
1

Comparing the Parix and PVM
parallel programming environments

A.G. Hoekstra, P.M.A. Sloot, and L.O. Hertzberger

Parallel Scientific Computing & Simulation Group, Computer Systems Department, Faculty
of Mathematics and Computer Science, University of Amsterdam, Kruislaan 403, 1098
SJ, Amsterdam, the Netherlands, telephone: +31 20 5257463, email: alfons@fwi.uva.nl,

http://www.fwi.uva.nl/fwi/research/vg4/pwrs/

Summary

Genericity of parallel programming environments, enabling development of portable
parallel programs, is expected to result in performance penalties. Furthermore,
programmability and tool support of programming environments are important issues
if a choice between programming environments has to be made. We propose a
methodology to compare native and generic parallel programming environments,
taking into account such competing issues as portability and performance. As a case
study, this paper compares the Parix and PVM parallel programming environments
on a 512 node Parsytec GCel. Furthermore, we apply our methodology to compare Parix
and PVM on a new architecture, a 32 node Parsytec PowerXplorer, which is based on
the PowerPC chip. In our approach we start with a representative application and
isolate the basic (environment) dependent building blocks. These basic building
blocks, which depend on floating point performance and communication capabilities
of the environments, are analysed independently. We have measured point to point
communication times, global communication times and floating point performance.
All information is combined into a time complexity analysis, allowing the
comparison of the environments on different degrees of functionality.

1. Introduction

Real success of Massively Parallel Processing critically depends on
programmability of parallel computers and on portability of parallel programs.
We are made to believe that “parallel computing has come to age”. Although it
is safe to say that parallel hardware has reached a convincing stage of
maturity, both programmability of the parallel hardware and portability of
parallel programs still pose serious problems to developers of parallel
applications.

In this paper we will address the question how to compare (native and
generic) parallel programming environments, taking into account issues such
as performance, portability, and availability of tools. We propose a methodology
and apply it to a case study of native and generic environments on a transputer
platform and on a PowerPC platform.

Many research groups have compared parallel programming
environments [e.g. 1, 2, 3, 4, 5]. The majority of such comparisons however

2

concentrate around clusters of workstations, and have not analysed the
behaviour of programming environments such as PVM on true massively
parallel machines.

The goal of this work is to propose a strategy to compare parallel
programming environments, and to apply this to native and generic
programming environments running on a large massively parallel system. We
will compare a native parallel programming environment, i.e. Parix, with a
generic environment, i.e. PVM, by examining the behaviour of a representative
parallel application implemented in these environments. These experiments
are executed on a 512 node Parsytec GCel. As a case study we have
implemented an application from Physics, i.e. Elastic Light Scattering
simulations using the Coupled Dipole method [6, 7, 8] on the Parsytec GCel.

We will analyse the behaviour of the parallel Coupled Dipole method in
both environments by analysing basic and global communication routines,
floating point performance, and actual execution times of the parallel program
as a function of problem size and number of processors. We will investigate if
the basic measurements can predict the runtime of the application, and if such
basic measurements can be used as a heuristic to assess the merits of a
programming environment. In this way we can judge the trade-off which
exists between native environments, usually offering a better performance at
the price of extensive programming effort, and generic environments which
allow to develop more portable programs.

Finally, we will apply our methodology to assess the merits of Parix and
PVM on a very recent PowerPC based architecture, the Parsytec PowerXplorer.

2. Results

2.1 Methodology

In order to compare the environments we have measured floating point
performance, basic communication routines, a global communication routine
(a vectorgather operation) and finally the execution time of the parallel Coupled
Dipole method on the Parsytec GCel. Subsequently we have compared PVM and
Parix on the PowerXplorer system by measuring floating point performance
and relevant communication routines. Here we will briefly present the results
for the communication measurements, the complete set of experiments will be
provided in the full paper.

2.2 Result for the Parsytec GCel

We assume that point to point communication can be described by a linear
two parameter model. The point to point communication time tpp is

tpp = τsetup + n τsend, [1]

with n the number of bytes sent, τsetup a setup time to initialise and start the
communication, and τsend the send time to transfer 1 byte. Here we have
neglected effects due to buffering.

3

Parix's virtual links allow point to point communication between any
node, the kernel of Parix routes the messages through the hardware. However,
in the Coupled Dipole implementation the only point to point communication
consists of synchronous send/receive pairs between adjacent processors.
Therefore we have only measured synchronous point to point communication
between neighbouring processors. The results are τsend = 0.92 ± 0.02 µs/byte
and τsetup = 67 ± 2 µs.

The analysis of point to point communication in PVM is complicated by
the fact that the localisation of the parallel processes is not known, and
therefore we do not know if a communication is between physical neighbouring
processors. In order to get a picture of the basic communication performance of
PVM we measured all possible point to point communications between node
zero and all other nodes in a PVM partition, and analysed the distribution in
the resulting setup - and send times. We have fitted all experiments and
generated histograms of τsend and τsetup. The histograms are drawn in figures
1 and 2.

0.8 1.2 1.6 2
time

send time PVM

20

40

60

#

1000 3000 5000
time

setup time PVM

0

4

8

12

#

Figure 1: The histogram of the occurrences
of send times (in µs/byte) in a 256 node
partition in the GCel; the step size is 0.01
µs/byte.

Figure 2: The histogram of the occurrences
of setup times (in µ s) in a 256 node
partition in the GCel; the step size is 100 µs.

We observe two fast connections having a τsend of approximately 0.9
µs/byte and 1.0 µs/byte. These numbers are comparable to the τsend of Parix.
The rest of the connections of PVM cluster around 1.6 and 1.8 µs/byte. PVM
shows a broad distribution of τsetup around approximately 3000 µs. Here we
clearly observe a difference with Parix. PVM has much higher setup times for
point to point communication.

We have measured the time for the vector gather operation as a function of
the number of processors and as a function of the total vector length n in bytes.
For each value of p we measured communication time as a function of n. We
have fitted the measurements to tvg=τan+τb.

We observe two fundamental differences between PVM and Parix. First, in
PVM the τa depends on p, and increases sub linear in p. Furthermore, the
initialisation τb of PVM increases faster than linear with p, which results for
large p in (unacceptably) high initialisation times. This result is a very good
example of the trade-off of programmability against performance. The PVM
vector gather operation consist of just one call to a global communication
routine, and a trivial buffer compacting. However, the price to be paid is a bad

4

scaling behaviour, as compared to Parix.

2.3 Comparison of Parix and PVM on the Parsytec PowerXplorer

Figures 3 and 4 shows the histograms for τsend and τsetup (as introduced
in section 4.3), in the 32 node partion of the PowerXplorer system for Parix and
PowerPVM.

0.92 0.94 0.96 0.98 1.
time

send time Parix

0

5

10

15

20

#

0.92 0.94 0.96 0.98 1.
time

send time PVM

0

5

10

15

20

#

Figure 3: The histogram of the occurrences of send times (in µs/byte) in the 32 node partition
in the PowerXplorer; the step size is 0.01 µs/byte.

200 400 600 800 1000
time

setup time Parix

0

1

2

3

4

5

#

200 400 600 800 1000
time

setup time PVM

0

1

2

3

4

5

#

Figure 4: The histogram of the occurrences of setup times (in µs) in the 32 node partition in
the PowerXplorer; the step size is 10 µs.

3. Concluding Remarks

We have compared the Parix and PVM parallel programming
environments on a Parsytec GCel, by a detailed analysis of the performance of a
particular application. Our approach, in which we start with an application,
isolate the basic (environment) dependent building blocks which are analysed
independently, and combining all information in a time complexity analysis,
allowed us to compare the environments on all relevant degrees of
functionality. Together with demands for portability of the code, and
development time (i.e. programmability), an overall judgement of the
environments can be made. Our approach has similarities with the much
more elaborate Parkbench benchmark suite [9]. However, by placing the basic
measurements in the context of a specific application, as we do, the
interpretation of the measurements can be more accurate.

In general we observe that increasing portability and programmability, in

5

going from Parix to PVM, results in a degradation of especially the
communication capabilities. The global communication routine of PVM that
we tested has a very bad scaling behaviour which clearly shows up in the
larger partitions. This results in poor scalability of the PVM implementation.
Fortunately, in real production situations, with large problem sizes, the
application has an efficiency very close to one, and the run time is mainly
determined by the floating point performance.

Application of our heuristic to compare PVM with Parix on a Parsytec
PowerXplorer shows that point to point communication in PVM is as good as
Parix. However, the global communication in PVM is still far from optimal.
Future implementations of PVM should strive to more optimized global
routines.

Global communication routines strongly increase the programmability of
parallel computers. However, in our case studies, we have observed a poor
scaling behaviour of these routines, as compared to handcoded Parix routines
that exploit data locality and point to point communication on virtual
topologies.

Currently the Message Passing Interface (MPI) standard has been
defined, and the first implementations of MPI have been reported [10]. Our
group is working on a MPI implementation on top of Parix [11]. We will test the
MPI implementation using the methods as described in this paper.
Furthermore, the global communication routines of MPI, such as the
MPI_BCAST, will be implemented such that the reported scaling behaviour of
comparable Express and PVM routines can be improved.

4. References

1. M. Weber, ‘Workstation clusters: one way to parallel computing’, International J.
Mod. Phys. C 4, 1307-1314 (1993).

2. A.R. Larrabee, ‘The P4 Parallel Programming System, the Linda Environment, and
Some Experiences with Parallel Computing’, Scientific Programming 2, 23-35 (1993).

3. A. Matrone, P. Schiano, and V. Puotti, ‘LINDA and PVM: A comparison between two
environments for parallel programming’, Parallel Computing 19, 949-957 (1993).

4. T.G. Mattson, C.C. Douglas, and M.H. Schultz, ‘A comparison of CPS, Linda, P4,
Posbyl, PVM, and TCGMSG: two node communication times’, Tech. Rept.
YALEU/DCS/TR-975 Dept. of Computer Science, Yale University, 1993.

5. C.C. Douglas, T.G. Mattson, and M.H. Schultz, ‘Parallel Programming systems for
workstation clusters’, Tech. Rept. YALEU/DCS/TR-975 Dept. Computer Science, Yale
University, 1993.

6. A.G. Hoekstra, ‘Computer Simulations of Elastic Light Scattering:Implementation and
Applications’, Ph.D. Thesis, University of Amsterdam, 1994.

7. A.G. Hoekstra and P.M.A. Sloot, ‘New Computational Techniques to Simulate Light
Scattering from Arbitrary Particles’, In Proceedings of the 3rd International Congress
on Optical Particle Sizing '93 - Yokohama, pp. 167-172, M. Maeda (Eds.), 1993.

8. A.G. Hoekstra and P.M.A. Sloot, ‘Simulating Elastic Light Scattering Using High
Performance Computing Techniques’, In European Simulation Symposium 1993, pp.
462-470, A. Verbraeck and E.J.H. Kerckhoffs (Eds.), Society for Computer Simulation
International, 1993.

9. R. Hockney and M. Berry, ‘Public International Benchmarks for Parallel Computers:
Parkbench Committee report 1.’, Scientific Computing 3, 101-146 (1994).

10. D.W. Walker, ‘The design of a standard message passing interface for distributed
memory concurrent computers’, Parallel Computing 20, 657-673 (1994).

6

11. P.M.A. Sloot, private communication, for more information you can send email to
peterslo@fwi.uva.nl.

