number of time steps that is needed to reach the steady state for
body-force driven flows. This strategy does not influence the explicit character of
the Lattice-Boltzmann algorithm and thus its efficient and easy parallelization.
We conclude that at least in problems involving laminar flow, the IMR technique
can be very eflicient in decreasing the number of time steps needed to reach the
steady state.
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