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SUMMARY

A detailed comparison between the finite element method (FEM) and the lattice-Boltzmann method
(LBM) is presented. As a realistic test case, three-dimensional fluid flow simulations in an SMRX static
mixer were performed. The SMRX static mixer is a piece of equipment with excellent mixing performance
and it is used as a highly efficient chemical reactor for viscous systems like polymers. The complex
geometry of this mixer makes such three-dimensional simulations non-trivial. An excellent agreement
between the results of the two simulation methods was found. Furthermore, the numerical results for the
pressure drop as a function of the flow rate were close to experimental measurements. Results show that
the relatively simple LBM is a good alternative to traditional methods. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The static mixer, a rather new technology introduced 15–20 years ago, has increased in
popularity within the chemical industry over recent years [1]. It consists of specially designed
stationary obstacles inserted in a pipe in order to promote mixing of fluid streams flowing
through it. Its mixing mechanism relies on splitting, stretching, reordering and recombination
of the incoming fluid streams. Compared with traditional mechanical mixing equipment, the
static mixer offers several advantages: it has low maintenance and operating costs, low space
requirements and no moving parts.

Nowadays, over 200 different designs are available on the market. They are widely used in
all kinds of chemical processes. Among those are gas/liquid reactors, polymerization reactors,
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blending units, heat exchangers and, to summarize, devices for promoting homogenization in
concentration, temperature or velocity (e.g. for uniform residence time). Among all the static
mixer designs, one of the most complex is the SMRX, a simplified version of the SMR-type
mixer manufactured by Sulzer Chemtech Ltd. and used mainly in polymerization reactors [2].
It consists of a series of solid crossing tubes, placed inside a rectangular tubular reactor (see
Figure 1). In this work, we will focus our attention on this static mixer and use the
experimental results of van Dijck and van Dierendonck [3] as a validation for the numerical
investigation.

Due to usually rather complex flows and geometries, only a few three-dimensional numerical
simulations in static mixers have been performed in the past. The first one was in 1992 on a
Kenics static mixer by Gyenis and Blickle [4] using stochastic simulations of steady state
particle flows. The simulations that followed were all based on macroscopic momentum
balance methods, like the finite element method (FEM), the finite difference method or the
finite volume method (FVM). Using the finite volume package FLUENT™, Bakker and
LaRoche [5] also studied flow and mixing in a Kenics static mixer. Later on, using the finite
element program POLY3D™ from RheoTek, Bertrand et al. [6] looked at residence time
distribution in low pressure drop (LPD) and interfacial surface generator (ISG) static mixers,
from Ross Engineering, for Newtonian and power-law fluids. In the same way, Tanguy et al.
[7] and Mickaily-Huber et al. [2] investigated flow and mixing in the complex SMRX static
mixer. Recently, Avalosse and Crochet [8] have studied mixing of Newtonian and power-law
fluids in a series of Kenics mixers using an FEM.

A close review of these previous articles clearly shows that the major problem of the
momentum balance methods is to generate a satisfactory body-fitted grid or mesh that does
not require too much memory. Briefly stated, they have high memory requirements per grid
element, and as a consequence are rapidly limited by the available computer resources.
Furthermore, complex geometries like the SMRX can lead to numerical inaccuracy due to
poor body-fitted meshes, especially for the pressure field (see Section 3).

In this paper we intend to show that there is an alternative approach, the so-called
lattice-Boltzmann method (LBM) [9–12], to traditional macroscopic momentum balance
methods for computing fluid flows in complex geometries, such as that of the SMRX static
mixer. This method is based on a different concept and has been proven successful in
simulating complex fluid dynamics problems, where conventional methods may be difficult to
apply [12–15]. The key idea behind the LBM is to model fluid flow by distributions of
particles, which, at each time step, propagate to a neighboring lattice points and subsequently
re-distribute their momenta in a local collision phase. The inherent locality of this method
makes it also ideal for parallel computing [16]. Of course, this method has its own limitations
and the choice of one or another type of method will mainly depend on the problem to be

Figure 1. SMRX geometry.
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solved. The main objective of this article is to show, rigorously, that this method can indeed
be used for realistic engineering applications.

A comparison of the LBM with a Galerkin FEM, applied to the complex SMRX test case,
will be presented from a theoretical, methodological and experimental point of view.

2. NUMERICAL METHODS

In this section we present the basic fundamentals of the FEM and the LBM. The aim is to
underline the conceptual differences between the two methods. For more exhaustive reviews,
we refer to the book of Cuvelier et al. [17] for the FEM and References [9–12] for the LBM.

2.1. The Galerkin finite element method

On a macroscopic scale, the flow of an incompressible fluid in a given geometry V can be
described by the classical Navier–Stokes equations [18]

r
�(v
(t

+v ·9v
�

+9 ·s+9p= f, (1)

9 ·v=0, (2)

where r is the fluid density, v is the velocity, p is the pressure and f is a body force, e.g. the
gravity force. The stress tensor s is a function of the rate of strain tensor g; =1

2(9v+ (9v)T)
through a rheological model

s= −2hg; , (3)

where, depending on the rheological model chosen, the fluid viscosity h could be a function of
�g; � (non-Newtonian models) or simply equals to the Newtonian viscosity m.

The FEM for solving fluid flow dynamics makes use of the variational calculus, which
allows the transformation of a set of partial differential equations (PDEs), the Navier–Stokes
equations, into a system of linear algebraic equations that can be solved after preconditioning
using a simple LU decomposition or by means of iterative algorithms.

2.2. The lattice-Boltzmann method

The LBM originated from the lattice gas automata that are discrete models of hydrodynam-
ics [12,19]. In these models, the computational grid consists of a number of lattice points
(similar to a uniform finite difference grid) which are connected with some of their neighbors
(depending on the model) by a bond or link. Basically, particles move synchronously along the
bonds of the lattice and interact locally according to a given set of rules in the following two
phases:

1. Propagation. In this phase particles move along lattice bonds from one lattice node to one
of its neighbors.

2. Collision. Particles on the same lattice node shuffle their momenta locally, subject to mass
and momentum conservation.

The major drawbacks of early lattice-gas models were statistical noise, exponential complex-
ity of the collision operator, and the lack of Galilean invariance [9]. Later, many modifications
have helped to resolve most of these problems and lattice-gas methods have proven to be
correct models for the Navier–Stokes equations [12].
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Nevertheless, the apparent deficiencies of the early lattice-gas methods inspired the formula-
tion of the LBM. In the LBM, a population of particles is being tracked instead of a single
particle and there is relatively more freedom in the definition of the collision operator [20–22].
The latest major modification to date is the lattice-Bhatnagar–Gross–Krook (BGK) model,
where the collision operator is based on a single-time relaxation to the local equilibrium
distribution [13]. This model is the simplest one in the hierarchy of LBMs and is currently
widely used in practical fluid flow simulations. In this paper, the so-called D3Q19 model is used,
where each lattice point is connected to its six nearest and 12 diagonal neighbors on distance

2. Rest particles are also included here.

The time evolution of the lattice-BGK (LBGK) model is given by [13]

fi(r+ci, t+1)= fi(r, t)+
1
t

( f i
(0)(r, t)− fi(r, t)), (4)

where ci is the ith link, fi(r, t) is the density of particles moving in the ci-direction, t is the
BGK relaxation parameter, and f i

0(r, t) is the equilibrium distribution function towards which
the particle populations are relaxed. A common choice for f i

0(r, t) is [13]

f i
0= tir

�
1+

1
c s
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4 (ci ·v)2−
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2c s

2 6
2�, (5)

where ti is a weight factor depending on the length of the vector ci, cs is the speed of sound,
r is the density and v is the velocity. The density and the velocity are obtained from moments
of the discrete velocity distribution fi(r, t),

r(r, t)= %
N

i=0

fi(r, t) and v(r, t)=
%i=0

N fi(r, t)ci

r(r, t)
, (6)

where N is the number of links per lattice point. In the D3Q19 model, the weight factors are
equal to 1

3,
1

18 and 1
36 for the rest particle, nearest neighboring and diagonal neighboring links

respectively. The fluid pressure, p(r, t), is given by the relation

p(r, t)=c s
2(r(r, t)− r̄)=c s

2Dr, (7)

where r̄ is the mean density of the fluid. Note that in the LBM, the pressure is generated
automatically by the spatial density fluctuations.

The models presented here yield the correct hydrodynamic behavior for an incompressible
fluid in the limit of low Mach and Knudsen numbers [13]. The kinematic viscosity of the
simulated fluid n and the speed of sound cs in lattice units, are n= (t−1

2)/3 and cs=
1
3 [13].

Briefly stated, in the lattice-Boltzmann algorithm, the flow field is computed by evolving
particle densities in time constrained to local conservation of mass and momentum. The
hydrodynamic fields, such as the density, velocity and the pressure, are computed from the
particle densities as described above. At each time step, the particle densities are propagated to
a neighboring lattice point along the link on which they reside. After this the particle densities
are relaxed to an equilibrium distribution function, which in fact is Maxwellian in the low
Mach number limit. The kinematic viscosity of the fluid is controlled by the relaxation rate.

It is obvious that the FEM and the LBM are two quite different numerical approaches. The
FEM is based on approximations of flow equations that are governed by basic physical
conservation laws on the macroscopic scale, whereas the LBM is based on evolution rules that
obey the same conservation laws on a mesoscopic scale. In the LBM, the physical evolution
rules are discrete while in the FEM methods, the discretization is performed on the level of the
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Table I. The fluid flow properties and the SMRX dimensions adopted from
van Dijck’s experiments [3] and used to validate the simulations

Fluid flow properties
Newtonian viscosity 1.46 Pa s

1053 kg m−3Fluid density
0–250 L h−1Flow rate

Reactor dimensions
8.5 cmHeight/width
17.0 cm (one SMRX)Length
25.5 cm (two SMRX)

Mixer dimensions
8.5 cmHeight/width/length
21Number of tubes per SMRX

macroscopic flow equations. The LBM can be viewed as a minimal model for the Navier–
Stokes equations instead of a full molecular dynamics approach. Indeed, fluid flow is mainly
determined by the collecti6e behavior of many molecules and not really by the detailed
molecular interactions.

3. SIMULATION RESULTS

In this section we present a detailed comparison between the two methods using the SMRX
test case. We compare the simulation results, such as the velocity and the pressure along the
SMRX mixer of both methods, as well as their computational requirements. The experimental
results of van Dijck and van Dierendonck [3] for the pressure drop at different flow rates are
used to validate both numerical methods. Therefore, the simulation parameters correspond to
those used in these experiments (Table I). The rectangular tabular reactor consists of an inlet
section, followed by one or two mixer elements and an outlet section.

Concerning the FEM simulations, the first step was to generate a satisfactory mesh of the
SMRX geometry. Generating a body-fitted mesh for such a complex geometry still remains
quite a challenge [2]. Using the mesh generator included in the commercial I-DEAS package
of SDR-C, we succeeded in creating two adequate meshes made of roughly 35000 and 45000
tetrahedral elements (Figure 2). However, even with this powerful software, some problems
occurred at certain intersections between the tubes. To overcome these problems, four tubes
with the same diameter as the mixer tubes were placed perpendicular to the flow direction at
the intersections. It can be argued that they have only minor influence on the flow since they
are located in dead or low velocity zones. In our meshes, we used two types of tetrahedral
elements, namely the P1

+ −P0 elements (called linear elements) and the P2
+ −P1 elements

(called quadratic elements). These element types are satisfying the so-called Brezzi–Babuska
condition [23], a theoretical compatibility condition that ensures reliable computations, espe-
cially for the pressure. The P1

+ −P0 linear element is an eight nodal point element, where the
velocity is approximated linearly, the pressure is taken to be constant and extra degrees of
freedom are added at the middle of each face to satisfy the Brezzi–Babuska condition. The
P2

+ −P1 quadratic element is a 15 nodal point element, where the velocity and pressure are
approximated quadratically and linearly respectively and extra degrees of freedom are added
at the middle of each face and edge and also at the centroid. We refer the reader to the paper
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Figure 2. Finite element mesh for the SMRX reactor (35000 elements). The need for the problematic tubes is
described in the text.

of Bertrand et al. [24] for more details. The flow simulations were performed on a RISC6000
77 MHz node of an IBM 9076 SP2 with 512 MB of nodal memory using POLY3D™. The
boundary conditions used are summarized in Table II. The memory space usage was 129, 480
and 165 MB respectively for the 35000 element P1

+ −P0 and P2
+ −P1 meshes and for the

45000 element P1
+ −P0 mesh. The computational time was 40, 190 and 57 CPU min

respectively.
In the LBM, the geometry is represented on a uniform Cartesian grid. Each grid point is

marked as a solid point when it belongs to an obstacle, otherwise it is marked as a fluid point.
To obtain a satisfactory discretization of the SMRX element we have used lattices of
dimension 112×56×56 and 224×112×112 grid points, based on a tube radius discretization
of four and eight grid points respectively. Compared with the FEM, the grid generation is
much easier for the LBM, especially due to the uniformity of the lattice. Of course, it must be
emphasized that the uniform nature of the lattice has its own limitations. For example, in this
specific SMRX case, the number of grid points for representing the inlet and the outlet sections
is the same as the number of grid points for representing the mixer element itself. A grid
refinement based on a coarser grid resolution for the inlet and the outlet sections and a finer
resolution for the element discretization could be very useful. However, the formulation and

Table II. Boundary conditions used in both methods

Boundary FEM LBM

Inlet Periodic6x using a quasi-parabolic velocity distribution given
by a series approximation [38]; 6y=6z=0

Outlet −p+r((6x/(x)=0; 6y=6z=0 Periodic
Solid walls Bounce-back rule6x=6y=6z=0

6x, 6y and 6z are the components of the velocity vector and the flow is in the x-direction.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1019–1033 (1999)
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application of LBM schemes based on non-uniform lattices is still an important research topic
[25–27].

The boundary conditions used in the LBM simulations are summarized in Table II. We see
that the flow boundaries and especially the no-slip boundaries can be implemented quite easily
due to the particle based approach. The inlet and outlet are periodic and the flow is driven by
a local body force. The use of periodic boundaries is based on the assumption that the velocity
profiles at the inlet and outlet are fully developed (the inlet and outlet sections are long enough
to guarantee that). More sophisticated pressure and velocity boundaries can be used when
these conditions are not valid (see, e.g. [28]). The solid walls have been modeled by the
bounce-back boundary condition; particles that reach the wall are reflected in the opposite
direction. The bounce-back rule generates a no-slip boundary, which is located somewhere
between the solid and the adjacent fluid nodes [29,30]. As the grid resolution is increased, the
agreement between the actual geometry and the locations of the no-slip boundaries is
improved. Careful determination of the appropriate lattice dimensions for a certain simulation
is therefore very important. The flow rate in the simulations is controlled by the magnitude of
the body force and the viscosity is tuned by the relaxation parameter. The flow simulations
were performed on a 32 node Parsytec CC parallel machine with 128 MB of memory per node
(133 MHz PowerPC 604). The total memory space usage was 50 and 400 MB for the
112×56×56 and 224×112×112 lattice respectively. The computational time on one node of
the parallel machine was 110 CPU min and 55 CPU hours (estimated, because this simulation
could not be executed on a single node of the machine due to memory constraints) respectively.
However, the real runs were performed on 16 nodes of the parallel machine and then the
computation time was 10 CPU min (parallel efficiency of 0.7 [16]) and 210 CPU min (parallel
efficiency close to 1) for the two grid resolutions. The computations of the FEM and the LBM
have been performed on different machines. However, the computational times required by the
coarse grid LBM simulations on one processor of the Parsytec CC machine were similar to the
computational time required by the LBM on one processor of the IBM 9076 SP2 machine.
Timing measurements show that the turn-around time on one node of the SP2 machine was
around 10% lower than that on one node of the Parsytec CC machine.

From all these results, it is evident that the sequential computation time of the fine grid
LBM simulations is quite high. The reason for this is that although the computation time for
each LBM iteration increases linearly with the number of lattice points, the number of time
iterations to reach the steady state depends quadratically on the lattice spacing (provided that
the relaxation parameter is kept constant). Notice that in the LBM, a complete time-dependent
flow is simulated in contrast to the FEM, where the time-independent Navier–Stokes
equations are solved given some initial flow field.

Plate 1(a)–(f) shows the norm of the velocity at three slices along the reactor ((a), (c) and
(e) are the results of the FEM, while (b), (d) and (f) are the LBM results). We clearly see that
qualitatively there is a good agreement for the local velocities obtained by the two methods.
We have to underline the fact that the viewer used to render the FEM contour plots uses only
the geometrical nodes (vertex nodes), leading to a loss of accuracy (especially when simulations
are performed with P2

+ −P1 element) and to coarser contour plots than the LBM, but
nevertheless the agreement is good. Furthermore, it is clear that the hot spots in the velocity
profiles obtained by both methods agree with each other.

The average of the norm of the velocity along the reactor multiplied by the void factor is
shown in Figure 3. The reason for multiplying by the void factor is to avoid small fluctuations
due to the four tubes added in the cross-flow direction in the FEM mesh. In this figure we
have included the results obtained on the two LBM grids and on the two types of FEM meshes

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1019–1033 (1999)
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Figure 3. Average velocity norm times void factor along the reactor (flow rate is 250 L h−1).

(the P1
+ −P0 and P2

+ −P1 elements respectively). The qualitative shape of the profile mimics
the distribution of the void space along the reactor, as one would expect. For the FEM, the
average and maximum difference between the velocity field of the two meshes is approximately
1.7% and 4.2% respectively. For the LBM, we have found an average and maximum difference
of around 1.6% and 3.1% for the velocity field respectively. Moreover, we clearly see that there
is a very good agreement (maximum difference 1%) between the solution obtained on the fine
LBM grid and the P2

+ −P1 FEM mesh.
The pressure along the reactor, which is much more sensitive to numerical accuracy than the

velocity, is depicted in Figure 4. Here we see that there are clear differences in the pressure
field obtained on the two FEM meshes, despite the good agreement found for the velocity
field. The difference in pressure drop between the P1

+ −P0 and P2
+ −P1 meshes is around

Figure 4. Pressure along the reactor (flow rate 250 L h−1).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1019–1033 (1999)
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Figure 5. Pressure drop vs. flow rate.

44%. The difference between the LBM simulations, however, is around 7.6%. Moreover, it is
evident that there is a very good agreement for the average pressure along the reactor between
the P2

+ −P1 FEM simulations and the LBM simulations on the fine grid. The difference in
pressure drop is around 1.6%, and the small fluctuations in the mean pressure along the
SMRX element zone are also similar.

The pressure drop as a function of the flow rate is shown in Figure 5. Here we have included
the results obtained by the two methods on the different grids and meshes. We see that for the
FEM there is a big discrepancy between the P1

+ −P0 and the P2
+ −P1 meshes for all flow

rates. Even for increasing number of elements, the results obtained by the P1
+ −P0 are not that

accurate. An, approximate, 30% increase in the number of P1
+ −P0 elements leads to an

improvement in the pressure drop by around 8% only, which is normal for such type of
element. The LBM results on the two grids are quite close to each other. We clearly see that
indeed the FEM and the LBM solutions converge to each other as the grid or mesh element
type is refined. These results are also good in agreement with the experimental data of van
Dijck and van Dierendonck [3]. The systematic error in the experimental data is approximately
7%. For low flow rates, the simulations are in the estimated error range of the experimental
data. For higher flow rates, the simulations overestimate the pressure drop. The maximum
difference between simulations and experiment is around 15%, which is acceptable for such a
complex geometry. These differences may be caused by experimental uncertainties in the
calibration of the flow rate and in viscosity measurements. Notice that in both simulations, we
have assumed that the fluid is Newtonian, whereas from experimental measurements it was
evident that the fluid is not purely Newtonian [3]. Furthermore, more detailed experimental
measurements (at least more data points) are required in order to judge the actual cause of the
slight disagreement between simulations and experiments.

We have also simulated fluid flow in a reactor consisting of two SMRX elements with the
LBM. The geometry of this reactor is shown in Figure 6. In this set-up the second SMRX
element is rotated 90°. The results on the different grids are shown in Figure 7. We clearly see
that, in this case also, there is a good agreement between simulation and experiment. Here we
found a deviation in the order of 15% between simulation and experiments, which can be
considered already quite accurate for such a complex geometry and considering experimental

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1019–1033 (1999)
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Figure 6. LBM discretization of two SMRX reactors (tube radius of four lattice points).

uncertainties already mentioned. This case could not be simulated using the FEM due to
memory requirements. For the LBM, the total amount of memory usage depends linearly on
the number of mixer elements, and thus in principle a reactor consisting of more mixer
elements (which corresponds to the actual configuration in industrial reactors) can be
simulated on the full domain of the parallel machine.

From all these results, it appears clearly that the FEM has more difficulties in predicting the
right pressure drop. With the FEM, a not-fine-enough mesh will most probably lead to a poor
estimate of the pressure field despite a relative good estimate of the velocity field. Especially
for the current test case, we argue that a P2

+ −P1 type of element is absolutely required to get
a satisfactory estimate of the pressure field, although, strictly speaking, it would have been
interesting to check what would be the precision achieved by a P1

+ −P0 simulation using the
same amount of memory as that used by the P2

+ −P1 simulation.
Moreover, in the case tested, the LBM uses roughly ten times less memory than the FEM

to reach a similar accuracy, since the solution given by the LBM coarse grid already reaches
a satisfactory precision. Although the simulations were not executed on the same computer, it
appears also that the LBM coarse grid simulation requires roughly the same computational

Figure 7. Pressure drop vs. flow rate for a two SMRX element reactor (flow rate is 250 L h−1).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1019–1033 (1999)
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Table III. A methodological comparison between the FEM and the LBM

FEM LBM

Long EasyCode implementation
Memory usage P1

+−P0: 274 6800
P2

+−P1: 74(Number of ‘elements’/MB)
X=1.4CPU time (=K · (number of X=1.7

‘elements’)X)
Parallelization Not trivial Inherent locality

Available In developmentLocal mesh refinement
AvailableTransient flow Inherent

Heat transfer Available Research topic
Mass transfer Available Available

Not as straightforward asMulti-phase Available
in the LBM

Non-Newtonian/elastic fluid Available Recent development
rheology

Partially successfulTurbulence Partially successful

In the case of the LBM ‘elements’ means grid points.

time (on a sequential machine) compared with the FEM fine mesh simulation. However, the
computational time required by the LBM fine grid simulation shows a drastic increase
compared with the coarse grid simulation. Therefore, the cost-effectiveness of the LBM is
partly due to its implementation on a parallel machine.

4. METHODOLOGICAL COMPARISON

In the previous section, we have demonstrated that the LBM is indeed efficient for simulating
a single-phase, isothermal, incompressible and laminar fluid flow through an SMRX reactor.
In this section, we will discuss the possibilities of simulating more complicated flow problems
by the two methods. Also, more practical aspects, like, for example, code development and
memory usage, will be considered. Table III summarizes the different aspects.

The FEM is in use in many different commercial computational fluid dynamics (CFD)
packages like POLY3D™, POLYFLOW™ or FIDAP™. This in contrast to the LBM, which
is a rather new method and it is still in its development phase. The only commercial code at
the moment is POWERFLOW™ developed by the EXA Corporation. However, the imple-
mentation of an LBM code is quite straightforward, whereas the implementation of an FEM
code is long and tedious (a matter of years). For this specific application, the LBM can reach
the same level of accuracy with a memory usage roughly ten times lower than that of the FEM.
In Table III, we have included the average requirements (at least for the codes used) for both
methods in terms of elements or grid cells per MB of memory, although the nature of one
‘element’ differs from one method to the other and, therefore, these numbers should be
interpreted with care. Nevertheless, it can provide some insights in the amount of memory
needed for a specific application given the number of elements or grid points that are required
for a satisfactory discretization.

As we mentioned earlier, it was possible for our test case to achieve the same level of
accuracy using roughly the same computational time. However, the computational time as a
function of the number of elements or grid cells behaves quite differently for both methods. It
appears that as the mesh or the grid is refined, the computational time as a function of the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1019–1033 (1999)
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number of ‘elements’ increases with the power 1.4 for the FEM and 1.7 for LBM. Notice that
in the LBM, a decrease of the lattice spacing by a factor of 2 results in eight times more lattice
points. The lattice spacing is thus proportional to N1/3 (N is the number of lattice points) and
the number of time steps to reach a steady state depends quadratically on the lattice spacing
[Kandhai et al., ‘Implementation aspects of 3D Lattice-BGK: boundaries, accuracy and a new
fast relaxation method’, submitted]. Therefore, the total computational time is proportional to
N2/3N=N1.7, which explains the sharp rise in computational time noticed for the LBM fine
grid simulations. Nevertheless, the total computational time depends on the problem. Notice
that a more efficient relaxation scheme proposed in [Kandhai et al., ‘Implementation aspects
of 3D lattice-BGK: boundaries, accuracy and a new fast relaxation method’, submitted] may
be used to accelerate the convergence of the LBM simulations.

Moreover, the inherent locality of the update rules in the LBM makes efficient paralleliza-
tion straightforward [16], whereas parallelization of the FEM codes may be more complicated,
especially when implicit methods are used.

Concerning the mesh or grid generation for complex geometry, it is by far much easier to
generate a grid for the LBM than to generate a mesh for the FEM, since the FEM was
required solely until recent body-fitting of the geometry. However, a new method developed by
Bertrand et al. [31], called the virtual finite element method (VFEM), which belongs to the
class of Lagrange multiplier-based fictitious domain method (FDM) (Glowinski et al. [32]),
allows the inner part of the geometry to be imposed fictitiously using kinematic constraints
introduced into the mathematical formulation by means of Lagrange multipliers. Then, as for
the LBM, only one volumetric mesh representing the enclosure without its internal parts (in
our test case, the reactor without the SMRX element) has to be generated. However, in return
for the gain in terms of mesh generation, a much longer computational time was observed to
reach equivalent convergence criteria in preliminary simulations, see Figure 8. The VFEM
method allowed us to simulate our test case without the introduction of the four tubes in the
cross-flow direction as mentioned earlier, and it may be really useful in cases where usually
remeshing is required or meshing is impossible by conventional methods. Otherwise, in
classical three-dimensional FEM meshing, only the use of tetrahedral elements allows a

Figure 8. Preliminary comparison between the VFEM, the conventional FEM, the LBM and the experimental data
(memory usage VFEM: 413 MB).
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suitable mesh for geometries like our test case be created. Fortunately, mesh refinement
techniques are fully available for the FEM, which support mesh refinement only where
needed, whereas it is still a research topic for the LBM. Recently, some schemes based on
non-uniform grids for the LBM have been proposed [26,27].

Simulation of transient flows is a fully available feature for both methods and it is even
inherent in the LBM. Heat transfer, mass transfer and non-Newtonian/elastic fluid rheology
are other features that have already been studied for many years by using FEMs, but are
quite recent developments in the LBM [11,33]. Extensions of both models to deal with
turbulence have been studied for several test cases (see, e.g. [34]). It is, however, important
to notice that the complex phenomena that is inherent to turbulence makes both methods
only partially successful. However, simulation of multi-phase flow and suspension flow
using the FEM is not as straightforward as in the LBM. The LBM method appears to be
suitable for modeling these complex flows in some hydrodynamic regimes as demonstrated
by, e.g. Grunau et al. [35] and Ladd [36,37]. This discussion clearly suggests that both
methods are good in their own respect and also that there may be developments in the
future, which may change the range of tractable applications for both methods.

5. CONCLUSION

Our results based on the flow in an SMRX reactor show good agreement between the
FEM simulations, the LBM simulations and experimental measurements. This suggests that
the LBM is an accurate method for flow through complex geometries compared with
well-established methods like the FEM. It appears that the LBM is less memory consuming
and uses computational times comparable with the FEM (for the same accuracy of the
simulations), although there may be cases where the FEM method is more efficient, e.g.
due to the uniform nature of the LBM grids. However, the execution times of the LBM
methods show a sharp increase on very fine meshes. We discovered also that the LBM
shows similar accuracy between pressure and velocity fields, whereas the FEM could exhibit
a rather good estimate of the velocity field combined with a bad estimate of the pressure
field due to mesh coarseness. Clearly, the choice between the two methods relies on the
type of problem to solve, the computer resources available and time. For instance, starting
to build a code from scratch, having a problem requiring a lot of memory and/or paral-
lelization and/or dealing with multi-phase, the LBM will turn out to be a faster and easier
method. On the other hand, having a flow problem involving heat transfer and/or non-
Newtonian/elastic fluid rheology, the FEM would be a better choice. However, as men-
tioned earlier, the LBM is a rather new method and those features could probably become
trivial in the coming years. In the near future we will apply the LBM to study mixing of
two fluids in the SMRX reactor.
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Plate 1. Contour plots of the velocity profile at different cross-sections in the reactor [(a) and (b) at x=3.1 cm, (c)
and (d) at x=6.4 cm, (e) and (f) at x=6.8 cm, where x=0 is at the beginning of the static mixer element] for the

FEM [(a), (c) and (e)] and the LBM [(b), (d) and (f)] simulations (finest meshes and flow rate is 250 L h−1).
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