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‘We present a comparison between the finite-element and the lattice-Boltzmann method
for simulating fluid flow in a SMRX static mixer reactor. The SMREX static mixer is a
piece of equipment with excellent mixing performance and it is used in highly efficient
chemical reactors for viscous systems like polymers. The complex geometry of this mixer
makes such 3D simulations nontrivial. An excellent agreement between the results of the
two simulation methods and experimental data was found.
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1. Introduction

The lattice-Boltzmann method! 3 is a new approach in computational fluid dyna-
mics. It originated from the lattice-gas model* and has a microscopic character,
as opposed to the conventional approach based on a numerical solution of the
Navier-Stokes equation.’ The key idea behind this method is to model fluid flow
by distributions of particles moving on a regular lattice. At each time step the
particles propagate to a neighboring lattice point followed by local collisions in
which their velocities are redistributed.

*This paper was presented at the 7th Int. Conf. on the Discrete Simulation of Fluids held at the
University of Oxford, 14-18 Juiy 1998.
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This simulation model has proven to be successful in modeling and simulation of
complex fluid dynamical problems for which the conventional macroscopic approach
may be difficult to apply. These simulations include solid-fluid suspensions 5.7 muylti-
phase flows® and the effect of convection-diffusion on growth processes.® Also, flow
in complex geometries, e.g., fluid flow in porous media, has been successfully sim-
ulated with this method.!® Another important advantage of the lattice-Boltzmann
method is the inherent spatial locality of the updating rules. This property makes
it ideal for parallel processing.!!

Although this approach has proven to be very useful for simui-ting complex
fluid flows, examples of its use in realistic engineering applications are still limited.
The main reason for this, is the fact that the method has mostly been used for
studying academic problems. Moreover, only a few benchmark studies (see e.g.,
Refs. 13 and 14) which focus on a comparison with state of the art traditional
methods and experimental data from both a numerical and computational point of
view, has been reported.

In this contribution we briefly present a comparison between the lattice-
Boltzmann, the Finite-Element method and experimental data. In a companion
communication, a detailed comparison between both methods will be presented.!?
We intend to show that the lattice-Boltzmann method is a good alternative to the
traditional macroscopic momentum balance methods for computing fluid flows in
complex geometries. As a benchmark problem we take fluid flow in a 3D static
mixer reactor,!® a technology introduced 15-20 years ago, which has gained more
and more in popularity within the chemical industry over recent years. A SMRX

Fig. 1. A SMRX static mixer element.
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reactor is a plug-flow type reactor filled with a series of SMRX static mixer elements
(see Fig. 1) turned at 90 degrees with respect to each other. The mixer element
consists of specially designed stationary obstacles in order to promote mixing of
fluid streams flowing through it. Its mixing mechanism relies on spliting, stretching,
reordering and recombination of the incoming fluid streams. In this communication
we focus on only one SMRX element for obvious reasons of simplicity. Due to usu-
ally rather complex flows and geometries, only few 3D numerical simulations of low
through static mixers were performed in the past.!®

In Sec. 2 we discuss the basic idea. of simulating fluid flow by the Finite-Element
and the lattice-Boltzmann methods. In Sec. 3 we show the numerical results. And

in the last section the conclusions are presented.

2. Two Ways of Modeling Hydrodynamics

In this section we present the basic fundamentals of the finite-element (FEM) and
the lattice-Boltzmann (LBM) methods. The aim is to underline the conceptual
differences between the two methods.

The FEM is based on a numerical solution of a macroscopic description of fluid
flow, which in the case of an incompressible fluid in a given geometry (I can be
described by the classical Navier-Stokes equations®

p(%+v-Vv)+V-a+Vp=f, {1)

V-v=0, (2)

where p is the fluid density, v is the velocity, p is the pressure and f is a body force,
e.g., the gravity force. The stress tensor o is a function of the rate-of-strain tensor
4 = 3(Vv + (Vv)T), through a rheological model:

o= -2y, (3)

where, depending on the rheological model chosen, the fluid viscosity 7 could
be a function of {¥| (non-Newtonian models) or simply equals to the Newtonian
viscosity pu.

The finite-element method for solving fluid flow dynamics makes use of varia-
tional calculus which allows the transformation of a set of partial differential equa-
tions (in our case, the Navier—Stokes equations) into a system of linear algebraic
equations.!” This can be solved using a simple LU decomposition or by means of
iterative algorithms.

The lattice-Boltzmann method on the other hand is a mesoscopic approach
where the macroscopic dynamics is approximated by interactions between fictitious
particles on a regular lattice. The main idea here is that fluid flow is mainly deter-
mined by the collective behavior of many molecules and not really by the detailed
molecular interactions. Basically the time-evolution of the lattice-Boltzmann algo-
rithm consists of the following two phases:
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1. Propagation. In this phase particles move along lattice bonds from one lattice
node to one of its neighbors.

2. Collision. Particles on the same lattice redistribute their momenta locally, sub-
ject to mass and momentum conservation.

In this article we use the so-called lattice-BGK (BhatnagarGross—Krook)
model, where the collision operator is based on a single-time relaxation to the
local equilibrium distribution,1?

B+ et +1) = file ) + - (£00.0 - £i(n9), @

where c; is the ith link, f;(r,t) is the density of particles moving in the ¢;-direction,
T is the BGK relaxation parameter, and f°(r,t) is the equilibrium distribution
function towards which the particle populations are relaxed.®!3

It is obvious that FEM and LBM are two very different numerical approaches.
FEM is based on approximations of flow equations that are governed by basic phys-
ical conservation laws on the macroscopic scale, whereas LBM is based on evolution
rules which obey the same conservation laws on a mesoscopic scale. In LBM the
physical evolution rules are discrete while in FEM methods the discretization is
performed on the level of the macroscopic flow equations.

3. Numerical Results

In this section we present the results, namely the pressure along the SMRX mixer
using both methods. The experimental results of van Dijck et al'® for the pressure
drop at different flow rates are used to validate both numerical methods. Before
going into details we first briefly discuss some practical issues of both simulation
methods.

Concerning the FEM simulations, the first step was to generate a satisfac-
tory mesh of the SMRX geometry. Using a commercial mesh generator (SDRC’s
I-DEAS package) we succeeded in creating two adequate meshes made of roughly
35000 tetrahedral elements. In our meshes, we used two types of tetrahedral el-
ements, namely the P} — Py clements (called linear elements) and the Py — Py
elements (called quadratic elements).’® The flow simulations were performed on
one RISC6000 77 MHz node of an IBM 9076 SP2 with 512 MB of nodal mem-
ory using POLY3D™™ from Rheotek. The memory space usage was 129 MB and
480 MB respectively for P{" — Py and P — Pi meshes. The computational time
was 40 CPU min and 190 CPU min respectively.

In LBM the geometry is represented on a uniform Cartesian grid. Each grid
point is marked as a solid point when it belongs to an obstacle and otherwise it
is marked as a fluid point. To obtain a satisfactory discretization of the SMRX
element we have used lattices of dimension 112 x 56 x 56 and 224 x 112 x 112 grid
points, based on a tube radius discretization of 4 and 8 grid points respectively.
The flow simulations were performed on a 32-node Parsytec CC paraliel machine
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Fig. 2. Pressure drop versus flow rate.

with 128 MB memory per node (133 MHz PowerPC 604). The total memory space
usage was 50 MB and 400 MB for the 112 x 56 x 56 and 224 x 112 x 112 lattice
respectively. The computational time on one node of the parallel machine was 110
CPU min and 3300 CPU min {estimated, because this simulation could not be
executed on a single node of the machine due to memory constraints) respectively.
However, the real runs were performed on 16 nodes of the parallel machine and
then the computation time was 10 CPU min (parallel efficiency!! of 0.7) and 210
CPU min (parallel efficiency estimated to be close to 1) for the two grid resolutions.

The pressure drop as a function of the flow rate is shown in Fig. 2. Here we have
included the results obtained by the two methods on the different grids and meshes,
We see that for FEM there is a big discrepancy between the P; — Py and the Py — P
meshes for all flow rates. The LBM results on the two grids are quite close to each
other. We clearly see that indeed the FEM and the LBM solutions converge to each
other as the grid or mesh-element type is refined. These results are also good in
agreement with the experimental data of van Dijck et al!® The systematic error in
the experimental data is approximately 7% for the pressure measurements. For low
flow rates the simulations are in the estimated error range of the experimental data.
For higher flow rates the simulations over estimate the pressure drop. The maximum
difference between simulations and experiment is around 15%. These differences
may be caused by experimental uncertainties in the calibration of the flow rate and
in viscosity measurements. Notice that in both simulations, we have assumed that
the fluid is Newtonian, whereas from experimental measurements it was evident
that the fluid is not purely Newtonian.!* Furthermore, more detailed experimental
measurements {at least more data points) are required in order to judge the actual
cause of the slight disagreement between simulations and experiments.
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4, Conclusions

Our results indicate that the level of agreement between both simulation methods
is astonishingly high. Moreover, the simulated data fits well with the experimental
values.

In the case tested, the LBM uses roughty 10 times less memory than the FEM to
reach a similar accuracy, since the solution given by the LBM coarse grid already
reaches a satisfactory precision. Although the simulations were not executed on
the same computer, it appears also that the LBM coarse grid simulation requires
roughly the same computational time {on a sequential machine} compared to the
FEM fine mesh simulation. However, the computational time required by the LBM
fine grid simulation shows a drastic increase compared to the coarse grid simulation.

In a companion communication we will present this study in much more detail,
including a comparison of the local velocity and pressure profiles, fluid fiow in more
complicated reactors and a methodological comparison between the two methods.!?
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