
COMPUTER SIMULATIONS OF ELASTIC
LIGHT SCATTERING

IMPLEMENTATION AND APPLICATIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus

prof. dr. P.W.M. de Meijer,
ten overstaan van een door het college van dekanen ingestelde

commissie in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui)

op 11 februari 1994 te 12:00 uur

door

Antoon Georgius Hoekstra

geboren te Irnsum



Promotor: prof. dr. L.O. Hertzberger
Co-promotor: dr. P.M.A. Sloot

Fakulteit: Wiskunde en Informatica

The research presented in this thesis was financially supported by the
Netherlands Organisation for Scientific Research (NWO), via a matched
funding from "FOM", "SION", and "foundation for Biophysics", grant number
NWO 810-410-04 1.

I gratefully acknowledge technical support from Parsytec Computer GmbH,
Aachen, Germany.

©1994 Alfons Hoekstra. All rights reserved.

Printed by CopyPrint 2000, Enschede, the Netherlands.



TABLE OF CONTENTS

1. General Introduction ........................................................................................... 1
1.1 Preface .............................................................................................................. 2
1.2 Parallel Computing .................................................................................. 2

1.2.1 General introduction; some history ...................................................... 2
1.2.2 Why parallel computing? ......................................................................... 5
1.2.3 Classification of (parallel) computers ...................................................... 6
1.2.4 Performance of parallel programs ...................................................... 7
1.2.5 Concluding remarks .................................................................................. 19

1.3 Elastic light scattering .................................................................................. 20
1.3.1 General ..................................................................................................... 20
1.3.2 Elastic light scattering from small particles ............................................. 21
1.3.3 Elastic light scattering from biological cells ............................................. 23
1.3.4 The coupled dipole method ......................................................................... 32

1.4 Outline of the thesis .................................................................................. 38
1.5 References ..................................................................................................... 39

2. The Effect of Aniosmotic Media on the Volume of the ................................... 45
T-Lymphocyte Nucleus
2.1 Introduction ..................................................................................................... 46
2.2 Material and methods .................................................................................. 47

2.2.1 Cell handling ........................................................................................... 47
2.2.2 Measuring the total cell volume ............................................................... 48
2.2.3 Measuring the nuclear volume ............................................................... 49

2.3 Results .............................................................................................................. 51
2.4 Discussion ..................................................................................................... 55
2.5 Conclusions ..................................................................................................... 57
2.6 Acknowledgements .................................................................................. 57
2.7 References ..................................................................................................... 57
Appendix A Fitting of the data to an extended viscoelastic model ................. 59

3. Yet another Face of Lorenz-Mie Scattering: Mono Disperse ................. 63
Distributions of Spheres produce Lissajous-like Patterns
3.1 Introduction ..................................................................................................... 64
3.2 Materials and methods .................................................................................. 65

3.2.1 Flowcytometry ........................................................................................... 65
3.2.2 Data handling ........................................................................................... 66
3.2.3 Polystyrene spheres .................................................................................. 67
3.2.4 Simulation of the scatterplots ............................................................... 67
3.2.5 Comparison between theory and experiment ............................................. 68

3.3 Results .............................................................................................................. 69
3.4 Discussion ..................................................................................................... 71
3.5 Conclusions ..................................................................................................... 73
3.6 References ..................................................................................................... 74



4. A Parallel Conjugate Gradient Method applied to Elastic .......................... 75
Light Scattering Simulations
4.1 Introduction ..................................................................................................... 76
4.2 The application ........................................................................................... 77

4.2.1 The coupled dipole method ......................................................................... 77
4.2.2 The conjugate gradient method ............................................................... 77

4.3 Time complexity analysis ......................................................................... 79
4.3.1 Introduction ........................................................................................... 79
4.3.2 Decomposition ........................................................................................... 79
4.3.3 Topology ..................................................................................................... 80
4.3.4 The hardware parameters ......................................................................... 82

4.4 Implementation ........................................................................................... 83
4.5 Results .............................................................................................................. 83

4.5.1 Performance measurements ............................................................... 84
4.5.2 Convergence behaviour ......................................................................... 85

4.6 Summary and discussion ......................................................................... 86
4.7 Conclusions ..................................................................................................... 87
4.8 Acknowledgements .................................................................................. 88
4.9 References ..................................................................................................... 88

5. A Parallel Implementation of the Coupled Dipole Method of ................. 89
Elastic Light Scattering
5.1 Introduction ..................................................................................................... 90
5.2 The coupled dipole method ......................................................................... 91
5.3 Parallel implementation ......................................................................... 93

5.3.1 Numerical considerations ......................................................................... 93
5.3.2 Parallel calculation of the dipole fields ...................................................... 94
5.3.3 Parallel calculation of the scattered fields ............................................. 96
5.3.4 Details of the implementation ............................................................... 96

5.4 Results .............................................................................................................. 98
5.5 Discussion and conclusions ......................................................................... 100
5.6 References ..................................................................................................... 103

6. A Comparison of Native and Generic Programming Environments ....... 105
for a Transputer Platform
6.1 Introduction ..................................................................................................... 106
6.2 The hardware and software environment ............................................. 108

6.2.1 The Parsytec GCel .................................................................................. 108
6.2.2 Parix ..................................................................................................... 109
6.2.3 Iserver-Occam ........................................................................................... 109
6.2.4 Express ..................................................................................................... 110

6.3 The coupled dipole application ............................................................... 110
6.3.1 Functional aspects .................................................................................. 110
6.3.2 Implementation ........................................................................................... 112

6.4 Results .............................................................................................................. 116
6.4.1 Description of the measurements ............................................................... 116
6.4.2 Floating point performance ......................................................................... 116
6.4.3 Basic point to point communication ...................................................... 117
6.4.4 Global communication ......................................................................... 120



6.4.5 Performance of the coupled dipole implementation ................................... 121
6.5 Discussion ..................................................................................................... 123
6.6 Conclusions ..................................................................................................... 127
6.7 References ..................................................................................................... 128

7. Dipolar Unit Size in Coupled Dipole Calculations of the Scattering ....... 129
Matrix Elements
7.1 Introduction ..................................................................................................... 130
7.2 Results .............................................................................................................. 131
7.3 Discussion and conclusions ......................................................................... 133
7.4 References ..................................................................................................... 134

8. Coupled Dipole Simulations of Scattering of Spheres illuminated ....... 135
by a Highly Focused Laserbeam
8.1 Introduction .................................................................................................... 136
8.2 Theory .............................................................................................................. 138

8.2.1 The coupled dipole method ......................................................................... 138
8.2.2 Description of the Gaussian beam ...................................................... 139
8.2.3 the generalised Lorenz-Mie theory ...................................................... 141

8.3 Results .............................................................................................................. 142
8.4 Discussion ..................................................................................................... 148
8.5 Conclusions ..................................................................................................... 150
8.6 References ..................................................................................................... 150

9. Concluding Remarks ........................................................................................... 153
9.1 Introduction ..................................................................................................... 154
9.2 A physical point of view .................................................................................. 154
9.3 A numerical point of view ......................................................................... 155
9.4 A computational point of view ............................................................... 156

9.4.1 Parallel computing .................................................................................. 156
9.4.2 Mflop/s, Gflop/s, or Tflop/s? ............................................................... 156

9.5 A look into the future .................................................................................. 158
9.6 Conclusions ..................................................................................................... 159
9.7 References ..................................................................................................... 159

Summary .............................................................................................................. 161

Samenvatting ..................................................................................................... 163



VOORWOORD1

Hoewel het in mijn vijfde studiejaar voor mij al duidelijk was dat ik
promotie-onderzoek ambieerde, kon ik toen, als student technische
natuurkunde en zich specialiserend in de oppervlaktefysika, niet voorzien dat
mijn onderzoek en voorliggend proefschrift zich zouden wagen op een
interdisciplinair onderzoeksterrein, waar high performance computing,
informatica, fysica van elastische lichtverstrooiing en experimentele biofysica
elkaar treffen. Dat het toch zo gelopen is, heb ik te danken aan Peter Sloot.

Mijn eerste kontakt met Peter is tekenend voor hem en karakteristiek voor
wat er sinds oktober 1987 is gebeurd. Naar aanleiding van een open sollicitatie
naar een mogelijke plaats als vervangend dienstplichtige, was ik in maart 1987
te gast bij de afdeling radiotherapie van het Antoni van Leeuwenhoekhuis (het
Nederlands Kanker Instituut, NKI). Daar werd ik tijdens de lunch door mijn
gastheer aan Peter voorgesteld, die toen als promovendus bij het NKI was
aangesteld. Voor ik het wist zat ik bij Peter op de kamer te vertellen over mijn
afstudeerwerk, greep Peter zijn kontakten aan om "iets" te regelen en kon ik in
oktober 1987 bij Peter beginnen. Dit was het begin van een turbulente tijd, die
hopelijk nog vele jaren zal voortduren.

Na Peters promotie in november 1988, werden alle zeilen bijgezet en
schreef Peter in korte tijd een hele reeks projecten. Hier komt Bob Hertzberger,
Peters, en ook mijn promotor, in beeld. Hij haalde Peter naar de UvA, en gaf de
voorzet om aan parallel rekenen te gaan denken (de 64-node Meiko-machine
voor de UvA was toen net een feit geworden). Enfin, één project werd ingediend
bij het stimuleringgebied Fysische Informatica van het FOM. Over de
behandeling van deze aanvraag is een zeer spannend verhaal te schrijven
(Peter, we wachten hier nog steeds op), maar uiteindelijk werd het toch
gehonoreerd en kon ik in september 1990 beginnen met mijn promotie-
onderzoek. Dat ik in de periode tussen de vervangende dienstplicht en de
aanvang van het promotie-onderzoek niet op een houtje hoefde te bijten, is ook
weer te danken aan Peter, en aan Carl Figdor, die voor de nodige financiën
zorgde.

Toen volgden de "Atenlab blues", waar het fundament werd gelegd voor de
huidige Parallel Wetenschappelijk Rekenen en Simulatie Groep. Hier zetten
we onze eerste schreden op het glibberige pad van parallel rekenen. Vier jaar
en twee verhuizingen later zitten we op de tweede verdieping van de nieuwe
WCW-vleugel, hebben Peter en Bob het voorzichtige begin uitgebouwd tot een
grote onderszoeksgroep, is en passant het IC3A opgericht (waar toch één van
de grootste parallelle computers in Europa is ondergebracht) en is binnen de
fakulteit Wiskunde en Informatica van de UvA een nieuw curriculum op het
gebied van parallel wetenschappelijk rekenen opgezet.

Het is fascinerend om als promovendus dit alles mee te kunnen maken.
Niet alleen op wetenschappelijk gebied heb ik zeer veel van Peter geleerd, maar
ook bij alles wat er tegenwoordig komt kijken om wetenschap te kunnen
bedrijven. Daarnaast kijk ik, van binnen weer schaterend van het lachen, terug
op de vele borrels en feesten bij het NKI ("..mag het licht uit..") en de UvA ("..in
het midden..") die Peter en ik bezocht hebben. En een aantal zeer geslaagde
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conferentiebezoeken (een opera in de Grand Canyon, spelletjes hints in een
klooster aan het meer van Genève en een voetbalvandaal en bruine bieren in
Praag) moeten ook genoemd worden. Woorden schieten tekort, Peter, hartstikke
bedankt !

Dit proefschift kon natuurlijk niet tot stand komen zonder de (morele)
hulp van velen. Ten eerste wil ik Carl Figdor en Bob Hertzberger nogmaals
noemen. Carl, dank voor de steun die jij ten alle tijd hebt gegeven aan het
(vervolg) onderzoek van het CACE projekt. Dit gaf mij de mogelijkheid om de
onzekere tijd tussen vervangende dienstplicht en promotie-onderzoek door te
komen. En Bob, mijn gewaardeerde promotor, dank voor de mogelijkheid die jij
bood om onder jouw beschermende vleugels het onderzoek gestalte te geven.

Tijdens de NKI-tijd zijn we begonnen met het meten van de
verstrooiingsmatrix van witte bloedcellen in een flowcytometer. In
samenwerking met de groep van Bart de Grooth zijn deze experimenten
voortgezet aan de Universiteit Twente. Dit had voor mij de prettige
bijkomstigheid dat ik regelmatig "back to the roots" kon gaan. Bart de Grooth,
Richard Doornbos, Herke-Jan Noordmans en Kirsten Deurloo, Lissajous-
figuren en zigzaglijnen in scatterplots, wie had dat gedacht! Ik hoop dat we
onze goede samenwerking kunnen blijven voortzetten en dat we in de toekomst
S34-elementen van (getrapte) Basophilen kunnen meten, en doorrekenen.

Turners, praktizerend of in ruste, zijn interessante mensen. Tijdens een
reunie van de turnvereniging "Linea Recta" in Enschede kwam ik in gesprek
met Geert Streekstra. Dit mondde uit in een uitgebreide samenwerking,
waarin we ons stortten op het probleem van near-forward scattering van rode
bloedcellen in een Couette-flow. Resultaat: twee artikelen en een aantal
conferentiebijdragen. En voor mij een aanleiding om eens met de T-matrix-
methode te gaan stoeien. Het resultaat is hoofdstuk 7 van dit proefschrift. Geert,
bedankt voor de goede samenwerking, de vele prettige avonden en de zeer
geslaagde trip naar Japan.

Wetenschap is voor 1% inspiratie en voor 99% transpiratie: wie zei dat ook
al weer? Menig transpiratieprocentje is opgebracht door Maroen de Haan en
Stephan Meijns, die met veel doorzettingsvermogen de oorsponkelijke Occam-
programmatuur van de parallelle CG-methode schreven. Mannen, bedankt !
Ook moeten Michiel van Muijswinkel, Joep Vesseur, Frank van der Linden en
Peter Trenning worden genoemd, die de gekoppelde dipool code hebben gepoort
naar I-Server-Occam, Express en PVM, en vervolgens de performance-
metingen hebben uitgevoerd. Nogmaals, mannen, bedankt.

Arthur Rob en Robbert Belleman, ook door Peter Sloot van het NKI naar de
UvA gehaald, bedankt voor de geweldige tijd als collega's. Herinner je je nog
dat onsmakelijke eendje op het Alkmaarder meer?

Dames en heren van het secretariaat, hopelijk zijn jullie enigzins
bijgekomen van de shock van PWR&S op de gang. Bedankt voor alle hulp die ik
altijd van jullie heb gekregen. Alle andere kollega's van zowel het NKI als de
UvA, teveel om bij naam te noemen, hartstikke bedankt voor de gezellige tijd, de
produktieve samenwerking en de (wilde) borrels en feesten.

Harry Hodzelmans, jouw wil ik speciaal bedanken voor de moeite die jij
hebt genomen om alle Nederlandse stukken in dit proefschrift enigzins
leesbaar te krijgen. In jouw eigen woorden: "zo pik ik, na mijn eigen
natuurkunde-"experiment" toch nog een resultaat mee." Bedankt voor dit
resultaat!



Lieve vrienden en kennissen, sorry dat de contacten de afgelopen
maanden nogal minimaal waren. Met name de SSPA-groep en het Olympia-
bestuur heb ik de afgelopen tijd nauwelijks met mijn aanwezigheid kunnen
vereren. Bedankt voor de interesse, peptalk en afleiding die ik altijd bij jullie
kon vinden. Hopelijk kan ik met het promotiefeest weer eens wat terugdoen!

Pa en ma, bij momenten als deze realiseer ik me weer welk een stimulans
jullie voor mij zijn geweest, hoeveel steun en begrip ik altijd weer bij jullie vond
en hoeveel jullie voor mij betekenen. Bedankt voor alles!

Lieve, lieve Gerda, we leerden elkaar pas kennen in de laatste stukje van
mijn promotie-onderzoek. Dat had veel eerder moeten gebeuren. Ik ben je
ontzettend dankbaar voor alles wat je het afgelopen jaar voor mij hebt gedaan,
voor je vetrouwen en je liefde.

I did it my way...

Alfons Hoekstra
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GENERAL INTRODUCTION

1.1 PREFACE

The study of Elastic Light Scattering (ELS) from human white bloodcells
(leukocytes) is the guiding research theme of this thesis. This problem will be
addressed from a computational and an experimental point of view. Such an
interdisciplinary approach tries to combine the very different fields of
experimental biophysics, physics of ELS, and computational science. The main
part of the thesis consists of the development of a computer simulation of ELS
and subsequent applications. In that respect the computational study of ELS
serves as a very rich example application for modern computational science,
where feasibility of Massively Parallel Processing (MPP) to solve “real”
problems is a major research item.

Experiments, be it computational or “real”, and validation of these
experiments are the most important ingredients of the research presented in
this thesis. The computational experiment to study Elastic Light Scattering
from human white bloodcells is developed from scratch. Computational
methods and techniques necessary to construct such an experiment will be
discussed in some depth, with emphasis on MPP techniques. The “real”
experiments build upon a decade of previous research [1], and are part of a
larger collaboration to measure the scattering of leukocytes in flowcytometers.
A short historical sketch will be drawn to put the experimental studies in their
right perspective, and to provide essential arguments for the development of the
computational experiment.

1.2 PARALLEL COMPUTING

1.2.1             General introduction; some history

The 1990's are very exciting for computer science. Old concepts, which
emerged during the early developments in electronic computers, or even before
that time, are now actually realised in hardware. Decrease in switching speed
of digital circuits, VLSI technique allowing to integrate a micro computer on a
single chip, fast memories and I/O devices, but especially the introduction of
parallelism on every level of digital computing has dramatically increased
computational speeds.

In only half a century the computational speed has moved up from 100
floating point operations (flop) per second (the EDSAC, summation of a large
array of real numbers [2]) to 60 Gflop/s (October 1993; a 1024 node CM-5 running



the linpack benchmark [3]). If we compare this increase of almost 12 orders of
magnitude with the increase in clock speeds of 2 µs on the EDSAC1 [4] to
approximately 1 ns on top of the bill vector super computers, and account for
the fact that the arithmetic itself is much more accurate (36 bit fixed point
arithmetic compared to 64 bit floating point arithmetic), it is obvious that the
largest gain in computational speed has to be attributed to architectural - and
(system) software innovations.

Low level parallelism has played a major role in these innovations. We
should mention bit-parallel arithmetic operations, a number of functional
units for e.g. addition, multiplication, or index calculations operating in
parallel, and pipelining inside functional units, allowing overlapping
operations on several data items. Introduction of banked main memories and a
fast cache between main memory and the arithmetic registers dramatically
increased the transfer rate of data and instructions between memory and
registers. Finally, the important innovation of vector registers and vector
operations, introduced in commercial machines by Seymour Cray, opened the
way to come close to the theoretical peak performance of the inverse of the clock
cycle time (of course on well tuned problems).

To go even beyond these performance figures, the next logical step is to let
more than one such powerful vector processor work on a problem in concert.
Now make a clear distinction between the inter CPU parallelism described in
the previous paragraph, which is immersed inside one complete general
purpose processor unit, and parallelism which is introduced by means of a
replication of complete processor units. By Parallel Computing we exclusively
mean computing using hardware consisting of replicated processor units.
These processor units may contain every level of sophisticated inter CPU
parallelism, but may also consist of very simple bit-serial processors.

Probably the first mention of parallel computing is by L. F. Manebrea, in
his 1842 publication "Sketch of the Analytical Engine Invented by Charles
Babbage", where he writes (we take this quotation from reference 5, page 8):
"...Likewise, when a long series of identical computations is to be performed,
such as those required for the formation of numerical tables, the machine can
be brought into play so as to give several results at the same time, which will
greatly abridge the whole amount of the processes...".

A very early description of a, in modern terminology, massively parallel,
distributed memory computer, operating in loosely synchronous mode is
described by L. F. Richardson in 1922 (this example is taken from reference [6],
the original is reference [7]). In his book Weather Prediction by Numerical
Process we find in chapter 11.2: "...If the time-step were 3 hours, then 32
individuals could just compute two points so as to keep pace with the weather,
if we allow nothing for the very great gain in speed which is invariably noticed
when a complicated operation is divided up into simpler parts, upon which
individuals specialise. If the co-ordinate chequer were 200 km square in plan,
there would be 3200 columns on the complete map of the globe. In the tropics
the weather is often foreknown, so that we may say 2000 active columns. So that
32×2000=64,000 computers would be needed to race the weather for the whole
globe. That is a staggering figure. Perhaps in some years time it may be
possible to report a simplification of the process. But in any case, the
organisation indicated is a central forecast-factory for the whole globe, or for
portions extending to boundaries where the weather is steady, with individual



computers specialising on the separate equations. Let us hope for their sake
that they are moved from time to time to new operations....". Of course,
Richardson's computers were people.

An example of an early, actually working computational pipeline is
presented by R. Feynman in his book Surely You're Joking Mr. Feynman. He
talks about how he spent his time in Los Alamos, during the second world war,
and how his group would carry out numerical calculations (Feynman headed
the so-called IBM group). They had figured out that they needed a number of
IBM machines (mechanical tabulators, multipliers etc.), and they arranged
them in a loop, thus 'programming' their mechanical computer. The idea was
to put a card in, do a calculation, and put the resulting card in the next
machine. Feynman's problem was that this was not a very fast way to work.
They needed nine months to figure out three problems. From this point I will
cite from Feynman's book, because he describes their trick to speed things up
(see part 5, Los Alamos from below): "But one of the secret ways we did our
problems was this. The problems consisted of a bunch of cards that had to go
through a cycle. First add, then multiply-and so it went through the cycle of
machines in this room, slowly, as it went around and around. So we figured a
way to put a different coloured set of cards through a cycle too, but out of phase.
We'd do two or three problems at a time." This trick however presented
Feynman with another problem. At some time he had to come up with the
answer of a specific problem within a month; "...So Bob Christy came down and
said, "We would like the results for how this thing is going to work in one
month"-or some very short time, like three weeks. I said, "It's impossible". He
said, "Look, you're putting out nearly two problems a month. It takes only two
weeks per problem, or three weeks per problem." I said, "I know. It really takes
much longer to do the problem, but we're doing them in parallel. As they go
through, it takes a long time and there's no way to make it go around faster."
In terms of Hockney's (n1/2, r∞) description [5], Bob Christy was impressed by
r∞ , without knowing anything about n1/2. By the way, Feynman's group did
work out a way to do the problem in this very short time.

The first electronic digital computer, the ENIAC, contained much
parallelism (e.g. 20 accumulators) and could in principle be programmed in a
multi program way (different micro programs for each accumulator).
However, this design, which can be described as loosely coupled MIMD (see
section 1.2.3), was too ambitious for its time, and the first stored-program
computers, the EDVAC, the EDSAC and the UNIVAC1, which are true von
Neumann type sequential computers, were much more powerful. These
sequential architectures slowly evaluated into today's vector super computers
containing a small number of parallel processors with a shared memory.

During the first years of electronic computing in the 1950's, much
research has also been devoted to parallel computing. Unfortunately, these
ideas could not be realised into efficient machines until the 1980's. Based on a
theoretical paper by von Neumann in 1952 [8], Unger proposed a practical
design for a two dimensional array of processors [9]. This line of development
resulted in the ILLIAC IV and the ICL DAP [see e.g. 10, 11], which were arrays
of processors, each with their own memory, operating in SIMD mode (see
section 1.2.3).

The idea to assemble a large number of processors, each executing their
own program and working on their own data, into one parallel computer can



be traced back to a paper in 1959 by Holland [12]. This paper influenced later
work by Pease, who introduced the concept of the hypercube architecture [13],
which resulted in the very successful cosmic cube [14]. A detailed historical
account of parallel computing can be found in reference [5], chapter 1.

The second half of the 1980's shows a true explosion of parallel computing,
with the introduction of many successful massively parallel systems.
Examples are the CM-2 of Thinking Machines, the Intel hypercubes (iPSC 1
and 2), the Meiko Computing Surface, and the Parsytec Super Cluster. The last
two are based on the transputer, a microprocessor which is specifically
designed for parallel computing. We may view these systems as the first
generation parallel computers. The experience gained with these first
generation systems has proven that massively parallel systems can be build
and reliably operated, and that parallel programs can run very efficiently on
hundreds or thousands of processors. Most of these systems however could not
compete with the vector supercomputers. In the last three years some new
massively parallel systems have entered the market. These second generation
systems, such as the CM-5, or the Intel Paragon have comparable, or even
better performance figures as e.g. the Cray C90. Furthermore, these MPP
systems open the way to sustained Tflop/s performance.

We have not mentioned software yet. Without disregarding the many
important breakthroughs in e.g. system software, high level programming
languages, and programming environments, poor programmability of parallel
systems has been, and still is, a serious drawback of parallel computing.
Although the parallel programming environments of the second generation
parallel systems alleviate much of the problems encountered in programming
parallel computers, it is generally acknowledged that programming in
parallel, and porting large sequential, or vectorised codes to parallel systems is
not a trivial task. One paradigm of parallel computing, the Single Program
Multiple Data paradigm of parallel computing [15], emerged as a very useful
way of parallel programming for large scientific and engineering applications,
and most modern parallel systems support this mode of programming.

1.2.2             Why parallel computing ?

The chase to ever increasing computational speeds is fuelled by a strong
application pull. Researchers and engineers constantly need more
computational power in order to carry out larger simulations (e.g. from two to
three dimensions), more accurate simulations (e.g. better resolution of
computational grids), or to run their simulations continually faster (e.g.
weather forecasting). The goal of the Tflop/s is justified in the USA High
Performance Computing and Communications program (HPCC) by identifying
a large number of so-called grand challenges, strategic and highly relevant
applications for the nation's well-being, which require Tflop/s performance.
Examples include computer aided drug design, climate modelling,
semiconductor modelling, or simulation of fluid turbulence. Comparable
initiatives in Japan (the Real World Computing program) and in Europe (High
Performance Computing and Networking) also identify this strong application
pull to reach for the Tflop/s. All these programs presume that massively
parallel computing is the only way to arrive at such performance figures.



Let us try to assess fundamental limitations on the computational speed of
one single processor. As was argued in the section 1.2.1, well tuned
architectures are now capable to deliver one floating point operation during
every clock cycle on well tuned problems. Of course, this is a theoretical upper
limit on the computational speed, but it suits our goal. Define Rmax as the
maximum computational speed, and δ  the clock cycle time. We can
immediately write

Rmax = δ-1 . [1]

In the past several arguments, based on the finite speed of light and
Heisenberg's uncertainty principle, were proposed to find theoretical upper
limits for Rmax (see e.g. reference 16). We will now investigate if these two
physical constraints really pose a theoretical upper limit to the maximum
calculation speed.

According to Heisenberg the accuracy of a time measurement ∆t and an
energy measurement ∆E are related by ∆E ∆t  > h/2π, h is Planck's constant. If
we identify δ with ∆t, we find δ > h/(2π ∆E) and Rmax < 2π ∆E/h. Let the energy
difference between a 0 bit and a 1 bit be equal to ∆E. Strictly speaking the
uncertainty principle does not impose an upper limit to Rmax, because ∆E can
be increased. This would imply an increasing dissipation in the processor,
which in turn will be the limiting factor. However, because h is very small,
small values for ∆E already give a very large upper bound. For instance, if we
put ∆E = 2 eV (bandgap in a semiconductor, energy of a visible photon) we
already find Rmax < 3 Pflop/s. We can conclude that the uncertainty principle
does not impose any limits on attainable computational speed.

The finite speed of light however will present a true constraint on
computational speed. Computation requires transportation of information from
memory to the processing unit and back. Assume that for every floating point
operation information must travel a total distance d. The cycle time is now
limited by the finite speed of light c according to δ > d/c, and consequently Rmax
< c/d. If we for instance assume that d equals 3 cm, which is not unreasonable,
we find δ > 0.1 ns and Rmax < 10 Gflop/s. We have to reduce d to 300 µm to have
a Rmax < 1 Tflop/s. Even if memory (e.g. a large cache) and processing unit are
integrated on a single chip, such a small value of d is probably not possible.
Therefore we can conclude that the finite speed of light presents an upper limit
to processing speed of say 10 to 100 Gflop/s. So the grand challenge problems
cannot be simulated on these “ultimate” serial computers, and parallelism
must be introduced.

Despite the previous arguments, the real limitation at this moment is
technology. Switching times are in the order of 1 ns, and it is very difficult to
reduce this in case of CMOS technology. A possible candidate to reduce
switching speeds is superconducting logic based on Josephson junctions [17].
The first attempts, made in the 1970's, were not very successful.  Although IBM
demonstrated a small signal processor with a cycle time of 665 ps, they
terminated their efforts for a superconducting computer in 1983. In Japan,
research in superconducting chips, as part of the project 'High Speed
Computing Systems for Scientific and Technological Use' [18], continued
during the 1980's. In 1990 a Fujitsu group demonstrated a working chip
containing 23,000 Josephson junctions, capable of performing a multiplication



of two 8 bit numbers in 240 ps and addition of two 13 bit numbers in 410 ps [19].
Currently, we see a "third wave" of research interest in superconducting

logic [20], based on the so-called rapid single flux quantum (RSFQ) logic  [21].
Simple systems, based on RFSQ logic, with switching times of 20 ps have been
demonstrated. However, to scale these systems to complete processors, and to
build (superconducting) memories with fast enough access times remains a
huge technological challenge [17, 20].

Finally we should mention the revolutionary concepts of complete optical
computers [see e.g. 22] or true quantum computers [see e.g. 23]. It is difficult to
foresee whether these ideas will result in working devices which can compete
with existing technology.

We can conclude that massively parallelism is currently the only way to
satisfy the computational requirements of the grand challenge applications. Of
course, not everybody needs the enormous performance of top of the bill
computers. Much computational research relies on powerful workstations, or
uses e.g. a Cray Y-MP in single processor mode. In this segment we observe a
strong technology push, where cost effectiveness plays an important role.
Parallel systems, with computational speeds comparable to a Cray, can be built
for a fraction of the cost of a Cray. Therefore, many institutes acquire such a
"poor man's supercomputer", and in this way turn to parallel computing.
Furthermore, the trend of cluster computing, i.e. turning a network of
workstations into a loosely coupled parallel system, also provides a relatively
easy and cheap first step into parallel computing.

1.2.3             Classification of (parallel) computers

The large number of different architectures, and organisation of processor
networks and memories in parallel computers calls for a unifying taxonomy of
the various systems. Such a taxonomy should not describe every detail of the
architecture, as in the algebraic-style structural notation of Hockney and
Jesshope [5, chapter 1.2.4], but has to provide just enough details for the users to
distinguish the main characteristics of the system.

A well known, and very useful taxonomy is due to Flynn [24]. This
taxonomy distinguishes computers by their processing of data. A computer can
perform single or multiple instructions, which can work on single or multiple
data items. The Single Instruction Single Data class (SISD) are the serial, von
Neumann, computers. The Multiple Instruction Single Data class (MISD) is
void. The Single Instruction Multiple Data class of computers (SIMD) issue a
single stream of instructions, which operate on multiple data items. These
multiple data items can be vectors in vector processors, or data items
distributed among the processors of an array processor. Therefore, the SIMD
class contains both the single processor vector computers (e.g. the Cray1), and
the array processors which operate in single instruction mode, like the ICL
DAP or the CM-2. The last class, the Multiple Instruction Multiple Data type
(MIMD) contains all multicomputers. Therefore, this class contains both the
multiprocessor Cray Y-MP, and massively parallel systems like the Parsytec
GCel or the CM-5, but also clusters of workstations.

Flynn's taxonomy is very useful, but too broad to distinguish quite
different architectures like the Cray1 and the CM-2. Another often made
division is between shared memory and distributed memory computers. Raine



[25] has used this as the starting point for a taxonomy which is based on the
physical location of data in the computer, and how the data is presented to the
programmer in “address space”. The physical memory in a (parallel) computer
can be shared or distributed, and the logical address space can be shared or
disjoint. The Shared Address space Shared Memory class (SASM) contains the
serial von Neumann computers, but also the single - and multi vector
processors like the Cray1 and the Cray Y-MP. The Disjoint Address space
Shared Memory class (DASM) is void. The class of Disjoint Address space
Distributed Memory computers (DADM) contains most massively parallel
systems like the CM-2, the CM-5, or the Parsytec GCel. Finally, the Shared
Address space Distributed Memory class (SADM), also known as Virtual
Shared Memory systems, is very interesting because it combines the potential
of massively parallelism with the ease of programming (virtual) shared
memory multiprocessors. An example of a commercial machine in this class
is the Kendall Square research KSR1.

Let us now combine Raine’s and Flynn’s taxonomy. Table 1 shows the
results of this combination.

SISD SIMD MIMD

SASM serial Cray1 Cray-YMP

DADM void CM-2
ICL-DAP

CM-5
Parsytec GCel
Workstation

Clusters

SADM void ? KSR1

Table 1: Combination of Raine’s and Flynn’s taxonomy, examples of different parallel
computers are included.

This combination of taxonomies provides a reasonable distinction between very
different kind of architectures like the KSR1, CM-5, CM-2 and Cray machines.
If we would exclude the inter CPU parallelism (as defined in section 1.2.1) from
the taxonomy, the Cray1 would be of SISD type, and the Flynn-Raine taxonomy
gives a very consistent view of many different architectures. An additional
taxonomy should be provided to describe the inter CPU parallelism of the
processing elements.

1.2.4             Performance of parallel programs

1.2.4.1 The basic assumption of massively parallel computing

Parallel computers offer the potential of ever increasing computational
speed, by merely increasing the number of processors in the parallel system.
Let R be the computational speed of one processor (expressed in e.g. Mflop/s) for
a specific computational task. The basic assumption of massively parallel
computing is that a network of p processors is able to run the same problem at
a computational speed which is in the order of p×R. In the sequel we will
investigate to what extent this basic assumption can be fulfilled.

Define T(1) as the execution time of a program on 1 processor, and T(p) the



execution time of the parallel version of the program on p processors. The
speedup of the parallel program is defined as

Sp = T(1) / T(p) . [2]

In the ideal case T(p) = T(1) / p and Sp = p. However, as will become clear in the
following sections, this ideal parallel speedup will be degraded by many
sources and 1 ≤ Sp ≤ p. If we divide the speedup by p, we find the efficiency:

Ep = Sp / p . [3]

The efficiency measures how well a parallel program utilises the
computational power which is offered by a parallel computer. The efficiency is
bounded by 1/p ≤ Ep ≤ 1. The "fair" speedup and efficiency is obtained if the
fastest known sequential implementation is used as the reference (i.e. T(1)).
However, in the sequel we will always refer to the "relative" speedup and
efficiency, where T(1) = T(p=1); i.e. T(1) is the execution time of the parallel
program running on 1 processor.

We will assess the maximum speedup which can be obtained on an ideal
parallel system, and investigate this speedup under three different work load
constraints. Secondly, speedup properties under finite resources will be
investigated. Many of the following material is adapted from reference 26,
chapter 3 and from reference 27.

1.2.4.2 Average parallelism

Consider a hypothetical parallel computer with an infinite number of
equal processors and negligible communication latency between the
processors. This parallel computer runs in MIMD mode, but because of the
zero communication latency, the clocks of all processor can be synchronised.
This allows us to establish how many processors are used during the execution
of a parallel program at a certain time period.

Define the Degree of Parallelism (DOP) as the number of processors in use
to execute a parallel program during a certain time period. The DOP as a
function of time is called the parallelism profile of a program. As an example,
consider the parallel addition of 16 numbers on our ideal computer. As is
shown in figure 1, this is established by pair-wise additions in a tree structure.
After 4 time slices the addition is completed. The corresponding parallelism
profile is drawn in figure 2.



+ + + + + + + +

+ + + +

+ +

+

t1

t2

t3

t4 0 t1 t2 t3 t4

2

4

6

8

D
O

P
 -

>

time->
figure 1: parallel addition of 16 numbers by pair-
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figure 2: Parallelism profile of the
parallel addition of 16 numbers

Calculate the average parallelism A of a parallelism profile:

A = 1
t

DOP( ′t )d ′t
0

t

∫  , [4]

with t the total run time of the parallel program on the ideal parallel computer.
In discrete form we can write

A = i ⋅ ti
i=1

m

∑ ti
i=1

m

∑
 
, [5]

where ti is the amount of time during which DOP = i, and m is the maximum
DOP in the parallelism profile. The term i ⋅ tii=1

m∑
 
can be identified with the run

time of the parallel program on 1 processor. Therefore, the average parallelism
A is equal to the speedup on the ideal parallel computer, and is an upper bound
to the speedup which can be reached on real machines.

Now assume that a parallel program consists of a sequential part and a
parallel part. If we normalise the total run time on 1 processor to 1, the
sequential part is α and the parallel part is 1-α. The parallelism profile is
drawn in figure 3, where we assume that the parallel part is running on p
processors of the ideal machine. Off course execution of the sequential and
parallel part can be interleaved, but in figure 3 both parts are lumped together
to clarify the picture.
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Figure 3: The parallelism profile for
the fixed workload (Amdahl)

Figure 4: A∞ as a function of α.

In this case the average parallelism is equal to

A = p
1 + (p− 1)α  

, [6]

which is exactly Amdahl’s law [28] applied to parallel computing. If we take
the limit of p to infinity we find A∞ = 1/α. The maximum speedup is limited by
the sequential part of the program. In figure 4 A∞ is drawn as a function of α.
Already very small values of α reduce the maximum attainable speedup to very
small figures; for instance, α = 0.01 results in A∞ = 100. Amdahl’s argument
raised much questions regarding the validity of the basic assumption of
parallel computing.

In Amdahl’s law the amount of computational work is kept constant as
the number of processors is increased. This fixed-load leads to Amdahl’s
sequential bottle-neck and prevents to reach very high speedups. Although the
fixed-load constraint is essential in some application areas (e.g. real time
control applications) the situation in many engineering and research
applications is very different.

Gustafson [29] has formulated a fixed-time concept, which results in
scaled speedup models. If the available computational power is increased, one
usually increases the computational load too. This is done for instance by
performing simulations on finer and/or larger grids, with more particles, or in
more dimensions. Instead of trying to solve the same problem faster, one tries
to solve a larger problem in approximately the same amount of time. Assume,
if the problem size is increased, that the sequential part of the program
remains constant and that the parallel part grows. In a first approximation
this behaviour is observed in many applications. The serial part consists of I/O,
initialisation, and the like, which are independent of problem size. Now
assume that the problem size is increased in such a way that the total
execution time of the parallel part, running on p processors, also remains
constant. Figure 5 shows the parallelism profile for this fixed-time situation.
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Figure 6: Comparison of the average
parallelism for the fixed-load situation (solid
line) and the fixed-time situation (dotted line)
for 1024 processors.

The average parallelism in the fixed-time constraint is

A = p - α(p - 1). [7]

By proportional scaling of the parallel workload with the number of processors,
the speedup does not suffer from the sequential bottle-neck, and large speedups
are possible. In figure 6 the average parallelism for the fixed-load constraint
and the fixed-time constraint are drawn for p = 1024. We can conclude that in
the fixed-time constraint situation large speedups are possible. Gustafson [29]
has reported measurements of scaled speedups of 1016 to 1021 on three
applications actually running on a 1024 node hypercube architecture.

1.2.4.3 Finite resources, memory bounded speedup

In this section we will derive expressions for the speedup if the number of
processors is limited, especially the situation in which p < m (m is the
maximum DOP of a program) will be examined. The results of Amdahl and
Gustafson will be generalised, and a third scaled speedup model will be
discussed; the memory-bounded speedup model of Sun and Ni [27].

Define ∆  as the computing capacity of a processor (expressed in e.g.
Mflop/s). The amount of work executed while running a part of the program
with DOP = i is Wi = ∆ i ti, and the total amount of work is

W = Wi
i=1

m

∑
 
.

If Wi is executed on p processors, the execution time of Wi is

ti (p) = Wi
i ∆

i
p










 
, [8]

with x the ceiling function of x. The workloads with i < p model the load
imbalance in the parallel program.



The total execution time T(p) equals

T(p) = ti (p)
i=1

m

∑ = Wi
i ∆

i
p











i=1

m

∑
 
. [9]

We can now formulate the generalisation of Amdahl's law, the fixed-load
speedup factor, as

Sp = T(1)
T(p)

=
Wi

i=1

m

∑
Wi
i

i
p











i=1

m

∑
 

. [10]

Here we have ignored communication latencies and other overheads. If Q(W, p)
is the total elapsed time which is due to overheads, and put Q(W, 1) = 0, the
fixed-load speedup becomes

Sp = T(1)
T(p) + Q(p)

=
Wi

i=1

m

∑
Wi
i

i
p











i=1

m

∑ + Q(W,p)
 

. [11]

If p > m and Q(W, p) = 0, we find that Sp = A (see equation 5). In general Sp ≤ A.
In the sequel we will restrict ourselves to the situation where Wi = 0 if i ≠ 1

and i ≠ p and Q(W, p) = 0. If we insert this in equation 11 we reproduce
Amdahl's law (equation 6):

Sp =
W1+ Wp

W1+ Wp p  
.

We will now generalise the scaled speedup models, by considering the only
constraint in scaling the workload: available memory. The memory of each
node of a real parallel computer is limited. Therefore, scaled speedup models
have to consider memory limitations. Sun and Ni [27] proposed a memory-
bounded speedup model. Their idea is to scale the problem to its maximum
amount, thus fully utilising both memory capacities and computational power
of a parallel computer.

The computational work of the problem on a single node is W1 + Wp, and
for the scaled problem W1

*+ Wp
* . Using equations 9 and 10 for the scaled

workload, the memory bounded speedup is

Sp
* =

W1
*+ Wp

*

W1
*+ Wp

* p + Q(W*, p)  
. [12]



The workload of the sequential part is assumed to be independent of both
problem size and system size:

W1 = W1
*
 .

The scaled parallel workload needs some more consideration. The
workload W and the memory requirement m for this workload are related by W
= g(m). If we assume that g(x) is a semihomomorphism2 and that the total
memory capacity M of one processor is available for the workload Wp, we can
show that on the ideal parallel computer

Wp
* = g(p)Wp  . [13]

On the single processor, Wp = g(M). On p processors the memory increases
with a factor p to pM. On the ideal parallel system, without communication
latencies, remote data access is equivalent to local data access and therefore
replication of data is not necessary. In fact, for any Shared Address space
system replication of data is not strictly necessary. The total available memory
can now be used for the parallel portion of the scaled problem, i.e.

Wp
* = g(pM) = g(p)Wp  .

The function g(p) describes the increase in parallel workload after increasing
the total amount of memory in the system with a factor p. The resulting
memory-bounded scaled speedup is

Sp
* =

W1+ g(p)Wp

W1+ g(p)Wp p  
. [14]

Let us investigate three special cases.

•1 g(p) = 1. This corresponds to the fixed-problem size and equation 14
reduces to Amdahl’s law.

•2 g(p) = p. The workload increases linearly with the available memory,
keeping the total execution time fixed. This corresponds to Gustafson’s
law.

•3 g(p) > p. Here, the workload increases faster than the memory
requirements of the parallel program, and the resulting speedup is larger
than the fixed-time scaled speedup.

In order to find expressions for g(p) we usually have to perform an order
of magnitude analysis, where we only keep the highest order terms. We will
investigate three examples. The first is a parallel matrix matrix product,

2 A function g(x) is a semihomomorphism if g(cx) = g(c)g(x). For instance, the
function g(x) = axb is a semihomomorphism with g(x) = xb.



which has been the subject of detailed research by Sun and Ni [27]. Secondly we
will investigate a parallel matrix vector product, where in one  case the matrix
is kept in main memory, and in the other case the matrix elements are not kept
in memory, but are calculated as they are needed. This last version of the
matrix vector product is actually implemented in the parallel Coupled Dipole
method, as described in chapters 4 and 5 of this thesis.

The matrix matrix product A B = C requires to store three n×n matrices,
therefore the memory requirement is M = 3n2. The total work (assuming that it
can be done in parallel) is Wp = n2(2n - 1) ~ 2n3 for large n. Therefore Wp = 3-3/2

× 2 M3/2, and we immediately find g(x) = x3/2 and

Wp
* = p3/2 Wp  . [15]

This result is easily derived by putting M* = pM. From this we find for n*,
which is the size of the scaled matrix, n* = p1/2n. Therefore,

Wp
* = 3(n*)2 = 2 p3/2n3 = p3/2Wp .

This is an example where g(p) > p, and the scaled speedup is even better than
for fixed-time speedup.

Secondly consider the parallel matrix vector product with the n×n matrix
stored in main memory. The memory requirement is M = n2 + 2n. The first
term is the memory of the matrix, the second term is for the argument and
result vector. The work is Wp = n(2n - 1). If we assume that n is very large, Wp =
2M, and g(x) = x. Therefore

Wp
* = pWp  ; [16]

memory bounded speedup and fixed time speedup are equivalent in this case.
Again, this result is easily derived by putting M* = pM.

Finally, consider the case of the parallel matrix vector product, where the
matrix is not kept in memory. This is a very relevant example for the parallel
Coupled Dipole method, which is described in chapters 4 and 5 of this thesis. In
actual production runs we do not keep the matrix in core. Now assume that we
can calculate the matrix elements, and that the amount of work to calculate
one element equals e. In that case, the total amount of parallel work in the
matrix vector product equals Wp = n(2n - 1) + en2. Now we only have to store the
argument and result vector, and therefore M = 2n. Assuming large n we find

Wp = 2 + e
4

M2

 
,

and g(x) = x2. In this special case the memory bounded work increases as the
square of the number of processors,

Wp
* = p2Wp  . [17]



We will postpone numerical calculations of the resulting scaled speedups
until the next chapter, where the influence of data replication is investigated.

1.2.4.4 data replication and memory efficiency

We will now focus our attention to Distributed Memory architectures.
Here, as was pointed out by Sun and Ni [27], data in parallel programs usually
has to be replicated. This is due to the fact that in many parallel calculations
some data items are needed in all processors. Replication of this data in
memory of all processors is more efficient than to keep it stored in memory of 1
processor and communicate it to other processors. However, due to this
replication of data, the relation between the scaled and original workload in the
memory bounded speedup model, as expressed in equation 13, no longer holds.

Sun and Ni circumvented this problem by defining

G(p) =
Wp

*

Wp  
. [18]

With this definition the memory bounded speedup is

Sp
* =

W1+ G(p)Wp

W1+ G(p)Wp p + Q(W*, p)  
, [19]

where we also included the overhead function Q. We will introduce the concept
of memory efficiency of a parallel program, and will find a straightforward
expression for the scaling function G(p). With this we will analyse the three
examples of the previous section, and finally show some numerical results for
speedup in the three speedup models.

Define m(p) as the memory requirement per processor of a parallel
program running on p processors. Equivalent to the definition of the efficiency
of a parallel program (equation 3) we can define the memory efficiency εm of a
parallel program as

εm = m(1)
pm(p)  

. [20]

The memory efficiency is a measure of the scalability of a parallel program in
terms of usage of the distributed memory of a parallel computer. In Shared
Address space computers εm  = 1. However, in Disjoint Address space
computers the memory efficiency can take any value between 1/p and 1.

Let M be the total memory requirement of a program on 1 processor, and
mR is the size of the memory per node. If this program is to be executed on p
processors, the following expressions must hold:

M < εm p mR. [21]



This implies that the total workload of a parallel program is limited by

W < g(M) = g(εm p) wmax, [22]

with wmax the maximum attainable workload of a program running on 1
processor. This limit on the workload of a program gives an upper bound to the
scaling of workloads in scaled speedup models. In fact, we will show that the
function G(p), as defined by equation 18, equals g(εm p).

The memory requirement per node of the scaled workload in the memory
bounded speedup model equals the memory requirement of the original
workload:

m*(p) = M.

Furthermore, the total memory requirement of the scaled workload equals the
memory requirement per node of the scaled workload for p = 1:

m*(1) = M*.

If we substitute these two relations in the definition of the memory efficiency
(equation 20), we find

M* = εm
* pM  . [23]

A memory efficiency of 1 reproduces the scaling law for the Shared Address
space case. Using equations 18 and 23 we can now derive an expression for
G(p):

G(p) =
Wp

*

Wp
= g(M*)

g(M)
= g(εm

* p)
 
, [24]

and a final resulting expression for the memory bounded speedup

Sp
* =

W1+ g(εm
* p)Wp

W1+ g(εm
* p)Wp p + Q(g(εm

* p)W,p)
 . [25]

Note that this memory bounded speedup is not necessarily the optimal scaled
speedup, because the overhead function Q depends strongly on the details of the
parallel program and the underlying parallel hardware. However, if we
neglect the overhead Q, but still include the effects of data replication via εm,
equation 25 results in a realistic upper bound of speedup. As will become clear,
in many situations this upper bound is between the fixed-load upper bound of
Amdahl and the fixed-time upper bound of Gustafson.

Let us now consider once more the examples of the matrix matrix product
and the matrix vector product. In order to find expressions for the memory
efficiency, we have to specify how the parallel workload Wp is actually carried
out. Figure 7 shows how the example problems can be executed in parallel.
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Figure 7: The parallel matrix matrix product shown left, and the parallel matrix vector
product shown right.

Matrix A in the matrix matrix product is replicated in every processor,
matrix B and C are column-block decomposed, such that each processor has
n/p columns of B and C in memory. Obviously this is not the most optimal way
to perform a matrix matrix product in parallel (for this see e.g. [30]) but it is a
good illustration of the memory efficiency concept, and Sun and Ni also
consider this example to find an expression for the function G(p).

The parallel matrix vector product is carried out by a row-block
decomposition of the matrix. The argument vector has to be replicated
completely in memory of each processor. This parallel matrix vector product is
the kernel of the parallel Coupled Dipole method (see chapter 4 and 5).

As was shown in the previous section, for the matrix matrix product we
have g(x) = x3/2. From figure 7 we can derive that for this parallelization of the
matrix matrix product the memory requirement per node is

m(p) = n2 + 2n2 / p,

and therefore the memory efficiency equals

εm = 3
2 + p  

.

We can now immediately find the expression for G(p):

G(p) = 3p
2 + p







3/2

 
, [26]

which is equal to the result of Sun and Ni [27]. For large p, G(p) = 33/2, which is
larger than the fixed-load speedup (G = 1), but much smaller than the fixed-
time speedup (G = p). Due to data replication the memory capacity
requirements increase much faster than the computational requirements.

The memory requirement of the matrix vector product, with the matrix
stored in memory, is

m(p) = n2 / p + n + n / p,

and the memory efficiency is



εm = 1 + p− 1
n+ 2







−1

 
.

If we assume that n >> p, we find εm = 1 and g(x) = x (see previous section).
Therefore, for the in-core matrix vector product G(p) equals

G(p) = p, [27]

which is  exactly the fixed time case.
Finally consider the matrix vector product without storing the matrix. In

this case the memory requirement per node is

m(p) = n + n / p,

and the memory efficiency is

εm = 2
1 + p  

.

Remembering that in this case g(x) = x2, the memory bounded scaling
function for the out-of-core matrix vector product is

G(p) = 2 p
1 + p







2

 
. [28]

Again, due to the replication of data, the memory capacity requirements grow
faster than the computational requirements, and G(p) ~ 4 for large p. Memory
bounded speedup will be slightly better than fixed-load speedup, but will not
come close to the fixed-time speedup of Gustafson.

Figures 8 and 9 show the resulting scaled speedup for the out-of-core
matrix vector product as a function of α (the sequential fraction of the program,
see section 1.2.4.2) for p = 512, and as a function of p for α = 0.01 respectively. The
speedup was calculated for the fixed-load case, the fixed-time case and the
memory-bounded case, with - and without data replication. Note that in figure 9
the memory bounded speedup without data replication is indistinguishable
from the fixed time case, and therefore not drawn.
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Figure 8: Scaled speedup S of the out-of-core matrix vector product as a function of the
sequential portion of the program α, for 512 processors; the solid line is the fixed-load case
(Amdahl), the dotted line is the fixed-time case (Gustafson), the dashed line is the memory
bounded speedup without data replication, and the dashed dotted line is the memory bounded
speedup with data replication.
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Figure 9: Scaled speedup S of the out-of-core matrix vector product as a function of the
number of processors, for α = 0.01; the solid line is the fixed-load case (Amdahl), the dotted
line is the fixed-time case (Gustafson), and the dashed dotted line is the memory bounded
speedup with data replication. The memory bounded speedup without data replication is
indistinguishable from the fixed time case, and therefore not drawn.

From figures 8 and 9 we can draw two important conclusions. Scaled
speedup models are the solution to Amdahl's sequential bottle-neck, and
memory bounded speedup models with εm = 1 will give almost ideal upper
bounds to speedup. However, if the implementation of the parallel program is
such that the memory efficiency is inversely proportional to p, e.g. due to the
large data buffers in the out-of-core matrix vector product, memory bounded
speedup will only result in a modest improvement compared to Amdahl's law.

1.2.4.5 How can scaled speedups be interpreted ?

The scaled speedup concept was an argument against Amdahl's
sequential bottle-neck. Amdahl's law applied to parallel computing is
straightforward: if a program contains just 0.1% sequential code, the speedup



is limited to 1000. Therefore, many researchers did not believe that speedups of
larger than 1000 could ever be reached, because "typical" programs will
contain much more sequential code.

Gustafson introduced the idea of scaled speedup. He showed that by
increasing the parallel workload, which will happen in the common practice of
parallel computing, large speedups are definitely possible for typical values of α
(see figure 6). However, we should realise that, by using the scaling law,
Gustafson is actually solving another , larger problem with a smaller
sequential part! Gustafson measured the execution time on p processors and
estimates the execution time of a "hypothetical" run on 1 processor [29].
Subsequently he describes this situation using the original problem (equation
7). This formulation gives rise to conceptual problems.

The curves in e.g. figure 9, where Sp is plotted as a function of p, for a fixed
α of the original problem, are in fact speedups for different sized problems
(except the curve for Amdahl's fixed-load situation), and every point on a scaled
speedup curve also represents a different sized problem. Actually we should
draw a third axes in these figures representing the total workload W. The
Amdahl curve will be in a (Sp, p) plane with a constant workload. The scaled
speedup curves will all intersect with the Amdahl curve for p = 1, and
according to their scaling law, will lie somewhere on the Sp(p,W) plane.

Let us now revert the argumentation. Suppose we have a large problem
running on a parallel computer. Which scaling law should we use to find an
expression for the speedup. This question is a non-issue. We can use any
scaling law to end up with the large parallel problem, but now the starting
points of all scaling laws will be different. The problems will all have different
values for the sequential part α. Actually we should not use any scaling law at
all, and try to estimate the run time on 1 processor and from this calculate the
speedup. In fact we are back in the fixed-load (Amdahl) regime.

The bottom line has to be that for many large scientific and engineering
applications α can actually be very small and although Amdahl's bottle-neck
still exists, it gives upper-bounds which are larger than the number of
processors present in typical massively parallel systems. We may wonder if
those who used Amdahl's argument have actually estimated the size of the
sequential part of very large research and engineering applications, which are
the typical programs running on (massively parallel) supercomputers. The
important conclusion of the scaled speedup laws is that if the number of
processors is increased one should also increase the problem size to stay ahead
of Amdahl's sequential bottle-neck. The several scaling models, which were
discussed in section 1.2.4.3 and 1.2.4.4 merely show if - and how one can scale
the workload Wp.

1.2.5             Concluding remarks

Parallel computing will become the computing paradigm of the next
decade. The first generation of parallel systems has proven the feasibility of
parallel computing. The original scepticism toward the basic assumption of
massively parallel computing (section 1.2.4.1), based on Amdahl's sequential
bottle-neck (section 1.2.4.2), vanished after the introduction of scaled speedup
models and actual measurements of very large scaled speedups.

The basic notion is that the parallel workload has to be kept large enough



compared to the sequential work, but also compared to the communication
overheads Q(W,p). The efficiency in the fixed-load speedup model is (see
equation 3 and 11)

Ep = 1 + (p− 1)W1
W1+ Wp

+ pQ
W1+ Wp











−1

 
, [29]

where we assumed that the load imbalance terms (Wi for i≠1 and i≠p) are not
present.

As was shown in the section 1.2.4 and 1.2.5, scaling of the parallel
workload can remove the sequential bottle-neck (the second term in equation
29) and in many cases will be negligible compared to the third term. This third
term in equation 29 is the quotient of p times the total time spent in overhead
(especially communication) and the total workload. The inverse of this quotient
is sometimes referred to as grainsize of the parallel program. The grainsize of
a parallel program therefore is the amount of useful work that can be
performed per processor per second of overhead time. If the grainsize, defined
in this way, can be kept large enough as a function of p, the efficiency can
remain at a (constant) value close to 1, and the parallel program has a good
scalability.

In order to analyse the scalability of a parallel program one has to find an
expression for Q. The overhead function will depend strongly on the method of
parallelization, but also on the parallel hardware, system software and
programming language. A thorough scalability analysis therefore has to take
all these variables into account. In chapter 4 of this thesis an example of such a
scalability analysis is presented.

Experience has learned that in many real scientific and engineering
applications very efficient parallel programs with good scalability properties
can be developed and implemented on real parallel computers [see e.g.
reference 31 and the research presented in this thesis). However, the same
experience has also shown that programmability of parallel computers,
portability of parallel programs, parallelization of large sequential
(commercial) production codes, and standardisation of parallel programming
paradigms has by no means reached the stage of maturity that is required to
change the status of parallel computing from an experimental research tool to
a standard production tool. Future research in parallel computing will
therefore have to concentrate on these items.

1.3 ELASTIC LIGHT SCATTERING

1.3.1             General

Elastic Light Scattering phenomena have always intrigued mankind. The
blue of the sky, the rainbow, or ice-crystal halos are well-known examples of
light scattering in the open air. Maybe less well-known, but as characteristic as



the light scattering perceptions visible to the naked eye, are the polarisation
properties of the scattered light. Since Maxwell formulated his famous
equations in 1864 [32], a firm understanding, based on electromagnetic theory,
of many of these Elastic Light Scattering (ELS) observations has been
established. Lord Rayleigh explained, in 1871, the blue of the sky as scattering of
sunlight from small molecules in the atmosphere, by treating the molecules as
radiating dipoles [33]. The exact solution of scattering of light by a sphere, as
formulated by Lorenz in 1890 [34], and independent by Mie in 1908 [35], provides
the theoretical framework to understand the rainbow in terms of light
scattering of sunlight by water droplets (for recent work see [36]).

Besides its natural, day-to-day occurrence, researchers and engineers are
utilising ELS under controlled laboratory conditions as a tool to assess crucial
information from their systems under study (for many examples, see e.g. [37]).
The development of sensitive, reliable and easy-to-use detectors (mostly
semiconductor devices), intense mono-chromatic light sources (lasers),
completely automated data-acquisition equipment, and sophisticated optics
offer unprecedented possibilities to measure, in an ever increasing detail, the
complete scattering matrix of particle suspensions, and even of single
particles. A striking example is offered by the rapid developments in
flowcytometry [see e.g. 1].

The development of the proficiencies to study ELS experimentally are
paralleled by a continuing deepening of theoretical insights. Exact solutions of
the Maxwell equations are formulated for the single scattering of light from
spheres [34, 35], concentric spheres [38], multi-layered spheres [39]; ellipsoids
[40], and infinitely long cylinders [41]. Furthermore, many approximate
theories, valid for limiting values of particle size and/or refractive index, have
been developed [see e.g. 37 or 42]. We have, for instance, successfully applied the
Rayleigh-Debey-Gans theory to describe ELS from osmotically active human
lymphocytes [43, 44], and anomalous diffraction theory to calculate the near-
forward scattering from deformed, oriented, human red bloodcells [45, 46].

The last decade has shown an increasing interest in ELS from arbitrary
shaped particles [47]. Both experiments and theoretical predictions
demonstrate that even small deviations from the “simple” particle forms, as
mentioned in the previous paragraph, have pronounced effects on the
scattering matrix (see e.g. [48, 49, 50]). Today's powerful computers allow
modelling and simulation of ELS from very complicated particles, such as
fluffy particles (e.g. interplanetary dust, see [51]).

The information contained in the polarisation properties of the scattered
light has received more and more attention as well. Hunt et al. [52] developed a
fast and accurate modulation technique to measure the complete scattering
matrix S of a suspension of particles. This principle is used by many research
groups [see e.g. 53]. Sloot et al. demonstrated the possibility to measure the
scattering matrix of particles in a flowcytometer, using suitable combinations
of polarizers and analyzers [54, 55]. The extreme sensitivity of particularly the
S34 element on small morphological changes was shown dramatically by
Bickel et al. in their experiments of ELS from several types of Bacteria [56]. The
sign of the S14 element of helical particles reflects the handedness of these
particles, as was shown by Bustamante et al. [57] in their analysis of Circular
Intensity Differential Scattering from DNA molecules.

Our ELS research reflects these modern developments. Computational



studies shift from approximate theories applied to symmetrical models [43] to
simulations of ELS from realistic particles [58, 59]. On the experimental level
we started efforts to measure the complete scattering matrix of white bloodcells
[54], thus utilising all the information present in the polarisation properties of
the scattered light. The sequel of this section will introduce the basics of ELS
theory, present a survey of ELS by human white bloodcells, emphasising our
previous efforts, and introduce the Coupled Dipole model which we use to
simulate ELS from arbitrary particles.

1.3.2             Elastic Light Scattering from small particles

1.3.2.1 Introduction

Consider a particle in an external electromagnetic field. The applied field
induces an internal field in the particle and a field scattered from the particle.
The intensity of the scattered field in the full solid angle around the particle
can be measured. This ELS pattern can be viewed as a fingerprint of the
particle and is extremely sensitive to morphological and optical properties of
the particle [37]. Therefore it is possible to distinguish different particles by
means of ELS. This non-destructive remote sensing of particles is a very
important application of ELS. The question arises whether it is possible to fully
describe a particle solely on the basis of its complete ELS pattern (the inverse
scattering problem). In principle this is impossible without knowledge of the
internal field in the particle [60]. Fortunately, in most applications we have
knowledge of the particles in question and in that case it is usually possible to
solve the inverse problem within a desired accuracy (see e.g. reference [61]). In
many cases measurement of just a very small part of the ELS pattern suffices
to be able to identify particles. A good example is offered by flowcytometry
analysis of human white bloodcells, where measurement of forward - and
sideward scattered light suffices to identify Lymphocytes, Monocytes, and
Granulocytes [62]. Another, more recent example is offered by Massoli et al.
[63], who determine the radius, refractive index, and associated temperature of
transparent droplets by measuring horizontally polarised cross sections in the
forward and rainbow regions.

1.3.2.2 Basic theory of ELS

We will introduce some basic definitions and notations to describe ELS.
The full details can be found in text books of e.g. Bohren and Huffman [37] or
van de Hulst [42].

Figure 10 gives the basic scattering geometry. A particle is situated in the
origin of a Cartesian coordinate system, and is illuminated by an incident
beam travelling in the positive z-direction. A detector at r measures the
intensity of the scattered light. The distance |r| is very large compared to the
size of the particle. The far field scattered intensity is measured. The far field is
only dependant on the angles θ and φ (and a trivial 1/|r| dependence due to the
spherical wave nature of the far field) [64]. The plane through r and the wave
vector of the incident beam (in this case the z-axes) is called the scattering
plane. The angle θ between the incident wave vector and r is the scattering
angle.
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Figure 10: Scattering geometry

As a simplification we assume φ = π/2, the yz plane is the scattering plane.
The incident and scattered electric field are resolved in components
perpendicular (subscript ⊥) and parallel (subscript ||) to the scattering plane.
In this case (E0)|| = (E0)y and (E0)⊥ = (E0)x, where the superscript 0 denotes the
incident light. The formal relationship between the incident electric field and
the scattered electric field (superscript s), written as Jones vectors, is

E ||
s

E⊥
s =

e
ik(r-z)

-ikr
S2S3

S4S1

E ||
0

E⊥
0

 .
[30]

The matrix elements Sj (j = 1,2,3,4) are the complex amplitude scattering
functions.

The scattering functions Sj depend on the space angles θ and φ, the shape,
structure, and optical properties of the particle, and the size parameter α,
defined as

α = 2π r
λ  

, [31]

with λ the wavelength of the incident light, and r a "radius" of the particle.
Analytical expressions exist only for homogeneous (concentric or layered)
spheres, ellipsoids and infinite cylinders (see section 1.3.1). Furthermore, a
large number of approximations for limiting values of the scattering
parameter α and the relative refractive index m exist (see [42], paragraph 10.1).

Another convenient way to describe ELS is in the framework of Stokes
vectors and Mueller matrices [37, chapter 3.3]. The incident and scattered light
is represented by a four-vector with real elements (the Stokes vector), and the
transition from incident to scattered light is described by the 4×4 real scattering
matrix S (Mueller matrix). The elements of the scattering matrix are easily
derived from the amplitude scattering functions Si [37, page 65].

The 16 elements of the scattering matrix are not independent. As can be
seen from equation 30, 7 functions suffice3 to describe the scattered field as a
function of the incident field. Therefore, the scattering matrix contains a

3 An overall phase factor can be omitted



maximum of 7 independent elements, and one can derive 9 relations between
these elements (see e.g. [65, 66, 67]. Furthermore, by merely considering
symmetry properties, such as mirror symmetry and reciprocity of the particles,
more simple and symmetric forms of the scattering matrix can be derived [42,
chapter 5]. Using these arguments it can be shown that a suspension of
randomly oriented particles with e.g. mirror symmetry has a scattering matrix

S =

S11 S12 0 0

S12 S22 0 0

0 0 S33 S34

0 0 −S34 S44


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



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


 

, [32]

and that a (concentric) sphere has a scattering matrix

S =

S11 S12 0 0

S12 S11 0 0

0 0 S33 S34

0 0 −S34 S33


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. [33]

For completeness, we also present the scattering matrix of Rayleigh-Debye-
Gans theory (see e.g. reference 54):

S =

S11 S12 0 0

S12 S11 0 0

0 0 S33 0

0 0 0 S33


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
 

. [34]

The Stokes vectors and scattering matrix formalism is very convenient to
describe ELS experiments with polarised incident - and scattered light [see e.g.
37, page 415]. Throughout the thesis this formalism will be used.

Observables, such as the differential cross sections, extinction -, absorption
-, and scattering cross section, asymmetry factor, or albedo are readily obtained
from the Si or Sij elements.

1.3.3             Elastic Light Scattering from Biological Cells

1.3.3.1 A mini-survey of theories

Physiological and morphological information of living cells can be
retrieved using ELS. Differences between cell populations, which are difficult to
observe using microscopic methods can be determined with ELS, or a
(physiological) response to e.g. drug treatment, a change in rate of
phosphorilation, or a change of the osmolarity of the suspending medium, can
be demonstrated with ELS.

This important notion has long been recognised by many researchers. For
instance, the effect of penicillin on bacteria is seen within minutes in the



scattered light [68], changes in heat-treated bacteria can be observed [69],
bacteria [70, 71], and human white bloodcells can be identified [62], changes in
the shape of platelets can be assessed [72], perpendicular and forward scattered
light can be used to determine nuclear and cellular morphology [73], or cell
activation might be probed [74]. Many more fascinating examples can be found
throughout the literature.

Such enormous amount of empirical data of ELS from biological cells calls
for a theoretical support, because
• “a theoretical framework to interpret these changes in terms of scattering

theory is needed” [75];
• to help the experimenter, quoting Brunsting [76]: “..what is the optimal

solid angle for the light-scattering detector to subtend so that a certain cell
parameter may be maximally monitored...”.

As will be clear from the sequel, these quotations still are very relevant today.
The basic question now is to find an appropriate scattering theory [see e.g.

1, chapter 1]. For this we should realise that most biological cells have two
characteristics in common. First, the refractive index of the cells, or cell
compartments, has a very limited range, and is very close to the refractive
index of the suspending medium (for wavelengths in the visible region, where
absorption of cellular molecules is absent). For instance, Brunsting and
Mullaney measured the refractive index of the cytoplasm and the nucleus of
Chinese Hamster Ovary cells [77]. They found ncytoplasm = 1.3703 and nnucleus =
1.392. Relative to water (nwater = 1.333), we find 1.03 and 1.04 respectively. The
relative refractive index of human white bloodcells is in the range 1.01 < m <
1.08 [78]. In general, most biological cells can be viewed as near index matching
particles, i.e. the relative refractive index m is very close to 1. This observation
reduces the possible scattering theories to (excluding variational - and
numerical techniques to solve the Maxwell equations):
• approximate theories for which m must be close to 1 (see reference 42,

paragraph 10.1); i.e. Rayleigh-Debye-Gans (RDG) scattering, and
Anomalous Diffraction (AD);

• approximate theories for which m is not restricted, such as the
geometrical optics (ray tracing) method (see e.g. reference 37, chapter 7),
or Rayleigh scattering (provided that the particle is not in the resonance
region, see reference 42, paragraph 6.4).

• exact analytical solutions of the Maxwell equation, such as Lorenz-Mie
scattering.
The second common feature of biological cells is their size. If we

concentrate on (mammalian) cells, their radius is approximately 2 µm ≤ r ≤ 8
µm (see e.g. table I of reference 75, or chapter 1 of reference 1). Taking the
wavelength λ = 500 nm we find for the scattering parameter 25 < α < 100. This
range immediately excludes Rayleigh scattering and the geometrical optics
approach.

The size - and refractive index range of cells reduces the theories to
describe ELS of these cells to RDG scattering, AD theory, and exact theories,
especially Lorenz-Mie theory [1, chapter 1]. All these theories have been used,
with varying success. For instance, Mullaney and Dean [79] modelled cells as
homogeneous spheres with m = 1.05, and investigated the near forward
scattering using Mie theory. They show that in this model, the logarithm of the



θ = 0.50 scattered intensity is proportional to the volume of the cell, for 10 < α <
100. However they realise that "The structure of a cell is certainly more
complicated than assumed here; the concept of a mean refractive index for all
cells in a population may be an oversimplification".

The next logical step is to model cells as two concentric spheres, where the
inner sphere models the nucleus and the coating models the cytoplasm.
Brunsting and Mullaney [80] propose this model and investigate the Aden-
Kerker solution of scattering by two concentric spheres [38] in the (α, m) range
of biological cells. They conclude that "the influence of the core on scattering is
not significant in the forward direction", but that "the main influence of the
cell nucleus occurs at angles outside the main scattering lobe". In an
experimental study on the scattering of CHO cells in M and G1 phase, which
can be modelled by homogenous -  and concentric spheres respectively, these
theoretical conclusion where confirmed [77].  However, Meyer and Brunsting
[81] have studied the concentric sphere model in some more detail, and they
point out that the small angle scattering is highly dependent on the nucleus to
cell diameter ratio. Furthermore, they observe that "the scattering patterns of
nucleated cells are found to have a fine lobe (high frequency) structure
dependent on whole cell size, and an envelope lobe (low-frequency) structure
dependent on relative nucleus size.

Sloot and Figdor [82] propose a modification of the RDG theory for
concentric spheres, called mRDG theory, which has a larger domain of
applicability.  They show that the resulting model, in the (α,m) range for
biological cells, agrees very well with the Aden-Kerker theory. We applied this
model very successfully to explain the anomalous Forward Scattering of
osmotically stressed human Lymphocytes [43, 44, see also chapter 2 of this
thesis].

Examples of the use of AD theory in the context of biological cells are
provided by Stramski et al. [83], who study ELS from phytoplanktonic cells, and
by Streekstra et al. [45, 46] who examined forward scattering from deformed red
blood cells.

Although successful, these theories all have their limitations, which are
most obvious if one takes the polarisation properties of the incident and
scattered fields into account. Consider an experiment with crossed polarizers,
i.e. the incident light is polarised perpendicular to the scattering plane, and the
component of the scattered light parallel to the scattering plane is measured.
In terms of Bohren and Huffman [37, table 13.1], this is a P⊥A//4 experiment,
and the measured intensity is proportional to

1/4 (S11 - S12 + S21 - S22) [35]

Both RDG scatterers and (concentric) spheres produce a zero intensity, as is
obvious from Equations 33, 34, and 35. However, de Grooth et al. [84] measured

4 P denotes a polarizing element in the incident beam, A is the analyzer, a polarizing
element just before the detector, U denotes unpolarized light, i.e. no polarizing element
present. The subscripts denote which polarizing element is used: ⊥ is a perpendicular
linear polarizer; // is a parallel linear polarizer; + is a linear polarizer wich makes
an angle of +450 with the scattering plane; - is a linear polarizer wich makes an angle
of -450 with the scattering plane; R produces right handed circularly polarized light; L
produces left handed circularly polarized light.



considerable signals for all types of human white bloodcells5, and deviations of
the S22 element from the S11 element have been reported for e.g. different kinds
of pollen [56], and marine organisms [85, 86]. We may conclude that we cannot
describe this situation with (m)RDG scattering, nor with models which view a
cell as a (concentric) sphere, with equivalent volume and refractive index.

Another scattering matrix element which has received much attention is
the S34 element. For many biological cells S34 signals have been reported. Once
more we refer to Bickel et al. [56], Loftus et al. [86] and Voss et al. [85], and to
van de Merwe et al. [87]. All these results show an extreme sensitivity of the S34
element for very small morphological changes. Furthermore, using an
experimental flowcytometer which is described in reference 54, we have found
indications that human white bloodcells give rise to S34 signals (data not
shown).

RDG scatterers have S 34  = 0. The S 34  is very sensitive to small
morphological changes. For instance, in reference 50 (see also chapter 7) we
showed that a small surface roughness on a sphere has a pronounced effect on
the S34 element. Therefore, we conclude that RDG scattering and equivalent
sphere models are also not suited for S34 calculations of biological cells.

Finally we refer to Circular Intensity Differential Scattering (CIDS) [57,
88, 89, 90, 91]. In a CIDS experiment the difference between scattered intensities
for left - and right circularly polarised incident light is measured. In terms of
Bohren and Huffman,

CIDS = PL U− PRU
PLU+ PRU

= −S14
 
. [36]

RDG scatterers, with an isotropic polarizability, have a zero CIDS. Anisotropic
polarizabilities are required in RDG theory to produce CIDS signals. However,
so-called form-CIDS, induced by e.g. the helical structure of a particle, is not
present in RDG theory. Yet this type of CIDS is demonstrated in e.g. the helical
sperm head of the octopus Eledone cirrhosa [92]. This technique is also very
relevant in the study of secondary - and ternary structures of macromolecules,
such as e.g. the supercoiling of DNA [93].

In conclusion, approximate theories such as (m)RDG scattering, and
exact theories such as Lorenz-Mie theory are very successful to describe
certain scattering properties of biological cells. Especially near-forward
scattering and total cross sections are treated adequately by these theories.
However, if large angle scattering, back scattering, or polarisation properties of
the scattered light are of interest, more realistic models are required.

1.3.3.2 ELS from healthy - and malignant human leukocytes

Leukocytes, or white bloodcells, make up our immune system. In
peripheral blood they consist of 3 classes, the Lymphocytes, Monocytes, and
Granulocytes [94] (see table 2). A further subdivision can be made on
morphological and physiological grounds, and some subclasses are also shown

5 Even if one takes the so-called aperture depolarization into account, which explains for
non-zero signals of spheres in an actual experiment (due to finite detector apertures),
the cells still have significantly larger signals.



in table 2. Much more detail can be introduced by studying the biochemistry of
the cell surface or of the cell compartments, but that will not concern us here.
In table 2 the relative occurrence of (sub) classes is also shown. These numbers
are for a typical healthy donor, and are subject to large inter-donor variations
(see e.g. [95]).

Lymphocytes
(30%)

B Lymphocytes

T Lymphocytes Helper cells
Supressor cells
Cytotoxic cells

Large Granular
Lymphocytes
Natural Killer
cells

Monocytes
(5%)
Granulocytes Neutrophiles

(60%)
Eosinophiles
(4%)
Basophiles
(1%)

Table 2: Classes and subclasses of human white bloodcells, the
numbers in brackets denote relative occurrence for a typical healthy
donor.

The three classes of leukocytes have a clear different morphology, as is
easily seen under a light microscope [94]. Furthermore, morphological
differences between subclasses exist. Most notably are the Neutrophilic - and
Eosinophilic Granulocytes, the main difference being the size and
concentration of granules in the cytoplasm of the cells and the shape of the
nucleus. More difficult to determine however are morphological differences
between Lymphocyte subclasses. Still, examples are known: using a computer
assisted microscopic technique, Bartels et al. [96] revealed morphological
differences between (fixed) B - and T - lymphocytes, and van Es et al. [97]
reported morphological differences between T4 - and T8 positive lymphocytes.
Since the scattering matrix is very sensitive to (variations of) morphological
features,  we expect that it is possible to identify subclasses of leukocytes by
measuring ELS from those cells. Furthermore, physiological responses of
leukocytes often involve a morphological change, and pathological stages of
leukocytes (such as leukemias) usually show clear morphological signatures.
Therefore, ELS can be a very useful technique for fast and non-destructive
monitoring of responses or pathologies.

Without the intention of being complete, a small overview of scattering
from leukocytes will be presented. Up till now we have not encountered
examples of measurements of Sij elements as a function of the scattering angle



θ. Most experimental results stem from flowcytometric experiments.
A flowcytometer consists of a flow-cell, in which cells are forced to flow

into a long linear sequence, using a technique called hydro-focusing. A laser
beam is focused on the cells, such that cells enter the focused beam one-by-one.
Each cell produces a pulse of scattered light, and this scattered light is usually
measured in the two principal directions: the Forward Scattered (FS; usually 10

< θ < 30) - and the Sideward Scattered direction (SS; usually 650 < θ < 1150). The
FS and SS signals consist of scattered light integrated over a solid angle defined
by the aperture of the detectors. Usually the cells are stained with fluorescent
probes which bind to specific molecules on the cell surface or in the cell, and
several fluorescence signals are measured, in combination with the light
scattering signals. In this way N independent signals are measured for every
cell in the sample, and the sample is represented as a N-dimensional
histogram. After identifying separate clusters in the histogram, by visual
inspection or fully automated, using sophisticated statistical techniques [see
e.g. 98], different subsets in the original cell sample can be assessed. Many
more details of this important technique, extensively used in analytical
cytology, can be found in reference 99.

In classical flowcytometry only two light scattering (FS and SS) signals
are measured. Furthermore, the incident light is provided by a laser, which
usually emits linear polarised light. If we assume perpendicular polarised
incident light, the classical light scattering measurements in flowcytometry
are of P⊥U type, and therefore

FF,SS = C (S11 − S12 )dA
detector
surface

∫∫
 

, [37]

with C  a constant. Only a very small portion of the information which is
potentially present in the scattered light is exploited. Yet, this suffices to
identify the three classes of leukocytes, as was first demonstrated by Salzman et
al. [62]. Figure 11 schematically shows the FS-SS histogram which was
measured by Salzman.

Lymphocytes and Monocytes can be identified on the basis of their FS
signal, and by measuring the SS signal at the same time, the Granulocytes can
also be discriminated. The clusters in the histogram are Gaussian
distributions (see reference 98), and the width of the histograms is probably due
to biological variability of the cells. However, the influence of the so-called
Lissajous loops (see reference 100, and chapter 3) is still under investigation.

A popular, quantitative interpretation of the histogram of figure 11 is that
FS (small angle scattering) is sensitive to cell size and that SS (perpendicular
scattering) is sensitive to cell structure or cell granularity. These arguments
are based on the early work of e.g. Brunsting, Mullany, and Latimer (see
previous section). Although these arguments help to understand some features
of FS-SS histograms, one should be careful using them. Light scattering is
much more subtle, and every experiment should be considered in its own right.
Anyhow, since Monocytes are larger than Lymphocytes, and Granulocytes
have more internal structure (granules, polymorphological nucleus) than both
Lymphocytes and Monocytes, these arguments allow us to appreciate the data



of figure 11.
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Figure 11: A schematic drawing of the FS - SS histogram of human leukocytes, as measured
by Salzman et al. [62].

Detection and data analysis techniques in flowcytometry are more and
more refined, allowing better and more accurate identification of the (sub)
classes of leukocytes. Furthermore, de Grooth et al. [84] introduced the crossed
polarizers experiment, (see previous section) into flowcytometry of human
leukocytes. This allowed them to separate Eosinophiles from Neutrophiles. In
figure 12, taken from reference 101, the resulting FS-SS histogram and SS-
Depol histogram (Depol is the acronym for the crossed polarizers experiment
with the analyzer in the SS direction) is drawn.

The FS-SS histogram contains two new distributions. First, at a low FS a
cluster containing debris, platelets and red cells is included. Furthermore, a
small cluster containing Basophiles (number 5) was located between, or
overlapping the Lymphocyte and Monocyte clusters. This identification was
possible by immunofluorescence measurements. Furthermore, the large
Granulocyte cluster in the FS-SS histogram could be separated into a
Neutrophil and Eosinophil cluster by the crossed polarizers experiment.
Therefore, by measuring only three light scattering signals of each cell a clear
distinction between Lymphocytes, Monocytes, Neutrophiles and Eosinophiles
can be made.

Improvements are still being made, and a state-of-the-art measurement is
drawn in figure 13. These data were taken from reference 102. The large
Granulocytes cluster consists of two overlapping distributions containing the
Eosinophiles and Neutrophiles. Furthermore, it was shown that the Basophiles
overlap with the lymphocyte fraction, and that a subset of Lymphocytes, the
Natural Killer (NK) cells, can be found at larger FS and SS signals in the
lymphocyte fraction, and that some NK cells can be demonstrated at low SS
signals in the Monocyte cluster. These overlapping clusters of cells were found
using three immunofluoresence signals.
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1: platelets, debris, red cell ghosts
2: Lymphocytes
3: Monocytes
4: Granulocytes
5: Basophils, Lymphocytes and Monocytes

Terstappen et al., 1988

6: Neutrophils
7: Eosinophils

Figure 12: A schematic drawing of the FS - SS histogram, and the SS - Depol histogram of
human leukocytes, as measured by Terstappen et al. [101].
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Figure 13: A schematic drawing of the FS - SS histogram of human leukocytes, as measured
by Terstappen et al. [102].

Furthermore, Terstappen et al. have studied in great detail the SS of
human Lymphocytes. They discovered that the SS histogram contains two
overlapping distributions, as drawn schematically in figure 14. This effect was
first described for T8 positive Lymphocytes [103]. It was suggested that the
population with small SS consists of Supressor cells and the population with
large SS of Cytotoxic cells. Next, Terstappen et al. demonstrated this effect for
the complete Lymphocytes class [104]. It was shown that B Lymphocytes and



Helper / Supressor cells have a low SS, and that "the presence of cytotoxic
determinants on Lymphocytes is correlated with a large SS". Furthermore,
strong indications exist that all Lymphocytes with large SS are in fact Cytotoxic
Lymphocytes.

SS

N

Figure 14: A schematic drawing of the measured SS histogram of Lymphocytes (solid line)
and the two overlapping (Gaussian) distributions which produce the total histogram (dashed
lines); N is the number of cells.

This body of experimental data shows that all subsets in table 2 can
probably be distinguished using ELS. Now we must recall the quotation of
Brunsting: "..what is the optimal solid angle for the light-scattering detector to
subtend so that a certain cell parameter may be maximally monitored...".
Several groups have gone beyond the classical FS-SS measurements. The
importance of the crossed polarizers experiment of de Grooth et al. has been
mentioned. They have also investigated the possibilities of measuring the
scattered light in the range 30 < θ  < 110, in combination with FS. This
experiment revealed the same information as the FS-SS histogram of figure 12,
but now cluster 1 (platelets etc.) is much better separated from clusters 2, 3, and
5 [101].

Stewart et al. [105] measured Axial Light Loss (ALL), the decrease of laser
intensity upon entrance of a particle into the beam. ALL seems to result in an
even better separation of dead cells, Lymphocytes and Monocytes than the FS
signal.

Using their mRDG theory, Sloot and Figdor extensively studied
differential cross sections of cells and concluded that measurement of back
scattered light (BS; 1600 < θ < 1740), combined with FS and SS, provides
additional and independent morphological information of the cells [82]. Based
on this theoretical work, and in the spirit of Brunsting, Sloot has included BS
measurements into flowcytometry [1]. Many experiments were carried out and
the data suggest that BS does provide valuable information (see also section
1.2.3.3).

The use of ELS to study pathologies of leukocytes is not widespread, but
some examples are known to us. We will restrict ourselves to Chronic
Lymphocyte Leukemia (CLL) [106], the most common form of leukemia in
Europe and the United States. In more than 95% of the cases the CLL develops
from a malignant transformation of B Lympocytes or B Lymphocyte
precursors. Several forms of this leukemia are described with clear



morphological features and correlated immunological properties [107].
Examples are
• true B Chronic Lymphocytic Leukemia (B-CLL): small cells, hardly any

cytoplasm;
• Prolymphocytic Leukemia (PLL): larger cells, abundant cytoplasm,

nucleus with very prominent central nucleolus;
• Hairy cell leukemia: cells of moderate size, eccentric, oval nuclei, and

"hairy" cytoplasmic projections.
Once more, these morphological differences suggest that ELS can be used to
identify the cells, thus allowing e.g. an initial, fast screening of cell samples.
Flowcytometric experiments, which measured the SS histograms of these cells,
only lift a corner of the veil, and much more theoretical and experimental study
should be devoted to this application of ELS.

Van Bockstaele et al. [108] showed that Hairy cells have a three to four fold
larger SS than lymphocytes. In combination with ALL they were able to count
the concentration of Hairy cells, and follow the effects of treatment with alpha-
interferon. Terstappen et al. studied the SS of B-CLL cells. In this case the T8
positive cell histograms resembled the SS of healthy donors (see figure 14), but
with the small SS cluster missing [109], and in the SS histogram of all
Lymphocytes the large SS cluster is missing [110]. Furthermore, the SS
histogram of the Lymphocytes of B-CLL is clearly different than those from
other CLL such as Leukemic Follicular Non Hodgkin Lymphoma and a
prolymphocytoid transformation of B-CLL [110]. Finally, the effect of splenic
irradiation of a B-CLL patient could be demonstrated in the SS histogram [95].

1.3.3.3 Our previous contributions to ELS from leukocytes

Our interest in ELS from leukocytes stems from an application in
immunology. Here, the Biologists need large amounts of purified leukocytes,
preferably not contaminated with chemicals which are used in many
separation techniques (e.g. flowcytometric sorting using immunofluorescence).
Therefore, a very powerful physical separation and purification technique, so-
called centrifugal elutriation, was developed to separate leukocytes into
samples of (sub) classes of leukocytes [111]. Sloot integrated a flowcytometer
with the centrifugal elutriator, thus enabling a real time monitoring (and in
the future also real time control) of the cell separation process [1, 112, 113].
Obviously, in this situation only ELS from the cells can be used to identify them.
Therefore, we are looking for flowcytometric ELS experiments able to identify
all subclasses of leukocytes. Furthermore, malignant leukocytes and
bonemarrow cells can be included. In this effort experimental - and theoretical
investigations have to go hand in hand.

The mRDG theory of Sloot and Figdor has been mentioned in section
1.3.3.2. We used this theory to explain the anomalous Forward Scattering (FS) of
osmotically stressed human Lymphocytes [43]. Based upon mRDG calculations
of the FS of osmotically stressed Lymphocytes we even predicted a totally
unexpected biological phenomenon, the change of nuclear volume of
Lymphocytes in aniosmotic conditions. Recently we have proven this prediction
to be correct [44, see also chapter 2 of this thesis].

Furthermore, as said in section 1.3.3.2, mRDG calculations laid the
foundation of BS measurements in flowcytometry. A large body of experimental



data indicates that combined measurement of FS, SS, and BS allows
identification of Lymphocytes, Monocytes, Eosinophiles and Neutrophiles
(unpublished data). Currently our group is finalising data reduction
techniques to analyse the three dimensional histograms in real time [114].
With this the potential of BS measurements will be analysed in detail.

We also started to investigate the scattering matrix of leukocytes, because
we expect that only this can provide the necessary information. First we
showed that the scattering matrix can be measured quantitatively in a
flowcytometer [54, 55]. Based on a symmetry argument and using the equality
of ensemble - and time averaging, we postulated that the scattering matrix of
cells, measured in a flowcytometer, has the form of equation 32. Recent
experiments carried out in collaboration with  de Grooth of the University of
Twente, the Netherlands, indicate that this hypothesis is correct, although
more conclusive data must be obtained. Furthermore, these experiments, and
experiments reported in [54] and [55], showed that the scattering matrix of
most human leukocytes deviate from the (m)RDG approximation; i.e. non-zero
S34, S22 ≠ S11, and S33 ≠ S44.

The research which is presented in this thesis continues our
experimental developments. Furthermore, the main part of the thesis consists
of the development of a simulation environment for Elastic Light Scattering
from biological particles. In this way we try to fill the computational gap which
was identified in the previous sections. Finally,  first applications of the
computational experiment will be reported.

1.3.4             The Coupled Dipole model

1.3.4.1 Why use the Coupled Dipole model ?

Our aim is to calculate the complete scattering matrix of Leukocytes. This
provides the possibility to define optimal light scattering experiments, able to
distinguish (sub) classes of Leukocytes and bone marrow. Approximate
theories and exact solutions for highly symmetric particles are not suited for
these calculations, as was shown in the previous section. A well known, though
computational intensive method to calculate the ELS from non-spherical
particles is the T-matrix method [115]. Unfortunately this method is currently
only practically applicable to homogeneous particles with relatively smooth
surfaces, which makes this method unfit to solve our problem. The conclusion
must be that we have to consider other, more rigorous approaches to calculate
the ELS pattern of arbitrary particles.

We must rely on numerical methods to solve the scattering problem.
Basically one can distinguish two methods; the first concentrates on
numerically integrating the macroscopic Maxwell equation in the time or
frequency domain. The second approach, the Coupled Dipole method, is a
physically more intuitive approach, although it can formally be derived from
the Maxwell equations. We intend to calculate the ELS pattern by means of the
Coupled Dipole method.

1.3.4.2 Description of the Coupled Dipole method

The Coupled Dipole (CD) method of ELS was first introduced in 1973 by



Purcell and Pennypacker [116]. The concept of coupled radiating dipoles to
study the interaction between light and matter on a microscopic level is
however much older (see e.g. [117]). The main difference is that the dipoles in
the CD method of ELS are not single atoms, as in the original formulations, but
consist of large numbers of atoms, confined to a sub volume that is small
compared to the wavelength of the incident light.

Consider an arbitrary particle, illuminated by a monochromatic
electromagnetic field E0(r), as drawn in figure 10. Our task is to calculate the
scattered electric field Es(r) in the full solid angle around the particle, for an
incident field polarised in the x direction, and an incident field polarised in the
y direction. With these scattered fields the complete scattering matrix S of the
particle can be calculated [37].

The CD method divides the particle in N equal sub volumes. The size of a
sub volume must be small enough to ensure that its response to an
electromagnetic field is the response of an ideal induced dipole. Recommended
values in the literature range from λ/20 < d < λ/10, with d the size of a sub
volume [50, see also chapter 7].

The field at ri radiated by a dipole located at rj is [64]

E(ri ) = 1
4πε0

k2(n × p) × n
eikr

r
+ 3n(n ⋅ p) − p[ ] 1

r3 − ik

r2




 eikr





; [38]

k is the wave number, defined by k = 2π/λ; p is the induced dipole moment; n is
the direction vector defined by

n = r / r , and r = ri − rj  ; r =|r|.

The induced dipole moment is assumed to depend linearly on the electric field
on the dipole:

p = ααE , [39]

αααα is the polarizability tensor. The field at ri  radiated by a dipole located at rj can
now be written as

E(ri ) = Fijαα jE j  , [40]

with the functional Fij defined by equations 38 and 39.
The electric field on dipole i (1 ≤ i ≤ N), due to the external field E0(r) and

the field radiated by all other dipoles is

E(ri ) = E0(ri ) + Fijαα jE j
j≠i

N

∑
 
, 1 ≤ i ≤ N. [41]

The summation in equation 41 runs over all dipoles, except dipole i. This term,
the so-called eigenterm, is neglected in the original CD method (see however



section 1.3.4.4).
Equation 41 defines a set of 3N equations for the 3N unknowns (Ex(ri),

Ey(ri), Ez(ri)). These equations can be reformulated as a matrix equation Ax = b,
with

x =
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, [42]

where ai,i = I, the 3×3 identity matrix, and ai,j = -Fi,jααααj if i ≠ j. The matrix A is
the 3N×3N interaction matrix. After solving the matrix equation, the scattered
electric field Es is calculated by summing the fields, radiated by the dipoles, at
the observation point robs

Es (robs ) = Fobs,iααiE(ri )
i=1

N

∑
 
. [43]

1.3.4.3 The interaction matrix

The interaction matrix A is a complex, 3N×3N matrix (the 3 arising from
the 3 spatial components of the electric field vectors). In practical applications
the number N must be very large (e.g. ~105). To investigate the properties of A,
we must first note that (see equation [40])

Fij = Fji, and [44.a]
Fij = (Fij)T . [44.b]

where the subscript T denotes the transpose of a matrix. At this point we are
forced to make assumptions about the response properties of the dipoles, that is,
the tensor ααααi.

First we will consider the very important class of homogeneous, isotropic
particles, or in terms of the coupled dipole formalism,

ααααi = αΙΙΙΙ, i = 1..N, [45]

were α is a scalar polarizability. From equation 42, 44, and 45 it is obvious that
the interaction matrix is symmetric:

AT = A, [46]

and that aij = -αFij for i≠j.
The class of homogeneous, non-isotropic particles is characterised by

ααααi = αααα i = 1..N. [47]

Without loss of generality we can assume that αααα  is symmetric. We can now
rewrite the matrix equation to



B αααα E = E0 , or

B P = E0 , [48]

where
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,

bii = (αααα)-1 and bij = -Fij if i ≠ j. Because αααα is symmetric, (αααα)-1 also is symmetric
and therefore the modified interaction matrix B is symmetric. The elements of
the vector P are the induced dipole moments; pi = αααα E(ri) = p(ri).

Finally, consider non-homogeneous particles. Now the polarizabilities ααααi
can differ from each other, although we still assume symmetric polarizability
tensors. The matrix equation can be rewritten as equation 48, but now bii = (ααααi)-
1, bij = -Fij if i ≠ j, and pi = ααααi E(ri) = p(ri). In this case the modified interaction
matrix also is symmetric.

In the sequel of this thesis we will be dealing with isotropic, homogeneous
particles, unless stated otherwise.

1.3.4.4 Calculation of the polarizability , the Optical Theorem, and derivation
from the Maxwell equations

Correct calculation of the scalar polarizability α  is an important
ingredient of the CD method. In the original paper of Purcell and Pennypacker
[116] the dipoles are placed on a cubic grid with grid spacing d, and α was
calculated using the Clausius-Mosotti relation:

α = 4πε0

3n

m2 − 1

m2 + 2  
, [49]

with m the relative refractive index of the particle and n the number of dipoles
per unit volume, i.e.

n = d-3.

Although the Clausius-Mosotti relation is only rigorous for point-like
dipoles on infinite grids, this connection between the polarizability of the
dipoles with the relative refractive index of the scattering particle is very
satisfactory. Comparison of CD simulations, using equation 49, of differential
scattering cross sections from a homogeneous sphere with Mie theory show
almost perfect agreement (see e.g. chapter 7 and 8).

An important limitation of the use of the Clausius-Mosotti relation lies in
the fact that the optical theorem is violated. This is a well-known problem and
is treated in many textbooks in the context of e.g. Rayleigh scattering. Non-
absorbing particles with real m yield dipoles with real α according to equation



49. However, the single dipoles in the simulation do scatter light and their
polarizabilities should have an imaginary part, according to the optical
theorem. As was noted by several authors [118, 119], this restriction does not
introduce severe errors in the simulation of the differential cross sections.
Nevertheless, it remains an important point of principle. The CD simulation, in
combination with the Clausius-Mosotti relation, violates the optical theorem.
As a consequence, the optical theorem cannot be used to calculate total
scattering cross sections of particles.

Several solution to this problem have been suggested. First, Draine [118]
introduced an imaginary part into the polarizability by considering a radiative
reaction field on the dipoles. Dungey and Bohren [120] introduce an exact
formulation of the electric dipole polarizability of small spheres in the CD
formalism. This formulation basically is the first term in the Mie series, and
includes the radiative reaction term of Draine as the third order term of an
expansion in the size parameter of the spherical dipole. Furthermore, Dungey
and Bohren use the Maxwell-Garnett relation to find the dielectric permeability
of the dipoles as a function of the electric permeability of the bulk material.
They show that their approach yields the most reliable simulations of the
extinction coefficient with the CD method.

Another way to proceed is to include eigenterms into the CD formalism.
In equation 41 the summation runs over all dipoles, except dipole i. Intuitive
one expects that this term should also be present, due to the finite size of the
dipoles in the simulation. In standard derivations of dipole radiation due to a
distribution of current densities, resulting in equation 38, one assumes that the
currents are confined to a very small volume, and that the observation point is
outside this volume (see e.g. reference 64, page 392 and further). One may ask
what happens if the observation point is inside the source volume, and identify
this contribution with the eigenterm. Such an analysis, in the context of the CD
method, remains to be done.

If one solves the Maxwell equation in the frequency domain, using a
Green's function formalism, and discretizes the resulting integro-differential
equation, using the method of moments, a comparable eigenterm naturally
occurs (see e.g. [119, 121]. Furthermore, the resulting equations bear a strong
resemblance with the CD equations. Lakhtakia has shown that this
resemblance has a fundamental significance, by deriving the CD method
directly from the Maxwell equations [122, 123, 124]. He shows that the CD
method, using the Clausius-Mosotti relation, and the above mentioned
integration and discretization of the Maxwell equations are in fact equivalent.
Furthermore, he gives a sound theoretical basis for the CD method and an
analysis to include eigenterms into the CD simulations. Up till now numerical
tests of Lakhtakia's expressions have not been published. However,
experiments of Hage [121] and Goedecke and O' Brien [119] show that the
eigenterms also resolve the problems with the optical theorem.

1.3.4.5 Some results obtained with the CD method

The Coupled Dipole method can be viewed as an instance from the field of
Computational Electromagnetics. Applications in Computational
Electromagnetics, like those from e.g. Computational Fluid Dynamics or
Structural Mechanics, are generally very compute intensive. In chapter 5 it is



shown that in our application this is also the case. As a consequence, the CD
method is not (yet) widely used in the light scattering community. Despite this
fact, some important and fascinating results have been obtained with the CD
method.

The Coupled Dipole method contains several parameters. The size, form,
and position of the dipoles and the value of the polarizability tensor, as a
function of the morphological and optical properties of the scattering particle,
have to be specified. The original formulation of Purcell and Pennypacker [116]
assumes spherical dipoles on a cubic grid. They suggest that the grid size d
should satisfy 2πd/λ < 0.7. Singham [125] extended the original CD method to
intrinsic optical active particles. The constitutive relations appropriate for
optical active materials induce a coupling between the electric and magnetic
field components. Therefore the resulting matrix equation is of order 6N×6N,
with N the number of dipoles. Here we will not consider optical active particles.

Purcell and Pennypacker tested the CD method by comparing it with
known analytical solutions of the scattering problem. At that time (1973) only
Mie's solution of scattering of plane waves by a sphere was available. The CD
method is compared with Mie results. Two tests were performed. Differential
scattering cross sections of a sphere composed of N = 136 dipoles, α = 1.5, and
bulk refractive index n = 1.33 were calculated for perpendicular and parallel
polarised incident plane waves. Furthermore, the extinction-, scattering- and
absorption efficiencies (Qext, Qscat, and Qabs respectively) for a 136 dipole sphere
with n = 1.7 - 0.1i where computed, as a function of α . In both cases the
agreement between the CD results and the Mie results was very good.

These first results prompted more research to the applicability of the CD
method. Yung [126] notes that "further progress requires a better numerical
approach". Using a variational principle he connects the minimum energy
theorem with scattering cross sections, and from this derives an algorithm
which can be identified as the original Conjugate Gradient method of
Hesteness and Stiefel [127]. This approach allows him to analyse particles with
as much as 15600 dipoles. This result is rather surprising, because his
numerical algorithm can only be applied to Hermitian matrices [128]. As was
shown in section 1.3.4.3, the interaction matrix A is symmetric, but definitely
not Hermitian.

Druger et al. [129] demonstrate the usefulness of the method for
inhomogeneous particles. The single polarizability α is replaced by a position
dependent αi. The light scattering from a concentric sphere, and from a sphere
embedded in a larger sphere with the centre of the inner sphere displaced
halfway to the surface of the outer sphere, was calculated with the Extended
Boundary Condition Method (ECBM, [115]) and compared with the CD method.
The polarizabilities of the inner and outer region where calculated with the
Clausius Mosotti relation. The results are good, however not as good as for
homogenous spheres. The sensitivity of the Back Scattering signals for the
displacement of the inner sphere is clearly present in the CD calculations,
although the effect is weaker than in the ECBM results. The deviation from the
exact model is, according to Druger et al., mainly due to "the graininess of the
model", and the agreement would be better with a larger number of dipoles (see
also chapter 7, where we quantify Druger’s notion of graininess).

Singham and Salzman [130] were the first to calculate the complete 4×4
scattering matrix with the CD method. This allowed them to test the CD



method qualitatively by checking the form of the calculated matrix with
general forms of scattering matrices as predicted by symmetry relations (see
section 1.3.2.1). For a single sphere they find that "the form of the calculated
matrix is precisely as predicted provided that the dipoles are arranged
symmetrically about all three coordinate axes". CD calculations on single
linear and helical particles show the predicted form. Furthermore,
orientational averaged linear and helical particles result in the predicted
matrix form. The number of orientations for proper averaging varied from 3000
to 15000 for particles with dimensions in the order of the wavelength of the
incident light. Even more orientations are probably necessary for larger
particles. A quantitative test of the CD method was performed by comparing
calculated scattering matrices of spheres and coated spheres with equivalent
sphere Mie calculations. The results for the spheres show that the results for
the S11, S12, and S33 are very good. The S34 element, the only term which is
totally due to dipole-dipole interactions, shows the general behaviour of the Mie
calculations, but a quantitative agreement is not achieved. A second test was
performed on a hollow sphere. The polarizability is obtained from the Clausius-
Mossoti relation. The results are good , though not as good as for the
homogeneous case (see also [129]). Singham and Salzman impute this to
imperfections of the discretization of the hollow sphere, but they also note that
"the Clausius-Mossoti relation is rigorous only for points on a cubic lattice".
Finally, Singham and Salzman investigate the possibility of ellipsoidal dipoles.
In this case the polarizability becomes a diagonal 3×3 tensor. The elements of
the polarizability tensor are calculated by a Clausius-Mossoti-like formula. The
dielectric constant of the ellipsoid, occurring in this formula, is calculated by
means of Maxwell-Garnett theory. The scattering of a hollow sphere, simulated
with ellipsoidal dipoles was calculated. The results are as good as with
spherical dipoles. Even in the limiting case for very flat oblate ellipsoids,
simulating a very thin coating, the agreement with the Mie theory is good,
except for the S34 element.

Singham and Salzman solve the system of equations with a direct method
(LU decomposition), which has the disadvantage that the number of dipoles
cannot be to large (O(103). However, the advantage of a direct method is that
randomising the orientation of the particle can be accomplished by explicitly
solving the matrix equation just once for one orientation and applying rotation
matrices to calculate the solution for other orientations [131].

The CD method simulates the scattering matrix of small spheres very
well, except for the S34 element. Therefore Singham has, in more detail,
investigated the applicability of the CD method to simulate the S34 term [132].
Comparison with Mie calculations on equivalent spheres show that good
agreement can be obtained if d < λ/45, in contrast to the other matrix elements
which are already in excellent agreement with the Mie results for d < λ/20. In
chapter 7 (see also reference 50) we show that this conclusion is too pessimistic,
and that the problems with simulation of the S34 element are due to the
graininess of Singham's discretization of the sphere.

A number of papers [133, 134, 135] concentrated around the Jacobi iterative
method [136] to solve the Coupled Dipole equations. Although it is known that
convergence of the Jacobi iteration is very slow and that the iteration does not
converge if the condition number of the matrix is too large, every step of the
Jacobi iteration can be interpreted as a multiple scattering event between the



dipoles (see e.g. [133, 134]). Therefore, the CD method, in combination with the
Jacobi iteration, can provide a better physical understanding of various light
scattering phenomena. For instance "the results show that the diagonal
scattering matrix elements and S12 are determined largely by the incident field
and single scattering from neighbouring dipoles, while the 2×2 off-block-
diagonal elements and S34 require longer range and higher-order internal
scattering", or "this demonstrates that backscattering is much more sensitive
than forward scattering to particle structure and that internal scattering
processes are particularly important in calculating S11 near the backward
directions" [134].

Draine [118] solves the set of linear equations by means of a Conjugate
Gradient method, which can be identified with the CGNR method in Ashby’s
taxonomy [128]. Draine shows that the number of iterations required for
convergence is relatively small compared to the number of dipoles. For
instance, the set of equations for a sphere modelled with 2320 dipoles, α = 5, and
m = 1.7 + 0.1i, is solved in 17 iterations. For rectangular solids Flautau et al.
exploit the block-Toeplitz structure of the resulting matrix to find a direct
solution of the matrix equation, in execution times comparable with the
iterative CG method [137].

The CD method has been used, among other, to calculate scattering from
dielectric grains [116], magnetite dust [138], polynucleosome superstructures
[93], fractal aggregates [139], dielectric helices [140, 141], and particles on
surfaces [142, 143]. Many more examples can be found in the literature.
Furthermore, Flatau et al. [144] simulated scattering by two spheres in contact
and compared the results with modal analysis. The agreement is very good,
which illustrates the applicability of the CD method to simulate irregular
particles.

1.4 OUTLINE OF THE THESIS

This thesis contains three related clusters. The first cluster, chapter 2 and
3, is a continuation of our experimental studies of the ELS from human white
blood cells. In this cluster modelling and subsequent computer simulation of
the models, combined with a feedback of the simulation results to the ELS
experiments, is the foundation of the research.

Chapter 2 elaborates on the hypothesis, which was formulated by Sloot et
al. in reference 43, that the nuclear volume of osmotically stressed lymphocytes
has to change in order to explain the observed ELS data. It is shown by means
of slit scan experiments that this hypothesis is correct. Furthermore, we
propose a possible mechanism of nuclear growth, a mechanical link between
the cell membrane and the nuclear envelope, and model this system by means
of a straightforward one-dimensional visco-elastic system.

As was argued in section 1.3.3 the polarisation properties of the scattered
light contain a wealth of information, and are absolutely necessary to
distinguish all subsets of human white blood cells and bonemarrow. Therefore
we have continued the effort to measure the complete scattering matrix of



particles in flowcytometers. In co-operation with Dr. B.G. de Grooth of the
University of Twente, the Netherlands, we extended the first experiments
which are described in reference 54. During calibration of the new equipment
we encountered an exiting phenomenon: Lissajous loops in scatterplots of
spheres. In chapter 3 these loops are investigated by a computer simulation of
the experiment. We show that these loops originate from the extreme
dependency of the intensity of the sideward scattered light on the radius of the
spheres.

The second cluster, chapters 4, 5 and 6, describes the development and
implementation of a computer experiment to simulate ELS from arbitrary
particles. In section 1.3.3 we showed that analytical and approximate theories
of ELS cannot model all ELS properties of biological cells. The Coupled Dipole
method can in principle simulate the complete scattering matrix of arbitrary
particles (section 1.3.4). However, the Coupled Dipole applied to human white
blood cells needs huge computational power, as will be shown in chapter 5.
Parallel computers can offer this computational power if the parallel program
has good scalability properties (see section 1.2.5). In chapter 4 we investigate the
scalability properties of the kernel of the Coupled Dipole method; the
calculation of the fields on the dipoles (equation 41). The parallel Coupled
Dipole method is described in chapter 5, and issues of programmability,
portability, and performance of parallel programs, with the parallel Coupled
Dipole method as a case study, are addressed in chapter 6.

Finally, in cluster three, chapter 7 and 8, the parallel Coupled Dipole
method is applied to simulate the scattering of spheres. These simulations
serve as a further calibration of the computer experiment. In chapter 7 we
investigate the influence of the size of the dipoles on the quality of Coupled
Dipole simulations of the scattering matrix elements. In chapter 8 we
introduce a new element into Coupled Dipole simulations, scattering of focused
beams from arbitrary particles. Scattering by focused beams is highly relevant
for the simulation of ELS in flowcytometers. By comparing the simulation
results with generalised Lorenz Mie calculations, we will show that the
Coupled Dipole method can predict scattering from focused beams.

Chapter 9 contains concluding remarks, and a status report. We will
critically discuss the suitability of the current computer experiment to model
ELS from human white blood cells, and provide pointers to further
improvements of this simulation environment.
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The effect of aniosmotic media on the volume
of the T-lymphocyte nucleus

ABSTRACT

Time resolved measurements of the nuclear volume response of human peripheral T-
lymphocytes, under aniosmotic conditions, are presented. In the experiments slit scanning
flowcytometry methods were used. We propose an extension to the standard solid viscoelastic
model to interpret the observed dynamical behaviour of the nucleus. It is shown that
experimental and theoretical evidence indicates a passive nuclear response merely induced
by a mechanical link (i.e. the cytoskeleton) between the cell membrane and the nuclear
envelope. Implications of this work to the field of cellular mechanics and cytoskeletal
rheology are surveyed.

2.1 INTRODUCTION

Recently it was shown experimentally that the light scattered by
lymphocytes in the forward directions in aniosmotic media, varies inversely
with cell volume [1]. These results appear to be inconsistent with the
observation that low-angle light scattering is proportional to particle size [2].
We solved this paradox by including changes in the optical density of the cell,
induced by variations in the osmolarity of the solution, in a light scattering
model [3]. A crucial point in this model is the assumption of a nuclear volume
response directly related to the cytoplasmic volume response. It is well known
that isolated nuclei do not respond to aniosmotic conditions [4]. On the other
hand it is not clear whether nuclei of intact cells can respond to these
conditions. Furthermore, if  the nuclei of intact cells respond to aniosmotic
conditions, as predicted by the light scattering theory, then the mechanism of
this response in not clear. We therefore hypothesised a physical link between
the cytoplasmic membrane and the nuclear envelope (the cytoskeletal network)
resulting in an induced nuclear volume response.

The response of lymphocytes in aniosmotic media has been studied
extensively. It was noted recently that the behaviour of human B- and T-
lymphocytes in hypoosmotic media is completely different. After suspension in
a hypoosmotic medium the total cell volume response of T-lymphocytes consists
of two steps. First, a fast initial volume increase and next, for cells suspended
in a NaCl solution, a slow decrease in volume back to the initial isoosmotic
value [5]. In KCl solutions, the initial fast increase in cell volume is followed by
a much slower increase in cell volume. The first step is interpreted as an



osmotic flow of H2O through the membrane into the cell. The increase in
volume is well described by the Boyle van 't Hoff relation [1]. The second,
volume regulatory step, is explained by the activation of potassium and chloride
pathways [5, 6]. Human B-lymphocytes in hypoosmotic NaCl solutions show the
initial (fast) volume increase, but in contrast to T-lymphocytes remain in a
swollen state [6, 7].

Under hyperosmotic conditions, (T- and B-) lymphocytes decrease in
volume but are not capable of any volume regulation [8, 9]. This volume
decrease also follows the Boyle van 't Hoff relation [1, 8].

Apart from a total cell volume response, analysis of Transmission
Electron Microscopy recordings of lymphocytes also revealed a nuclear
response [10]. However, no attention was paid to the sometimes complex total
cell volume response of lymphocytes as a function of time, which might affect
the nuclear  response. The question why the nucleus responds to aniosmotic
conditions was also not addressed.

In this study we introduce time resolved measurements of the nuclear
volume response of human peripheral T-lymphocytes, after suspension in both
hypoosmotic- and hyperosmotic media (with dominant ion K+ or Na+).

A mechanistic interpretation of the nuclear response is presented. We
modelled the response of the nuclei as a passive phenomenon, induced by a
mechanical link between cell membrane and nuclear envelope. The data are
fitted to an extended standard solid viscoelastic model. The nature of the
mechanical link is discussed in terms of the cytoskeleton.

2.2 MATERIALS AND METHODS

2.2.1             Cell handling

2.2.1.1 Isolation of cells

Large amounts of human peripheral T-lymphocytes were obtained by
Computer Assisted Centrifugal Elutriation (CACE), as described in detail by
Sloot et al. and Figdor et al. [11, 12].

2.2.1.2 Preparation of suspending media

The Phosphate-Buffered Saline (PBS, in this paper referred to as Na+

medium) was prepared according to Dulbecco and Vogt [13]. Phosphate-
Buffered potassium medium (PBK, this paper: K+ medium) is identical to Na+

medium with the sodium and potassium interchanged, and the calcium
concentration halved (see also [5]).

A stock solution of 10x isoosmotic K+ - and Na+ medium was prepared.
This solution was diluted with distilled water to obtain media with the desired
osmolarity. The isoosmotic osmolarity Π0 equals 285 mOsm/l. The aniosmotic
media are characterised by Π0/Π , with Π  the osmolarity of the aniosmotic
medium. If Π0/Π is > 1, the medium is hypoosmotic; for Π0/Π < 1 the medium is



hyperosmotic.
The osmolarity of the media was measured by means of a freezing point

depression method (Knauer Halbmikro-Osmometer).

2.2.1.3 Stock suspension

Freshly isolated T-lymphocytes were resuspended in isoosmotic Na+

medium at a concentration of 106 cells/ml. We refer to this as the stock cell
suspension.

2.2.1.4 Staining

For the measurement of the nuclear diameter in the slit scan
flowcytometer (see next section), the nucleus of the cells was stained with the
fluorescent dye Hoechst 33342 (Sigma, St Louis, Mo, USA). Hoechst 33342 (Hö)
was added to 200 µl stock cell suspension to a final concentration of 2 µg/ml Hö,
and incubated at room temperature for 20 minutes.

As a control experiment the total cell volume response in an aniosmotic
medium was measured (with the coulter counter, see next section) in the
absence and presence of Hö. Both responses were equal.

In one experiment the total cell volume was also measured in the
flowcytometer. The cells were stained with carboxyfluoresencediacetate (cFDA
[14]). A stock solution of 20 mg/ml cFDA in acetone was prepared; 5 µl of this
stock solution was added to 2.5 ml isotonic Na+ medium, with 250 µl stock cell
suspension and incubated for 15 minutes at 370 C. After incubation the cells
were washed twice with isotonic Na+ medium and resuspended in 50 µl
isotonic Na+ medium. Under the fluorescence microscope, the cells showed a
bright, homogeneous fluorescence. For times extending beyond about 15
minutes after staining however, the cells developed protuberances and showed
bleaching of the fluorescence.

2.2.1.5 Resuspension of cells in aniosmotic media

The cells were resuspended in the aniosmotic media in two different ways,
depending on the method of analysis used (see next section). In case of the
coulter measurements (total cell volume measurement), 100 µl of stock cell
suspension was added to 10 ml of aniosmotic medium.

The procedure for the slit scan flowcytometry experiments was as follows:
after staining, the cells were centrifuged at 200 g for 3 minutes, the
supernatant was removed and the cells were resuspended in 250 µl aniosmotic
medium, with 2 µg/ml Hö added to maintain a constant level of staining (this
was not necessary for cFDA staining). Addition of low concentrations of Hö did
not affect the osmolarity of the media. Immediately after resuspension (within
10-20 seconds), the measurements on the cell suspensions were started.

2.2.2             Measuring the total cell volume



The total cell volume was obtained by electronic sizing with a coulter
counter model ZF connected to a coulter channelyzer model C 1000.
Immediately after the resuspension of cells in the aniosmotic media, the cells
were transported to the coulter counter and after ± 1 minute the first
measurement was performed. Typically about 20,000 cells were sized in
approximately 20 seconds. The time between two measurements was 2
minutes.

After sizing of the cells, a hardcopy of the volume distribution was
produced and digitised with a Nummonics 1220 digitiser into memory of a
Hewlett Packard HP 9816 computer. The mean value of the volume distribution
Vm  was calculated. As lymphocytes show a homogeneous response to an
osmotic shock, Vm  is a good parameter to represent the volume of the cell
distribution [5].

Since we measure volumes in aniosmotic media (Vcell) relative to the
isoosmotic volume V(0)cell by

[ V(t)
V(0)

]cell=
Vm(t)
Vm(0)  

, [1]

with t the time after the osmotic shock and Vm(0) the mean volume of the
isoosmotic volume distribution, an absolute calibration of the apparatus is not
necessary [15, 16].* Here it is assumed that the electronic shape factor is
constant for lymphocytes as a function of the osmolarity of the suspending
medium [15].

2.2.3             Measuring the nuclear volume

Two techniques were applied to determine the nuclear volume:
fluorescence microscopy and flowcytometry.

2.2.3.1 Fluorescence microscopy

Following the resuspension of the cells, a drop of stained cells in ani- or
isoosmotic medium was placed on an objective glass and immediately covered
to prevent water evaporation and subsequent osmolarity changes. The cells
were examined under a Zeiss microscope with 40x objective -, 10x ocular
magnification and UV illumination. The cells were photographed and the
negatives were further analysed on the Nummonics 1220 digitiser. Absolute
calibration of the measured nuclear diameters was not necessary since the
nuclear diameters in aniosmotic media are measured relative to the isoosmotic

* The measured voltage pulse height ∆v as a function of volume V of a particle in the
Coulter Counter is ∆v=KρiV, with i the constant current through the orifice, r the
electric resistivity of the medium and K the electronic shapefactor dependent on the
particle shape and orifice geometry. The electric resistivity of the media is a function
of the osmolarity, therefore particles of the same volume in different media produce
different ∆v. This source of error was investigated by measuring 10 µm polystyrene
spheres (Duke Scientific) in media with Π0/Π = 0.5 and 1.5. The measured Vm/V(0)m
was 0.98 and 1.00 for Π0/Π = 0.5 and 1.5 respectively. This small systematic error is
considered insignificant.



values.

2.2.3.2 Flowcytometry

The stained cell suspensions were analysed using a cytofluorograph 30
FlowCytometer (Becton Dickinson, Mountain View, CA, USA) with a  Spectra
Physics (Mountain View, CA, USA) 2000 Argon ion laser tuned to the UV. The
measuring principle is drawn schematically in figure 1. Special purpose
optics, using crossed cylindrical lenses, was applied to focus the laser beam at
the centre of the quartz flow channel. The laser beam in  the focal plane is line
shaped to produce a 'slit' of laser illumination through which the stained cells
flow (see e.g. [17], chapter 2). After hydrofocusing [17] the cells pass the focal
plane one by one. The dye is excited by the intense UV beam and the resulting
fluorescence signal is measured, as a function of time. The width of the
fluorescence pulse is a measure of the nuclear diameter.

The fluorescence signal of the illuminated cell nuclei was detected
through a 490 nm band pass filter by a photomultiplier. The fluorescence pulse
shape was obtained by digitising the signals from the photomultiplier at a rate
of 10 Mhz and storing into the memory of a dedicated computer system for slit
scanning analysis. The values of the total (integrated) fluorescence intensity
and the width of the fluorescence pulse (defined as the full width at half
maximum; fwhm) from individual particles are stored in a 2-dimensional
histogram [18]. These modes of operation are shown schematically in figure 2.

Approximately 500 cells per second are analysed. After 15 seconds the
system has sampled enough cells to allow reliable off line statistical analysis of
the 2-dimensional histogram. The histogram is stored and the system starts
filling a new histogram. Typically 15 subsequent histograms were measured.

From the 2-dimensional histogram a (1-dimensional) pulse width
histogram is calculated by integration over the total intensity. An average pulse
width is obtained by calculating the first moment of the pulse width histogram.
This value is used to calculate the nuclear diameter.

laser

focussing
optics

line focussed
laser beam

cells 
in flow

Figure 1: A schematic drawing of the slit scan principle. Hydrofocused cells in a flow pass



the line focused laser beam one by one. The stained nucleus produces a fluorescence signal.
The width of the fluorescence pulse is a measure of the nuclear diameter.

input
pulse width

pulse area

ADC

2-D histogram
of total fluoresence intensity 

versus pulse width

slit scan profile

Figure 2: Modes of operation of the data aquisition equipment. In the experiments described
in this paper the 2-dimensional histogram is measured and further analysed to obtain an
average pulse width. The pulse area box measures the total (integrated) fluorescence
intensity; the ADC box measures pulse profiles and the pulse width box measures the width of
the fluorescence pulse.

The measured fluorescence intensity I(t) as a function of time t (i.e. the
pulse profile) is a convolution of the nuclear fluorescence emission distribution
c(x,y,z) with the laser irradiance profile H(z) in the focal plane [17]:

I(vt) = c(x, y, vt - ξ) H(ξ) dξdxdy
 
, [2]

where v is the velocity of cell flow along the z axis. After deconvolution of I(t)
with H(z), the nuclear profile C(z) is found, where

C(z)= c(x, y, z) dxdy . [3]

Assume that the nucleus is a sphere and that c(x,y,z) is homogeneous. It can be
shown that C(z) is, to third order in z, a Gaussian function with width 1/2 2D,
where D is the diameter of the nucleus. The laser intensity H(z) is also a
Gaussian function. Convolution of two Gaussian functions yields a new
Gaussian function. The variance of this new function is the sum of the
variances of the original functions. Therefore, the width of C(z) is:

width(C(z))= (width(I(vt))
2

- (width(H(z))
2
 . [4]

In our system the nuclear diameter of the T-lymphocytes was approximately a
factor of 4 larger than the width of the focused laser beam. Therefore the
measured pulse width is, within a few per cent, equal to 1/2 2D.

The volume of the nucleus VN(t) at time t, relative to the isotonic value
VN(0) can now be calculated from



VN (t)
VN (0)

= [ wm(t)
wm(0)]

3
, [5]

where wm is the mean of the pulse width distribution and the nucleus of the
lymphocyte is assumed to be a sphere [10]. The linearity of wm with particle
diameter was verified by introducing test spheres of different diameter in the
system. The measured wm was proportional to the test spheres diameter (data
not shown).

2.3 RESULTS

In this section the measurements of the nuclear volume response of
human peripheral T-lymphocytes in aniosmotic media are presented. This
response was measured in both hypo- and hyperosmotic conditions for two
different media (Na+ and K+ media), as a function of time (0 < t < 6 minutes).
The total cell volume response depends on these parameters. Since the volume
regulatory phase in hypoosmotic medium is not observed in hyperosmotic
medium and the dominant ion in the hypoosmotic medium determines the
nature of the volume regulation, we expect the nuclear volume response to
depend also on these parameters.

The first step was to assess if, under various aniosmotic conditions, a
nuclear volume response could be observed at all. Furthermore, in this pilot
experiment, the results of the fluorescence microscopy and the flowcytometry
have been compared.

We prepared two aniosmotic solutions (hyperosmotic Na+ medium with
Π0/Π = 0.8 and hypoosmotic Na+ medium with Π0/Π = 1.4) and isoosmotic Na+

medium (Π0 = 285 mOsm/l). Freshly isolated lymphocytes were stained as
described in the previous section, and resuspended in the isoosmotic- and the
two aniosmotic media. After 15 minutes, cells were introduced into the
flowcytometer and the nuclear diameter was measured. This procedure was
repeated 4 times for all media. The nuclear diameter in isoosmotic medium
remains constant over a long period of time. The results are shown in table 1.

        ΠΠΠΠ0/ΠΠΠΠ

0.8 1.4

V/V0
FCM 0.77

(0.02)
1.07
(0.02)

FM 0.7
(0.1)

1.3
(0.3)

Table 1: The nuclear volume response after resuspension of T-lymphocytes in a



hyperosmotic -  and hypoosmotic Na+ medium, measured by fluorescence microscopy (FM)
and flowcytometry (FCM). The FCM data are the average of 4 independent measurements
per medium. The FM data are based on the measurement of 80 nuclei per medium. The
numbers in brackets are standard deviations.

The fluorescence microscopy data are also tabulated in table 1; 5 minutes
after resuspension the cells were placed under the microscope and
photographed. The nuclei appeared to be round. In all cases the diameters of 80
nuclei were measured.

A nuclear volume response is unambiguously observed, both by pulse
width flowcytometry analysis and by fluorescence microscopy. Since
flowcytometry allows analysis of much more cells than fluorescence
microscopy the standard deviation on flowcytometry results is much smaller
than those for the fluorescence microscopy. Therefore, in the following only
flowcytometry has been applied to obtain the nuclear volume.

Next, the total cell volume response and the nuclear volume response
were measured simultaneously as a function of time. Four aniosmotic
solutions were prepared; two K+ - and two Na+ media, both with Π0/Π = 0.5 and
Π0/Π = 1.5 respectively, and isoosmotic K+ and Na+ media. A freshly isolated
pool of lymphocytes was divided in two parts. The first part was used to
measure the total cell volume response, whereas the second part was used to
measure the nuclear volume response (by means of coulter counter and
flowcytometry respectively). Both experiments were repeated four times for all
the four aniosmotic media and the two isoosmotic media. The averaged results
are shown in figure 3a-d.

First we note that the behaviour of the total cell volume response of the T-
lymphocytes is as expected. In hyperosmotic medium the volume decreases
fast to an end value. After this fast response no further volume changes occur
(coulter counter measurements at t = 30 minutes also reveal no further volume
change, data not shown). The total cell volume response in hypoosmotic
medium clearly shows the two steps. A fast increase in volume is followed by
the volume regulatory phase. The decrease in volume in Na+ medium is
somewhat slow compared to experiments reported in literature [5], but
eventually (after ± 50 minutes) the volume returns to the initial isoosmotic
value (data not shown).

The measured nuclear response, under the four different aniosmotic
conditions, shows resemblance to the total cell volume response. In both K+ -
and Na+ hyperosmotic medium the  nuclear volume reaches a plateau after ±1
minute but the relative volume decrease of the nucleus is much less than the
total cell volume decrease (Na+ medium: [V/V0]nucleus ~ 0.85 versus [V/V0]cell ~
0.6; K+ medium: [V/V0]nucleus ~ 0.9 versus [V/V0]cell ~ 0.5). Furthermore it can
be seen from figure 3b that in hyperosmotic K+ medium the nucleus shows a
tendency to increase in volume for t > 3 minutes.
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Figure 3a: The total cell volume response and the nuclear volume response as a function of
time, after resuspension of cells at t = 0 minutes; K+ medium, Π0/Π = 1.5. The error bars
indicate the standard deviation of 4 independent measurements
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Figure 3b: The total cell volume response and the nuclear volume response as a function of
time, after resuspension of cells at t = 0 minutes; K+ medium, Π0/Π = 0.5. The error bars
indicate the standard deviation of 4 independent measurements

The nuclear volume response under hypoosmotic conditions is much
more pronounced. The fast increase in volume, followed by a volume regulatory
phase, is observed in both hypoosmotic media. The first part of the increase in
nuclear volume (0 < t < 2 minutes) is much slower (order of minutes) with
respect to the total cell volume (order of seconds). After ±2 minutes in K+

medium the rate of volume increase of the total cell volume and the nuclear



volume are approximately the same. For longer times the nuclear volume
seems to reach a plateau value, whereas the total cell volume continues to
increase.

On the other hand, in hypoosmotic Na+ medium the increase in nuclear
volume is followed by a very slow (that is, slower then the total cell volume)
decrease in volume.
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Figure 3c: The total cell volume response and the nuclear volume response as a function of
time, after resuspension of cells at t = 0 minutes; Na+ medium, Π0/Π = 1.5. The error bars
indicate the standard deviation of 4 independent measurements
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Figure 3d: The total cell volume response and the nuclear volume response as a function of
time, after resuspension of cells at t = 0 minutes; Na+ medium, Π0/Π = 0.5. The error bars
indicate the standard deviation of 4 independent measurements



2.4 DISCUSSION

The response of lymphocytes after suspension in aniosmotic media has
received much attention over the past years, especially the details of the volume
regulatory phase and its potential as a diagnostic tool are extensively studied [5,
6]. The response of intracellular structures, such as the nucleus, has barely
been investigated.

Relying on a physical (light scattering) model, we predicted a nuclear
response [3] although it is known that isolated nuclei, due to large pores in the
nuclear membrane, do not behave as osmometers [4]. We have demonstrated in
Table 1 and figure 3 that the nuclei of intact lymphocytes do  respond to several
aniosmotic conditions.

In this section the mechanism of the nuclear volume response will be
discussed. It will be shown that the response is a passive viscoelastic response,
and the role of the cytoskeleton in this response will be discussed. Finally, a
possible link between this work and the field of cellular mechanics and
cytoskeletal rheology is surveyed.

Across the cell membrane a chemical potential gradient is the driving
force of the fast total cell volume response. The nucleus of intact eukariotic cells
has large pores to allow the active transport of macromolecules [19]. As a
consequence, a chemical potential gradient across the nuclear membrane can
not exist. Another possible mechanism for a nuclear response is a
conformational change of chromatin in the nucleus due to variations in ion
concentration. The volume of isolated nuclei of rat liver cells varies with Mg++

concentrations. However, this effect is only observed for divalent cations [20, 21].
The nucleus of intact cells, like isolated nuclei, cannot respond in an active way
to variations in osmotic pressure, induced by K+ or Na+ concentration changes.

We suggested in earlier work that the fibrillar networks inside the cell
might regulate the changes in size of the nucleus [3] i.e. that the nuclear
response is induced via a mechanical link between the cell membrane and the
nuclear envelope, and that the cytoskeleton provides this mechanical link.

The main components of the cytoskeleton (microfilaments, microtubules
and intermediate filaments) occur in the cytoplasm of lymphocytes [22]. Dense
microfilamentous networks are observed underneath the plasma membrane
[22, 23, 24, 25] as well as in regions close to the nuclear membrane [22]. The
microtubules are usually separated from the plasma membrane by
microfilaments [25]. Microfilaments, microtubules and intermediate filaments
form a highly interconnected structural network; the cytoskeleton [26, 27]. The
microfilaments are joined to the plasma membrane [28, 29, 30] and it is shown
that the nuclear matrix is physically associated with the cytoskeleton [28, 31].
These observations suggest that a mechanical link between the cell membrane
and the nuclear membrane exists.

Next we consider the nuclear response in more detail by assuming that
the response is a linear viscoelastic response. Leukocytes are viscoelastic [32].
The relaxation of leukocytes after small deformations can be modelled by the
standard solid viscoelastic model [33, 34], where the leukocyte is assumed to be



an isotropic homogeneous spherical body. We have extended the standard solid
viscoelastic model with a Voigt element to simulate the retardation of the
nucleus. In appendix A this model is presented and the measurements are
fitted to this model. The result of this fit for Na+ hypoosmotic medium is shown
in figure A4. For t < 4 minutes the nuclear response can be fitted to this model
with one retardation time. This clearly indicates that the nuclear response may
be modelled by a passive viscoelastic response.

In phase I (see appendix A) the fast initial total cell volume response was
considered as a step function. It is known that this initial response is very fast;
within 20 seconds an end value is reached (see e.g. [5]). On the time scale of the
nuclear response (which is order of minutes) this fast initial response may be
regarded as a step function.

It is important to note that in figure A4 the nuclear response was fitted to
the model for t < t1 (= 1.8 minutes) yielding the model parameter τ.  With known
values for τ, τc and t1, the response for t > t1 is calculated. For t1 < t < 4 minutes
the model calculations agree with the measurements.

For t > 4 minutes the calculations decrease too fast. A possible explanation
for this discrepancy can be found in the suggested behaviour of actin filament
solutions. Actin filament solutions appear to be viscoelastic solids on one time
scale, but show liquid like behaviour over longer periods of time [32]. If actin
filaments play an important role in the mechanics of a cell, similar behaviour
might occur. In the study of leukocyte deformation and recovery two models
emerged [32]. On the one hand the above-mentioned solid like behaviour for
relative small deformations over a short time interval (t < ±200 seconds) and on
the other hand a viscous like behaviour for large deformations and long periods
of time. This difference might be explained by the behaviour of actin filament
solutions, as suggested by Elson [32].  The deviations from the proposed solid
like model, as observed in figure A4, may be explained by a change of the
cytoskeleton from a solid like to a liquid like behaviour. Obviously, more detailed
studies to unravel these data are necessary.

In appendix A we noticed that the time steps in the measurement of the
total cell volume response are too long to allow for an accurate evaluation of the
response integral (equation A6). For the Na+ hypoosmotic medium this
response could be approximated by simple functions, allowing an analytical
solution of equation A6. This is not the case for the K+ hypoosmotic medium.
Therefore, in a preliminary experiment, we measured in the flowcytometer the
total cell volume response with the same time resolution as the nuclear
response. The cells were stained with cFDA (see Materials and Methods). From
these measurements it was concluded that the total cell volume response can
be measured accurately in the flowcytometer, after staining of the cells with
cFDA (data not shown). In the future we will focus on dual-staining techniques
to measure simultaneously the total cell volume response and the nuclear
response of each individual cell. These improvements will allow more accurate
analysis in terms of the proposed extended standard solid viscoelastic model.

The hyperosmotic data cannot be fitted by the proposed viscoelastic model
because one expects the end value [V/V0]cell and [V/V0]nucleus to be equal.
Obviously the nucleus resists further shrinkage beyond [V/V0]nucleus < 0.9 (see
figure 3). This nonlinear behaviour is probably caused by the increase in
density in the nucleus during the shrinking. In table 1 a hyperosmotic
response of 0.77 was measured for Π0/Π = 0.8, whereas in figure 3d a response



of 0.85 was obtained for Π0/Π = 0.5. These measurements were performed on T-
lymphocytes from different donors. The difference in the results is probably due
to donor variability.

 A complete three dimensional 'concentric sphere Lamb model' in
combination with high resolution measurements, should permit detailed
analysis in terms of macroscopic rheological properties. This will result in
finding ki and µi for both the cytoplasm and the nucleus. It is our opinion that
these macroscopic properties can then be combined with microscopic theories,
such as Nossal's study of the elasticity of cytoskeletal networks [35].
Experiments with cytochalasin D suggest that the deformability of lymphocytes
is mainly determined by the nucleus [32]. In our experiment however,
cytochalasin D or other cytochalasins, would have a drastic effect on the
nuclear response since cytochalasins completely disrupt the cytoskeleton [36,
37].

From in vitro studies much is known about the polymerisation of actin,
the rheological properties of actin gels and the influence of numerous chemical
agents on these properties (e.g.[ 38, 39, 40]. The translation of this knowledge to
the observed in vivo effects of e.g. cytochalasin is still not clear [40]. The type of
experiments and data analysis as described in this work may serve as a
suitable test system to assemble the data on isolated cytoskeletal components
and the observed in vivo effects.

2.5 CONCLUSIONS

In this paper we present both theory and experimental techniques to study
the dynamical behaviour of osmotically active lymphocytes.

In contrast to the general notion that the nuclei of lymphocytes do not
respond to aniosmotic conditions, we predicted a definite response of the nuclei.
The data presented here unambiguously support this view. We have shown
that the nuclear response is a complex function of time and is very sensitive to
the aniosmotic environment.

A linear viscoelastic model is presented to interpret our measurements.
This extension to the standard solid viscoelastic model regards the nuclear
response as a passive response which is induced by a mechanical link between
the cellular- and the nuclear membrane. We suggest that the cytoskeleton
provides this mechanical link. Our model is well suited to describe the observed
response.

We believe that our measurements can provide knowledge on rheological
properties of the nucleus and the cytoskeleton in vivo that is of crucial
importance to understand cellular mechanics.
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Appendix A
Fitting of the data to an extended standard solid viscoelastic model

The relaxation of leukocytes after small deformations can be modelled by



the standard solid viscoelastic model (see figure A1). The exact 3-dimensional
solution of this model for isotropic, homogeneous spheres is given by Lamb [41].
This 'Lamb model' was applied to describe the retardation of leukocytes after a
specific load history [33, 34].
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Figure A1: The standard solid viscoelastic model; k1 and k2 are resistive elements and µ is
a capacitative element.
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Figure A2: The extended standard solid viscoelastic model; r1 models the nuclear volume
and r2 the total cell volume; ki are resistive elements and µi are capacitative elements.

We have extended this model with a Voigt element to describe the
retardation of the nucleus, see figure A2. Systems with resistive and
capacitative elements in them may be fitted by a variety of models. Our model is
a direct extension of the standard model, that allows for a retardation of the
nuclear volume and preserves the total volume relaxation and retardation
properties of the standard model.

Here, r1 mimics the nuclear volume and r2 the total cell volume, F is a
force (the osmotic pressure) to which r1 and r2 respond. The response in r1 and
r2, due to a change in F, can be calculated from the model in figure A2. We
shall take a different approach, compatible with the idea that the nuclear
volume response is induced by the total cell volume response. At time t = 0 F
changes instantaneously to another constant value (step function in F). This
results in a change of r2 which then induces a change in r1. We shall calculate



the response r1(t) as a function of the stimulus r2(t).

Considering equilibrium of forces at point P in figure A2:

k3 (r2 - r1) = k2r1 + µ2

dr1

dt  
, [A1]

and taking the Laplace transform of the resulting differential equation, one
finds for R1(p) and R2(p), the Laplace transforms of r1(t) and r2(t),

R1(p)
R2(p)

= K
1

1 + pτ 
,

[A2]

with K =
k3

k2 + k3
andτ =

µ2

k2 + k3 
.

J(p), the Laplace transform of the step response function J(t), is [42]:

J(p)=
R1(p)
pR2(p) 

. [A3]

Inverse Laplace transformation gives

J(t) = K(1 - e
-t

τ)H(t), [A4]

with H(t) the Heaviside step function. The corresponding response r1(t) is

r1(t) = r2(t')J(t-t')dt'
−∞

∞

  
, [A5]

with J(t) =
dJ(t)

dt   
.

The response of a lymphocyte to aniosmotic conditions is isotropic,
therefore it is assumed that a 1-dimensional model is sufficient to describe the
deformation (i.e. the volume changes). In analogy with figure A2 and equations
A2 - A5, the nuclear volume response is described with one retardation time
and it is assumed that K = 1:

[( V(t)
V(0)

)N - 1] = [(V(t')
V(0)

)cell - 1]JN(t-t')dt'
-∞

∞

[A6]

and

JN(t) = (1 - e
-t

τ)  . [A7]

Since K = 1, VN/Vcell is constant for t -> ∞, independent of the osmolarity of the



solution, in agreement with Sloot et al. [3]. This volume ratio is approximately
0.5 [2, 32, 10].

If [V(t)/V(0)]cell is accurately known, [V(t)/V(0)]N can be calculated from
equation A6 and fitted to the measured data. However, from figure 3 it is
obvious that the time step between two subsequent measurements of
[V(t)/V(0)]cell is too large to allow for accurate numeric evaluation of equation
A6. Therefore the total cell volume response is approximated by an analytical
expression and the integral A6 can then be evaluated. Only the response in
hypoosmotic Na+ medium is further analysed.

Dividing the total cell volume response in two phases we obtain (see figure
A3):
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Figure A3: The total cell volume response for the hypoosmotic Na+  medium and the
approximation of this response. Phase I is a Heaviside step function; phase II is an
exponential decay.

phase I: The fast initial response is approximated by (Π0/Π−1)H(t), where it is
assumed that the fast increase in volume is described by the Boyle van 't Hoff
relation, with the volume of the "dry mass" (the b value) set to zero [3].
phase II: The volume regulatory phase is approximated by an exponential
decay:

(
Π0

Π
− 1)e-(t-t1)/τ c.H(t-t1),

with t1 = 1.8 minutes and τc = 7.1 minutes. Substituting this approximation of
[V(t)/V(0)]cell in equation A6 gives:



(
Π0

Π
− 1)(1 − e

-t/τ
) for 0 < t < t1 , and [A8.1]

[( V(t)
V(0)

)N - 1] =

(
Π0

Π
- 1)[ e

-(t-t1)/τ - e
-t/τ

+
τc

τc - τ
(e-(t-t1)/τ c- e

-(t-t1)/τ)]

 
, [A8.2]

for t > t1.

The measured [(V(t)/V(0))N - 1] data for 0 < t < t1 (see figure 3c) are fitted with a
least squares method to equation A8.1, yielding τ = 1.0 minute. With known
values for τ, τc and t1, the response for t > t1 can be calculated from equation
A8.2. The result of the fit for t < t1 and the calculations for t > t1 are depicted in
figure A4.
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Figure A4: The measured nuclear volume response in hypoosmotic Na+ medium and the
fitted response; t1=1.75 minute, τc=7.1 minute and τ=1.0 minute.
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Another face of Lorenz-Mie scattering:
monodisperse distributions of spheres produce

Lissajous like patterns

ABSTRACT

The complete scattering matrix S  of spheres was measured in a flowcytometer. The
experimental equipment allows simultaneous detection of two scattering matrix elements
for every sphere in the distribution. Two parameter scatterplots with x- and y- co-ordinates
determined by the S11 + Sij and S11 - Sij values are measured. Samples of spheres with very
narrow size distributions were analysed with a flowcytometer and produced unexpected two
parameter scatterplots. Instead of compact distributions we observed Lissajous-like loops.
Simulation of the scatterplots, using Lorenz-Mie theory, shows that these loops are not due to
experimental errors, but due to true Lorenz-Mie scattering. We show that the loops originate
from the sensitivity of the scattered field on the radius of the spheres. This work
demonstrates that the interpretation of rare events and hidden features in flowcytometry
needs reconsideration.

3.1 INTRODUCTION

The problem of scattering of electromagnetic plane waves by an isotropic,
homogeneous sphere of arbitrary size and refractive index was solved in 1890
by Lorenz [1]. Eighteen years later Mie, independent of Lorenz, arrived at the
same, exact, analytical solution [2]. An excellent historical account of these
important results can be found in the proceedings of the Ludvig V. Lorenz
session of the Optical Particle Sizing conference 1990 [3]. The mathematical
richness of the formula is amazing and inspired many researchers to probe in
still more detail the (differential) cross sections as a function of the radius or
the refractive index of the sphere, or as a function of the wavelength of the
incident light. The advent of modern computers and the development of
efficient algorithms to calculate the complex functions appearing in the
Lorenz-Mie scattering formula stimulated these efforts even more.

The Lorenz-Mie scattering formula posses some remarkable properties,
most of which were demonstrated in scattering experiments. Well-known
examples are the interference and ripple structure of the extinction cross
section (e.g. [4]), glare points (e.g. [5]), or rainbows and glories (e.g. [6,7]).
Despite the fact that the Lorenz-Mie solution is known for over a century, active
research to the wealth of physically intriguing phenomena contained in
Lorenz-Mie scattering continues. For instance, the internal electric field in the
sphere receives more and more attention (e.g. [8]).



Lorenz-Mie scattering comes in many disguises. Thurn and Kiefer
measured Raman spectra from optically levitated glass- and liquid spheres
and observed a ripple structure superimposed on the bulk Raman spectrum [9].
The ripples proved to be due to structural resonances of the internal electric
field, as could be demonstrated with the Lorenz-Mie theory. These structural
resonance features could also be detected in stimulated Raman scattering from
individual liquid droplets [10]. Tzeng et al. observed laser emission from small
droplets at Lorenz-Mie resonance wavelengths [11]. These three effects are all
due to the enhancement of the internal field intensity at a structural
resonance.

This paper reports on yet another face of Lorenz-Mie scattering, which is
based on the extreme sensitivity of the scattered field on the radius of the
sphere. We measure the total scattering matrix of spheres with a narrow size
distribution (∆r/r ~ 1 %, with r the radius of the sphere) in a dedicated
flowcytometer (FCM). This experimental equipment allows us to measure
S11+Sij and S11-Sij (ij = 12, 33, 34, S is the 4×4 scattering matrix) simultaneously
for every single sphere in the distribution. Flowcytometry data is usually
analysed by generating a N-dimensional histogram (N being the number of
observables per particle, here N = 2) from the experimental data and trying to
identify different data clusters in the histogram with different particles in the
sample [12]. At first sight a distribution of homogeneous spheres with a very
narrow Gaussian size distribution is expected to produce a single, narrow,
Gaussian-like 2-dimensional histogram. However, it turned out that the
measured histograms are all but Gaussian.

Here we will explain that this effect is not an experimental error, but due
to true Lorenz-Mie scattering. We calculate the 2-dimensional histograms and
obtain agreement between theory and experiment. In section 3.2 the theoretical
and experimental background is shortly addressed, the results are presented
in section 3.3 and discussed in section 3.4. Emphasis will be on the agreement
between theory and experiment, but the consequences of this work for routine
FCM experiments are also shortly pointed out. In section 3.5 conclusions are
drawn.

3.2 MATERIALS AND METHODS

3.2.1             Flowcytometry

Flowcytometry [12] is an important technique in the biological sciences to
identify and separate various populations of e.g. white bloodcells.
Hydrodynamic focusing forces the cells to flow through a focused laser beam
one by one. Usually the cells are stained with fluorescent probes and the
fluorescence of a cell in the laser beam is measured. Furthermore, the forward
-  and sideward scattered light is used as an important additional parameter
for the analysis. In this way we can measure several fluorescence and elastic
light scattering (ELS) signals for each cell in the sample.
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Figure 1: Schematic drawing of the optical system of the flowcytometer. The laser beam is
focused by lens l1 on a cell, flowing through the cuvet. The incident beam is polarised by
means of the polariser P. The intensity of the forward scattered light is measured by detector
d1 , the sideward scattered light is focused by lens l2 on detectors d2  and d3 , bs  is a
beamsplitter. The side scattering signals are passed through two different analyzers A1 and
A2.
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Figure 2: An example of a two parameter scatterplot for a large number of polystyrene
spheres with a mean diameter of 1.98 µm, measured with a flowcytometer. The wavelength
was 0.6328 µm. Every dot represents a single sphere, the value of the x-coordinate is the
intensity of the forward scattered light, the value of the y-coordinate is the intensity of the
sideward scattered light. The intensities are in arbitrary units.

Sloot et al. argue that in many research- and clinical applications staining
of cells is undesirable [13]. As a consequence a complete characterisation of the
sample must be obtained solely on the basis of ELS measurements. We expect
that this is only possible by measuring suitable combinations of scattering
matrix elements in the three principal FCM directions (forward-, sideward-,
and backward scattered light [13]). The depolarisation experiments of de
Grooth et al. [14] to distinguish between neutrophilic- and eosinophilic
granulocytes are a good illustration of this point.

We developed optics to measure the total scattering matrix in a
flowcytometer and showed that quantitative determination of the scattering
matrix elements of particles in flow is possible [13,15]. The measuring principle
was straightforward: a polarizer P was situated in the incident beam and an
analyzer A just before a detector in one of the principal directions. The matrix
elements are obtained by measuring scattered intensities for various P-A
combinations. We have extended the optics to allow simultaneous
measurement of two P-A combinations in the side scattering direction, see
figure 1.



A laser beam (λ = 0.6328 µm) is focused by the circular lens l1 on the cells
flowing through the cuvet, and polarised by the polarizer P. The beam waist
radius in the focal point is 12.5 µm. After P the incident beam is either linearly
of circularly polarised. The forward scattered light is detected by a silicon
detector d1. Lens l2, a microscope objective (20 ×, NA = 0.4), collects the scattered
light for 72.5˚ < θ < 107.5˚, with θ the usual scattering angle. The sideward
scattered light is divided in two beams by beamsplitter bs. The beams are
directed onto different analyzers (A1 and A2) and the intensity after the
analyzers is measured by the photomultipliers d2 and d3. The measuring
principle is the same as described by Sloot et al. [13], however here it is possible
to measure a P-A1 and P-A2 combination for every single cell. This allows a
direct measurement of single elements of the scattering matrix. Details of this
equipment, and its application to measure the scattering matrix of white
bloodcells will be published elsewhere.

3.2.2             Data handling

Our equipment measures three parameters for each cell: the forward
scattered light and two P-A intensities in the sideward direction. The analog
signals are digitised by 12 bit A/D converters and stored in memory of the
controlling computer. In every run 4096 particles are measured, the results are
stored on harddisk for off-line analysis.

The data are plotted in two parameter scatterplots in which each cell is
represented by a dot in a x-y plot. The x- and y- co-ordinates are determined by
one of the three measured parameters. Figure 2 gives an example of a
scatterplot for polystyrene spheres with a mean diameter of 1.98 µm. The
forward scattering is drawn along the x-axis and one side scattering signal is
drawn along the y-axis. The spheres appear as a cloud of points in the
scatterplot.

The shape of the data cloud in the scatterplots and the physical
interpretation are the main items of this paper.

3.2.3             Polystyrene spheres

The experiments were performed with polystyrene microspheres from
Duke Scientific.* The diameters of the spheres are 1.98±0.05 µm, and 7.04±0.05
µm.

In addition to the diameter of the sphere, Lorenz-Mie calculations require
the relative refractive index of the sphere. The refractive index of distilled
water, in which the spheres are suspended, and polystyrene can be calculated
from [16]:

nwater= n0 +
n2

λ
2 +

n4

λ
4
 
, [1]

with λ in micrometers, and n0 = 1.3236, n2 = 3.35×10-3, and n4 = -3.45×10-5 for
water, and n0 = 1.5711, n2 = 4.82×10-3, and n4 = 6.78×10-4 for polystyrene. In our

* Duke Scientific Polystyrene microspheres 1135D. San Antonio Palo Alto CA 94303



case λ = 0.6328 µm, which gives nwater = 1.3318 and npolystyrene = 1.5874. In the
calculations we will use

nrelative = npolystyrene / nwater = 1.192,

and diameters as reported above.

3.2.4             Simulation of the scatterplots

To simulate the two parameter scatterplots the intensities measured by
the sideward detectors must be calculated. For spheres, using the P-A
combinations as described by Sloot et al., the intensity of the scattered light after
analyzer A1 and A2 is [13]

IA = I0 C (S11 ± Sij), ij = 12, 33, or 34, [2]

with I0 the intensity of the laser beam, C an apparatus constant, and S the 4×4
scattering matrix of the sphere. The total intensity on the detector is obtained by
integrating over the full solid angle dΩ defined by the field of view of the
objective,

I det= I A dω
dΩ

= I 0 C S 11dω
dΩ

± S i j dω
dΩ

≡ I 0 C s 11± s i j  
, [3]

with sij an integrated matrix element.
To calculate the scattering matrix of a sphere in a focused laser beam, the

traditional Lorenz-Mie theory cannot be applied. Here we must rely on the
generalised Lorenz-Mie theory which describes the scattering of a sphere in a
Gaussian beam [17]. The gn coefficients appearing in this theory are calculated
using the localised interpretation [18,19]. We use the same programs as
described in reference 13. The beamwaist radius of the Gaussian beam is 12.5
µm (see section 3.2.1). The particles are located in the focal point of the beam.

The procedure to generate a simulated scatterplot is as follows. First we
calculate the scattering matrix S(θ) as a function of the scattering angle θ
(resolution dθ = 0.1˚) for a sphere with relative refractive index 1.192, diameter
d, wavelength of the incident light 0.6328 µm, and the appropriate beamwaist
diameter. Then the integrated scattering elements sij are calculated, as
described in reference 13. The sij are calculated for 500 different values of d in
the range

dmean - 4σd ≤ d ≤ dmean + 4σd , [4]

dmean is the mean diameter in the distribution and σd the standard deviation
(assuming a normal distribution in diameter). This results in arrays of sij(di),
with discrete values di as defined above. For every di the sij(di) determine co-
ordinates of a dot in the two parameter scatterplot, and the total scatterplot is
generated by drawing dots for every value of di. To simulate the relative
occurrence of spheres with diameter di in the distribution, the radius of the
dots in the scatterplot is weighted with a Gaussian function:



rdot= rmaxExp -
(di - dm)

2

2σd

2

 

, [5]

rdot is the radius of the dot for a sphere with diameter di, rmax is the maximum
radius of dots in the simulated scatterplots.

3.2.5             Comparison between theory and experiment

The result of the calculations is a set (s11, s12, s33, s34)i, i runs over all the
values of d. The measurements give arrays of detector signals, as in formula 3.
We need an independent scaling for both theory and experiment in order to
compare the two. The experimental results are scaled such that the apparatus
constants I0 and C are removed and the experimental scatterplots are entirely
described in terms of scattering matrix elements. The scaling factor for the
experimental results is

scaleexp= 1
2p

p

∑
i = 1

(I A1
i

+ I A2
i

) = 1
p

I 0C
p

∑
i = 1

s 11
i

 
, [6]

with p the total number of measured spheres, and IA1 and IA2 the intensities of
the scattered light after analyzer A1 and A2. Dividing the measurements by
this factor results in two parameters for each measured sphere, independent of
I0 and C:

(1
p

p

∑
i = 1

s 11
i )

-1
(s 11± s i j)

 
. [7]

These normalised experimental parameters are used as (x,y) co-ordinates in
the scatterplots.

The term
1
p

p

∑
i = 1

s 11
i

is the weighted mean s11 of the distribution of spheres. Assuming a normal
distribution in diameter, this term is easily calculated from theory:

s 11= 1

σd 2π
0

∞

Exp[-
(d - dmean)

2

2σd

2
] s 11(d) δd

 
. [8]

This integral is approximated by numerical evaluation for dmean - 4σd ≤ d ≤
dmean + 4σd, using Simpson's rule. The calculated integrated scattering
matrix elements are divided by the value of this integral. After scaling, both
theory and experiment can be compared. In the sequel of this paper the



scatterplots of experimental and theoretical data are always scaled
accordingly.

3.3 RESULTS

This section presents results of measurements and calculations of two
parameter scatterplots of spheres. The normalised experimental and
theoretical results are drawn in one figure. The x-axis always gives the s11+sij
signal, and the y-axis the s11-sij signal, with ij as before. The dots in the
theoretical curves are drawn according to equation 5. The small inset in the
figures shows the theoretical curve once more, without scaling of the dot
diameters.

Figure 3 shows the (s11+s12, s11-s12) scatterplot for the 7.04 µm spheres; the
(s11+s33, s11-s33) and (s11+s34, s11-s34) scatterplot for this sample are drawn in
figure 4 and 5 respectively. Finally the (s11+s12, s11-s12) scatterplot for the 1.98
µm spheres is drawn in figure 6.
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Figure 3: The normalised experimental and theoretical (s11+s12, s11-s12) scatterplot for
polystyrene spheres with a mean diameter of 7.04 µm. The horizontal axes is the s11+s12
signal in the sideward direction, the vertical axes is the s11-s12 signal in the sideward
direction. The inset shows the theoretical curve only, without scaling of the dot diameter.
The arrow represents the starting point (di = dmean - 4σd) and the loop direction, as di grows,
of the theoretical curve.
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Figure 4: Same as figure 3, but now for the (s11+s33, s11-s33) scatterplot.
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Figure 5: Same as figure 3, but now for the (s11+s34, s11-s34) scatterplot.
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Figure 6: The normalised experimental and theoretical (s11+s12, s11-s12) scatterplot for
polystyrene spheres with a mean diameter of 1.98 µm. The horizontal axes is the s11+s12
signal in the sideward direction, the vertical axes is the s11-s12 signal in the sideward
direction.



3.4 DISCUSSION

Figures 3, 4, and 5 show the three normalised experimental and
theoretical scatterplots for the 7.04 µm spheres. All three experimental
scatterplots are loops, most obvious for the (s11+s12, s11-s12) and the (s11+s34, s11-
s34) scatterplot.

The occurrence of loops in the scatterplots depends on the diameter of the
spheres. Figure 6 is the (s11+s12, s11-s12) scatterplot for the 1.98 µm sphere. The
experimental scatterplot is a dense distribution of points, in agreement with
the theoretical results. The same holds for the other two scatterplots (data not
shown).

The form and position of the normalised theoretical scatterplots for the
7.04 µm spheres compare very well with the experimental results. The
agreement between theory and experiment for the (s11+s12, s11-s12) scatterplot
is very good. The other two scatterplots only show a quantitative agreement
between the theoretical and experimental results. Nevertheless, this
demonstrates that the observed loops in the experimental plots are due to
Lorenz-Mie scattering, and cannot be attributed to optical misalignments or
other experimental errors.

Failure of a quantitative agreement  between theory and experiment for
the (s11+s34, s11-s34) scatterplot is probably due to the quality of the circular
analyzers which are used to measure the s34 terms. Without going into details
here, imperfect circular analyzers will cause a mixing of the s33 and s34 terms.
This effect is still under investigation.

Theory and experiment can be compared on still another aspect. In the
theory a normal distribution of spherical diameters was assumed, and this
was simulated by weighting the radius of the dots in the scatterplot with a
Gaussian function (see equation 5). The theoretical curves nicely show the
distribution of the spherical diameter. However, as is obvious from the
scatterplots for the 7.04 µm sphere, this distribution is in error with the
experimental results. The experimental scatterplots have most points in the
lower corner of the loops, whereas the theoretical results show that most points
should show up along a long side of the loops. A closer look at the theoretical
curves shows that this error between theory and experiment can be explained
by assuming that the actual mean diameter of the spheres is somewhat larger
than 7.04 µm, the value provided by the supplier of the spheres. The small inset
in figures 3, 4, and 5 shows the theoretical curves, without scaling of the dot
radius, and the starting point and loop direction of the curves. The starting
point is for d = dmean - 4σd, and for increasing diameter the curve loops in the
direction of the arrow. The (s11+s12, s11-s12) scatterplot loops in clockwise
direction, whereas the other two curves loop in counter clockwise direction. If
the mean diameter of the sphere is increased, the position of the dots with large
diameter in the theoretical curves shifts in the loop direction. Therefore, if the
mean diameter of the sphere is increased to 7.08 µm, all three theoretical
scatterplots reproduce the measured distribution correctly. Furthermore, we
measured the scatterplots for a slightly larger wavelength of the incident light
(λ = 0.647 µm). In that case one expects that the same experimental loops occur,
but with a small shift of the distribution of the data points in the loop. In all



three scatterplots we observed this shift of the data points. The direction and
magnitude of the shift are in agreement with calculated values (data not
shown).

The origin of the loops in the scatterplots can be understood by examining
the integrated matrix elements as a function of the diameter of the sphere.
Figure 7 plots s11, s12, s33, and s34 as a function of the diameter of the sphere, for
d as in equation 4, and dmean is 7.04 µm. The matrix elements posses an
extreme sensitivity on the diameter of the sphere. For 6.84 µm < d < 7.24 µm, s11
goes through three minima and maxima. The amplitude of the oscillations is
approximately 20% of the mean value of s11. The other integrated scattering
matrix elements have the same properties, although the oscillations are not in
phase with the s11 oscillations. However, for spheres with 1.78 µm < d < 2.18 µm
the sij elements increase monotonously with increasing d (data not shown).

In the diameter range of figure 7 the integrated scattering functions are
almost periodic. The s11 strongly resembles a sine function. The other (quasi)
periodic scattering matrix elements can be viewed as a Fourier series of sine
and cosine functions. Fourier transformation of the data in figure 7 supports
this view. For all four scattering matrix elements the absolute value of the
Fourier transform peaks around the same ground frequency ν0, and around
higher harmonics kν0 (with k an integer > 1). The amplitude of the third and
higher harmonics are negligible compared to the amplitude of the ground
frequency (data not shown).
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Figure 7: The integrated scattering matrix elements, as a function of the diameter d of the
sphere; d is in micrometer, the sij are in arbitrary units; the solid line is s11; the dotted line
is s12; the dashed line is s33; the dashed-dotted line is s34.
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Figure 8: The S11 element as a function of the scattering angle θ, for d = 1.98 µm. The grey
area denotes the field of view of the side scattering detectors.

When constructing the theoretical scatterplot, we actually draw a
parametric plot, with  the diameter of the sphere d as the only parameter. The
functions on the x - and y-axes of the scatterplot are approximately
combinations of sines and cosines of some ground frequency and higher
harmonics. Therefore the scatterplots can be viewed as Lissajous plots. The
oscillations in the integrated matrix elements, which are not in phase with
each other, give rise to the Lissajous loops in the two parameter scatterplots.
Note that in principle it is possible to measure more complicated scatterplots,
with e.g. double loops (a ground frequency oscillation in one direction and a
first harmonic oscillation in the other direction). Actually, in one instance we
measured scatterplots with such double loops. We are still working on the
interpretation of these experiments.
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Figure 9: The S11 element as a function of the scattering angle θ, for d = 7.04 µm. The grey
area denotes the field of view of the side scattering detectors.

Figures 8 and 9 show S11 as a function of the scattering angle θ, for d is
1.98 µm and 7.04 µm respectively. The grey area denotes the field of view of the
side scattering detectors. If the diameter of the sphere is increased, the minima
and maxima in S11(θ) gradually shift to the forward directions, and new



minima and maxima seem to originate from θ = 180˚ [4]. Slightly increasing the
size of the 7.04 µm sphere results in entrance and exit of local minima and
maxima in the field of view of the detectors, and changes in the amplitude of
the minima and maxima, giving rise to the oscillations in the curves of the
integrated matrix elements as a function of the diameter of the sphere (figure
7). The distance between the local minima and maxima in the S11(θ) curve for
the 1.98 µm sphere is too large to induce strong oscillations in the integrated
matrix elements after small changes of the diameter of the sphere.

Measurement of polarised light scattering in FCM is by no means a
routine procedure yet, nevertheless our results contain an important warning.
It is common practice in FCM to measure a side scattering signal. Since the
incident light is always linearly polarised (most lasers emit light which is
linearly polarised, perpendicular to the scattering plane), the intensity on the
side scattering detectors is always a combination of s11 and s12. Therefore a
narrow monodisperse distribution of spheres can produce bimodal histograms
in the side scattering channels (this can be seen in figure 3 for the s11 + s12
signal). Especially if spheres are applied to calibrate the instrument, extra care
should be taken, and small spheres should be used to avoid the above
mentioned problems. Furthermore, interpretation of rare events and hidden
distributions in scatterplots requires careful analysis in view of the above
mentioned effect. We are currently investigating to which extent the Lissajous
loops can be expected in scatterplots from biological particles.

3.5 CONCLUSIONS

This report shows yet another face of Lorenz-Mie scattering; unexpected,
Lissajous-like loops in two parameter scatterplots of spheres, as obtained by
flowcytometry. The complete scattering matrix of spheres, with a very narrow
distribution in size, was measured with a dedicated flowcytometer. The
measured two parameter scatterplots can contain unexpected, Lissajous-like
loops. By simulating these scatterplots, it was shown that the experimental
results are true Lorenz-Mie scattering phenomena, and not due to
experimental errors. The occurrence of loops in the scatterplots is dependent
on the diameter of the spheres. It was shown that  oscillations in the integrated
matrix elements, as a function of the diameter of the sphere, form the basis for
the Lissajous loops. These oscillations in their turn originate from the
interference structure in the differential scattering cross sections.

A consequence of this behaviour is the origin of bimodal histograms in the
side scattering channels, due to monodisperse samples. This will hamper the
interpretation of rare events and hidden distributions in the scatterplots.
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A parallel Conjugate Gradient method applied
to elastic light scattering simulations

ABSTRACT

We describe parallelization of a preconditioned Conjugate Gradient method for distributed
memory computer systems. The method is used to solve linear systems of equations
emerging from Elastic Light Scattering simulations. Based on a time complexity analysis,
the Conjugate Gradient method was implemented with a rowblock data decomposition on a
ring of transputers. The measured - and theoretically calculated execution times agree
within 5%. Finally convergence properties of the algorithm are investigated and the
suitability of a polynomial preconditioner is examined.

4.1 INTRODUCTION

Elastic Light Scattering (ELS) is a powerful non-destructive particle
detection and recognition technique, with important applications in diverse
fields such as astrophysics, biophysics, and environmental studies. Our goal is
to calculate ELS from small biological objects, specifically human white
bloodcells.

Many exact and approximate theories to calculate ELS from particles are
known [1, 2]. Nevertheless, important classes of particles fall outside the range
of these theories. This prompted much research in the field of light scattering
by arbitrary shaped particles [3]. The coupled dipole method, due to Purcell and
Pennypacker [4], is one method that in principle allows calculation of ELS from
any particle.

The computational most demanding part of the coupled dipole method is a
large set of linear equations that must be solved. Human white bloodcells [2]
give rise to matrices with dimensions of O(104) to O(106). To keep calculation
times within acceptable limits, a very efficient solver, implemented on a
powerful computer is required. We apply a Conjugate Gradient (CG) method,
implemented on a transputer network, to solve the system of equations.

This paper concentrates on parallelization of a CG method suited to our
application. After a brief description of the coupled dipole method of ELS in
section 4.2, section 4.3 gives a theoretical time complexity analysis of the CG
method for different parallelization strategies. Based on the results of section
4.3 the CG method was implemented on a bi-directional ring of transputers,
with a rowblock decomposition of the system matrix. Section 4.4 describes this
implementation, and section 4.5 presents performance measurements and



convergence behaviour of the method. The results are discussed in section 4.6
and some conclusions are presented in section 4.7.

4.2 THE APPLICATION

4.2.1             The coupled dipole method

In the coupled dipole method of ELS a particle is divided into N small
subvolumes called dipoles. Dipole i (i = 1,..,N) is located at position ri (r =
(x,y,z)T). An externally applied electric field E0(r) is incident on the particle. An
internal electric field E(ri) at the dipole sites, due to the external field and the
induced dipole fields is generated. The internal field is

E(ri ) = E0(ri ) + Fi, jE
j≠i

N

∑ (rj )

 
, [1]

where Fi,j is a known 3×3 matrix of complex numbers describing the electric
field at ri, radiated by a dipole located at rj. The field radiated by dipole j is
calculated by multiplying Fi,j with the electric field E(rj) at dipole j. Fi,j depends
on the relative refractive index of the particle, the wavelength of the incident
light and the geometry of the dipole positions. As soon as the internal field E(ri)
is known, the scattered field is easily calculated [4].

Equation 1 results in a system of N coupled linear equations for N
unknown fields, and can be formulated as a matrix equation

AE = E0  , [2]

where

E =
E(r1)
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E(rN )


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a1,1 � a1,N
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aN,1 � aN,N
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
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
 

, [3]

with ai,i = I (the 3×3 identity matrix) and ai,j = -Fi,j if i ≠ j. The vector E0 has the
same structure as E. The complex matrix A is referred to as the interaction
matrix. Equation 2 is a set of 3N equations of 3N unknowns (the 3 arising from
the 3 spatial dimensions). All numbers in equation 2 are complex. The 3N×3N
interaction matrix is a dense, diagonally dominant, symmetric matrix. For
human white bloodcells the number of dipoles N to model the particle lies in
the range O(104) to O(106) (see chapter 5 of this thesis). Calculation of the
internal electric fields at the dipole sites, that is to solve the system of equations
2 is the computational most demanding part of the coupled dipole method. In
the sequel we will address this problem in detail.



4.2.2             The Conjugate Gradient method

From a numerical point of view, the coupled dipole method boils down to
solving a very large system of linear equations Ax = b, with A a n×n complex
symmetric matrix, b a known complex vector and x the unknown complex
vector.

Solely the size of the system matrix forces the use of iterative methods. A
very powerful iterative method is the Conjugate Gradient (CG) method [5].
Usually this method is applied to systems with large banded matrices, like the
ones arising from discretisations of partial differential equations. Draine [6]
however showed that the CG method is also very well suited to solve linear
systems arising from the coupled dipole method. For instance, for a typical
small particle with 2320 dipoles (n = 6960) the CG method only needs 17
iterations to converge.

The original CG method of Hestenes and Stiefel [7] (the CGHS method in
Ashby's taxonomy [8], to which we will confirm ourselves) is only valid for
Hermitian positive definite matrices. Since the interaction matrix of the
Coupled dipole method is not Hermitian (but symmetric), CGHS cannot be
employed. We will use the PCGNR method, in the Orthomin implementation
(see reference [8] for details). The PCGNR method is suitable for any system
matrix [8]. The algorithm is shown below:

The PCGNR algorithm

Initialise: Choose a start vector x0 and put
k = 0
r0 = (b - Ax0) calculate the residual vector
s0 = M-1M-HAHr0 preconditioning
p0 = s0 the first direction vector

Iterate: while |rk| ≥ ε |b| iterate until the norm
of the residual
vector is small enough

    
αk =

(AHrk)
Hsk

(Apk)
H(Apk)

xk+1 = xk + akpk calculate new iterate
rk+1 = rk - ak(Apk) update residual vector
sk+1 = M-1M-HAHrk+1 preconditioning

    
βk =

(AHrk+1)
Hsk+1

(AHrk)
Hsk

pk+1 = sK+1 + bkpk calculate new direction vector
k = k + 1

stop xk is the solution of Ax = b

The number ε is the stopping criterion, and is set to the square root of the
machine precision. Since all implementations are in double precision (i.e. a 52



bit fraction) ε is set to 10-8. The vector rk is the residual vector of the k-th
iteration, the vector pk is the direction vector, and M is the preconditioning
matrix. The iterations stops if the norm of rk is smaller than the norm of b
multiplied by ε.

The purpose of preconditioning is to transform ill-conditioned system
matrices to a well-conditioned form, thus increasing the convergence rate of
the conjugate gradient method. The preconditioning matrix M  must
approximate the system matrix A as closely as possible but still allow a relative
easy calculation of the vector sk. A good preconditioner decreases the total
execution time of the conjugate gradient process. This means that a good
parallel preconditioner not only decreases the total number of floating-point
operations, but also possesses a high degree of parallelism. A good
preconditioner depends both on the system matrix and the parallel computer.
For instance, the incomplete Cholesky factorisation preconditioner [9] is very
successful on sequential computers, but performs not as good on vector- and
parallel computers.

Polynomial preconditioners [10] are very well suited for parallel
computers [11, 12], and experiments have shown that, implemented on a
distributed memory computer, they can be much more effective than
incomplete factorisation preconditioners [see e.g. 13]. Therefore we adopt the
concept of polynomial preconditioning and put

M−1 = γ iA
i

i=0

m

∑
 
. [4]

The choice of m and γi is topic of active research [e.g. 11,14], but is beyond the
scope of this paper. Here we concentrate on parallelization of the PCGNR
method. We take the von Neumann series as the polynomial preconditioners.

M−1 = Ni

i=0

m

∑ , [5]

where N = I - A.

4.3 TIME COMPLEXITY ANALYSIS

4.3.1             Introduction

The time complexity of several versions of the parallel PCGNR method is
derived and compared. The algorithm is parallelised by a data decomposition of
the system matrix. A comparison is made, based on the estimated execution
time of the parallel program Tpar as a function of the number of processors p
and the matrix dimension n, and the parameters τcalc , τstartup, and τcomm, the
time to perform one floating point operation, to startup a point-to-point



communication, and to send one byte between two processors after the
communication is started, respectively. In the following a concise summary of
the time complexity analysis will be presented. For details we refer to [15].

4.3.2             Decomposition

One iteration of the PCGNR algorithm6 contains 3 vector updates (xk+1,
rk+1, pk+1), 3 vector inner products ([(AHrk)H sk],  [(Apk)H (Apk)], [rk rk]), and
2 + 2m matrix vector products (AHrk, Apk, and 2m for the polynomial
preconditioning). Both the vector operations and the matrix vector product will
be executed in parallel.

The parallel vector routines are straightforward. The vectors are divided
in equal parts and assigned to the processors. The parallel vector update can be
performed completely in parallel. The parallel inner product requires a global
summation of the partial inner products which are calculated in parallel.

We have analysed three different decompositions of the matrix; the
rowblock -, grid -, and columnblock decomposition. [15]  Here we will only
summarise the results for the first two decompositions.

The rowblock decomposition is achieved by dividing A in blocks of rows,
with every block containing N/p or (N/p-1) consecutive rows, and assigning
one block to every processing element (  is the ceiling function). Note that in
our application A is symmetric so that AH is also decomposed in row-block. In
the grid decomposition the (square) matrix A is decomposed in p square blocks,
which are distributed among the processing elements.

The parallel matrix vector product (A × vector and AH × vector) for the
rowblock decomposition is shown schematically in figure 1.

1

2

3
  

-> 

 

;

 

1

2

3
 

× 

 

=> 

1
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3

Figure 1: the parallel matrix vector for a rowblock decomposed matrix, a "->" denotes a
communication, and a "=>" a calculation.

The argument vector must reside in memory of every processing element.
Therefore, before calculating the matrix vector product, every processing
element must gather the argument vector (a vector gather operation). The
result is already decomposed in the correct way for further calculations (inner
products, vector updates, or matrix vector products).

The parallel matrix vector product for the grid decomposition is drawn in
figure 2.

6 From here on we will calculate the time complexity of one iteration step of the PCGNR
algorithm. The initialization time is comparable to the time needed for one iteration
(due to the same number of matrix vector products). Therefore it is not necessary to
include it in the analysis. Furthermore, if the number of iterations becomes large, the
initialization time can be neglected compared to the total iteration time.
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Figure 2: the total parallel matrix vector product for a grid decomposed matrix, a "->"
denotes a communication, and a "=>" a calculation.

Now two communication routines are needed. The first communication
routine is a partial vector gather operation, the second is a partial vector
accumulate, followed by a scatter operation.

4.3.3             Topology

As a consequence of the data decomposition (parts of) the vectors and
scalars must be communicated between processors. In this section we
investigate two network topologies: a bidirectional ring and a square mesh with
wrap-around in one direction (a cylinder) with bidirectional links. The
rowblock decomposition is analysed on the ring, the grid decomposition is
considered in conjunction with the cylinder.

The parallel PCGNR with rowblock decomposition of the matrix contains
a vector gather operation and a complex accumulate operation (parallel inner
product). During the vector gather operation (see figure 1) every processor
receives from all other processors in the network a part of the vector, which is
subsequently stored. On the bidirectional ring this is achieved as follows:7
1) In the first step every processor sends its local part of the vector to the left
and the right processor and, at the same time, receives from the left and the
right processor their local part.
2) In the following steps, the parts received in a previous step, are passed on
from left to right and vice versa, and in parallel, parts coming from left and
right are received and stored. The complex accumulate operation is executed
similar, but now a complex number is sent.

The parallel PCGNR with grid decomposition of the matrix contains a
partial vector gather operation, a partial vector accumulate operation, and a
complex accumulate operation. The partial vector gather operation can be
performed by communicating the data vertically through the cylinder. The
accumulate operations are performed in two stages: first communication in
horizontal direction, followed by communication in vertical direction through
the cylinder. Details of these operations and derivations of execution times of
the two parallel versions of the PCGNR method can be found in [15].

Using these expressions, we can find approximate formula for the
efficiency ε of the parallel PCGNR for both the rowblock-ring - and the grid-
cylinder combination [15]:

ε =
Tseq

pTpar
≈ 1 + O

p

n




 + O

p

n






τcomm

τcalc
+ O

p2

n2







τstartup

τcalc











−1

 
. [6]

7 We assume that all bidirectional links can operate fully parallel, e.g. like transputer
links.



Equation 6 shows that deviations from ε  = 1 occur due to three sources: non-
parallel computations, communications, and communication startups. Let us
first concentrate on the term involving τcomm. This term can be identified with
the communication overhead fc defined by Fox et al.[16, section 3-5]. For a
problem dimension dp and a dimension of the complex computer dc Fox et al.
show that in general (in our notation)

fc =

constant

n2 p( )1 d p

τcomm

τcalc
if dc ≥ d p

p
(1 dc −1 d p ) constant

n2 p( )1 d p

τcomm

τcalc
if dc < d p












   

. [7]

Thus, for the row-block-ring combination (dp = 2 and dc = 1) fc is

fc = constant
p
n

τcomm
τcalc  

, [8]

which is in agreement with equation 6. However, for the grid-cylinder
combination (dc = 2) one would expect

fc = constant
p

n
τcomm
τcalc  

, [9]

which disagrees with our result. The reason for this is the implementation of
the partial vector accumulate. The first step of this operation cannot exploit the
full dimensionality of the network.

The second term in equation 6 is due to non-parallel computation (the grid
cylinder combination) or due to load imbalance (the rowblock-ring
combination) and has the same order of magnitude as the communication
overhead. The last term in the denominator describes the efficiency reduction
due to communication startup times. This term however is an order of
magnitude smaller than the previous two.

As long as τcalc, τcomm, and τstartup have the same order of magnitude, and
n >> p, the efficiency of the parallel PCGNR algorithm can be very close to
unity. In the next paragraph we will investigate this in more detail.

4.3.4             The hardware parameters

Our parallel computing system is a Meiko computing surface, consisting
of 64 T800 transputers, each with 4 Mb RAM, hosted by a Sun sparc
workstation. The configuration is described in more detail by Hoffmann and
Potma [17].

The communication times were measured by sending different sized
packets over the bidirectional links and measuring the total sending time.
Fitting of the measurements to a straight line resulted in τstartup = 13.3 µs, and



τcomm = 0.99 µs/byte.
The parameter τcalc  should not just incorporate the raw computing power

of the floating point unit of the transputer, but also the overheads due to
indexing and memory access. As a consequence it is virtually unachievable to
define one unique value for τcalc, since different operations, such as a single
addition, or a vector update, give rise to different overheads. Fortunately most
floating-point operations in the PCGNR algorithm take place in the matrix
vector products. Therefore we timed the complex matrix vector product,
including all overheads, and used these results to derive τcalc. This results in
τcalc = 1.62 µs/(floating-point operation) for double precision numbers.

With the experimental values for the system parameters a numerical
calculation of Tpar is possible. Comparison of Tpar  of the rowblock-ring and
grid-cylinder combination revealed that both parallelization strategies are
equivalent [15]. Depending on the exact values of n and p, one is faster than the
other. However, the relative difference in total execution time is very small.
This is true as long as n>>p, which will be the normal situation.
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Figure 3: The theoretical efficiency for parallel PCGNR without preconditioning (m=0) with
a rowblock decomposition of the matrix, implemented on a bidirectional ring of transputers.
The dashed line is for n=100, the dot-dashed line is for n=1000 and the full line is for
n=10.000; p is the number of transputers

Since the execution time Tpar cannot justify a choice between the rowblock-
ring - and the grid-cylinder combination, other criteria enter the discussion.
From an implementation point of view the rowblock-ring combination is
preferable. The rowblock decomposition introduces just one communication
routine: the gather operation. Parallel PCGNR with a grid decomposition on
the other hand contains more, and more complex communication routines.
Furthermore, from a user point of view the rowblock-ring combination has one
important advantage. The ring can have any number of processors, and
therefore the maximum number of free processors can always be used during
production runs. This is important in parallel computing environments where
the users can request any number of processors. These considerations are in
favour of the rowblock-ring combination. Therefore it was decided to implement
parallel PCGNR with a rowblock decomposition of the matrix, on a bi-
directional ring of transputers.

Figure 3 show the theoretical efficiency of this parallel PCGNR. If the
number of rows per processor is large enough the efficiency will be very close to
unity. Therefore parallel PCGNR with rowblock decomposition, implemented
on a bidirectional ring is very well suited for coarse grain distributed memory



computers.

4.4 IMPLEMENTATION

The parallel PCGNR was implemented in Occam 2 [18] on the Meiko
Computing Surface. The transputers all run the same two processes: a router
and a calculator. Router processes on neighbouring transputers are connected
to each other via channels. These channels are associated with hardware
transputer links. The router process calls communication routines from a
communication library. These routines, such as e.g. the vector gather
operation, take data from local memory and send it to other routers, and
process data that is received during the communication routine.

The calculator process performs the work on the decomposed data. If data
needs to be communicated, the calculator sends a command, in the form of a
single character, via an internal channel to the router process. The router
process receives this character, interprets it and issues the desired
communication routine. During this communication step the calculator
process is idle. After finishing the communication, the router process sends a
'ready' signal to the calculator process, which then proceeds.

In principle the communication hardware and the CPU and FPU of the
transputer can work in parallel, thus allowing to hide the communication
behind calculations. We decided not to use this feature since total
communication time is very small compared to calculation times.

The present implementation keeps the matrix in memory. The maximum
matrix that fits in the local memory of one transputer is n=495. On the full 63
transputer ring, the maximum matrix size is n=3885. For realistic, larger
problems (n is O(104) to O(106)), the matrix cannot be kept in memory. The
matrix elements will then be calculated as soon as they are needed, using the
definition in equation 3.

The main advantage of our implementation is the complete uncoupling of
the details of the communication and the "useful" work in the parallel
program. The calculator code closely resembles the sequential code, with just
some extra statements issuing commands to the router. The algorithm is
easily adapted by making changes to the calculator process. This is important
for e.g. testing the influence of the parameter m in the preconditioner.

4.5 RESULTS

This section presents the results of two experiments. First we measured
the performance of the implementation of the parallel PCGNR for m=0 (no
preconditioning), by measuring the execution time of one iteration of the
PCGNR algorithm, as a function of p and n. These results are compared with



the theoretical expressions. Secondly, we tested the convergence of the PCGNR
algorithm, for typical matrices of the coupled dipole method, for m=0 and m=1.

4.5.1             Performance measurements

We have measured the execution time of one iteration of the parallel
PCGNR, with m=0, for n = 60, 219, and 495 as a function of p, where 1≤ p ≤ 63.
The error in the time measurement is one clock tick, which is 1.0 µs for the
high priority transputer clock. Figures 4, 5, and 6 show the measured and
calculated efficiencies of one iteration of the parallel PCGNR.
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Figure 4: The efficiency on one iteration of the parallel PCGNR for n = 60, as a function of
the number of processors. The black dots are the experimental results, the solid line is the
theoretical efficiency.
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Figure 5: The efficiency on one iteration of the parallel PCGNR for n = 219, as a function of
the number of processors. The black dots are the experimental results, the solid line is the
theoretical efficiency.
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Figure 6: The efficiency on one iteration of the parallel PCGNR for n = 495, as a function of
the number of processors. The black dots are the experimental results, the solid line is the
theoretical efficiency.

Table 1 gives the difference, in terms of percentage, between the theoretical
and measured Tpar as a function of p and n. Finally we measured Tpar for the
maximum problem on 63 transputers, i.e. n=3885. The difference between
theory and experiment was 3.4 %. The theoretical efficiency in this case is 0.98.

p
1 2 4 8 16 32 63

60 2.2 2.2 1.1 1.3 8.3 27.7 64.4
n 219 0.5 0.8 1.0 1.5 2.0 5.4 13.6

495 0.7 0.8 1.1 1.3 1.7 2.0 5.4
Table 1: The difference, in terms of percentage, between the experimentally measured and
theoretically calculated execution time of one iteration of the PCGNR, as a function of p and
n.

4.5.2             Convergence behaviour

The matrix A, as defined by equation 3 depends on the relative refractive
index nrel of the particle of interest, the wavelength of the incident light, and
the position and size of the dipoles. To test the convergence behaviour of
PCGNR for these matrices, the norm of the residual vector, as function of the
iteration number k was measured, for some typical values of the parameters.
Here we will show results for the currently largest possible matrix (n=3885, i.e.
1295 dipoles). The results for smaller matrices are comparable.

The wavelength of the incident light was set to λ = 488.0 nm (blue light),
and the diameter of the dipoles to λ/20. The scattering particle was a sphere, the
dipoles were put on a cubic grid with spacing λ/20. The relative refractive index
was chosen to depict some representative material compounds of interest: nrel
= 1.05 and 1.5 to give the range of indices of biological cells in suspension; nrel =
1.33 + 0.05i (dirty ice); nrel = 1.7 + 0.1i (silicates); and nrel = 2.5 + 1.4i (graphite).

Figures 7 and 8 show the logarithm of the norm of the residual vector
divided by the stopping criterion (ε times the norm of b) for nrel = 1.05 and for
graphite respectively. If the measured function is smaller than zero, the
iteration has converged. We tested for m=0 (no preconditioning) and for m=1
(first order von Neumann preconditioning). The convergence behaviour for the
other refractive indices is comparable [15].
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Figure 7: The norm of the logarithm of the residual vector rk divided by the norm of b times
ε, as a function of the iteration number, for nrel = 1.05.
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Figure 8: The norm of the logarithm of the residual vector rk divided by the norm of b times
ε, as a function of the iteration number, for nrel = 2.5 + 1.4i (graphite).

4.6 SUMMARY AND DISCUSSION

Our aim is to simulate the scattering of (visible) light by biological cells,
specifically human white bloodcells. For this we exploit the Coupled Dipole
method (see section 4.2). This model gives rise to a very large system of linear
equations. The size of this system forces us to use an iterative method to solve
the equations. Moreover, acceptable run times can only be achieved if the
iterative solver converges fast, and if the calculations can be performed at a
very high speed. The first demand led to the choice of the CG method, the
second one to a parallel computer.

The CG method is almost always applied to banded (sparse) matrices,
coming from e.g. finite element discretisations. For these type of problems the
CG method is successfully parallelised (see e.g.[16], chapter 8), also together



with (polynomial) preconditioners (see e.g. [19]). Application of the CG method
for full matrices is less common. However, systems of equations with full, but
diagonally dominant matrices as coming from the Coupled Dipole method, or
from other computational electromagnetics techniques (see e.g. [20]) can be
solved efficiently with a (preconditioned) CG method.

We analysed the rowblock decomposition in combination with a ring
topology and the grid decomposition in combination with a cylinder topology. If
τstartup and τcomm have the same order of magnitude, the startup time for
communications is negligible compared to the pure sending time. In that case
the communication overhead for the cylinder, and the less rich ring topology
have the same order of magnitude. This shows that the rowblock-ring
combination and the grid-cylinder combination will have comparable execution
times. As long as the time constants have the same order of magnitude, and
n>>p, both parallel implementations will have an efficiency close to 1 (see
equation 6).

The time constants were measured and introduced in the expression for
Tpar. The rowblock-ring - and the grid-cylinder combination are almost
indistinguishable if one looks at their execution time. This shows that even on a
low dimensional network as a ring it is possible to implement a parallel CG
method with a very high efficiency (see figure 3), comparable with
implementations on a cylinder topology. Keeping this in mind we implemented
the rowblock-ring combination, based on two practical considerations;
programming effort and system resources.

Figures 4 to 6, and table 1 show that the agreement between the theoretical
and the measured values of Tpar are within 5 % of each other, provided that n/p
is not too small. For small n and large p the difference between theory and
experiment is very high. In this situation every processor has only a few rows
in memory and in that case the single parameter τcalc, used to describe the
calculation time in a single processor, is not very accurate. However, this is not
a real problem, since we are mainly interested in the situation n/p >> 1, where
the difference between theory and experiment is very small.

The second experiment concerned the convergence properties of the CG
algorithm, and the influence of one preconditioner on the convergence speed.
As was noted in section 4.2.3 a good preconditioner for a parallel PCGNR
implementation must not only decrease the total number of floating point
operations needed to find a solution, but furthermore the preconditioning steps
must allow efficient parallelization. The polynomial preconditioner of equation
4 can be implemented using matrix vector products only (assuming that the
coefficients γi are known at forehand). From section 4.3 it is obvious that the
matrix vector product can be parallelised very efficiently in the rowblock-ring
combination. Therefore the polynomial preconditioner is an ideal candidate for
parallel implementations. Our implementation of the first order von Neumann
preconditioner (m=1, see equation 5) supports this point. Measurements of the
execution times for this implementation show that the efficiency is very close to
1 (data not shown). The same will be true for higher order preconditioners.

Figures 7 and 8 show that |rk|, the norm of the residual vector after the
k'th iteration, decreases exponentially after every iteration. Even for graphite,
with a large refractive index, the number of iterations needed for convergence
is only 91, which is 2.3% of the matrix dimension n. For smaller refractive
indices the number of iterations for m=1 is half of the number of iterations for



m=0. The time for one iteration however is approximately a factor two higher
(four instead of two matrix vector products per iteration). Therefore the total
execution time is approximately the same. For higher refractive indices the
number of iterations is still decreased by the preconditioner, but not by a factor
of two. In that case the total execution time for m=1 is much larger than for
m=0. The first order von Neumann preconditioner is too inaccurate to be an
effective preconditioner for our type of matrices. In the future we will
experiment with higher order von Neumann preconditioners, and other types
of polynomial preconditioners. Especially if the size of matrix grows we expect
that good preconditioning will be inevitable to obtain realistic simulation times.

4.7 CONCLUSIONS

The preconditioned Conjugate Gradient method, for dense symmetric
complex matrices, using polynomial preconditioners, can be parallelised
efficiently for distributed memory computers. Both a theoretical analysis of the
time complexity and actual implementations support this conclusion.
Furthermore, the time complexity analysis shows that a parallel
implementation on a one dimensional (ring) topology is as good as an
implementation on a more complex two dimensional (cylinder) topology.

Theoretical predictions of the execution time of the parallel
implementation agree very well with the experimental results.

Convergence of the PCGNR method, for some typical matrices, is very
good. The first order von Neumann preconditioner, used as a test case,
parallelises very well; the efficiency of the implementation remains close to 1.
However, the total execution time is not decreased. More research with respect
to better polynomial preconditioners is required.
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A Parallel Implementation of the Coupled
Dipole Method of Elastic Light Scattering

ABSTRACT

The Coupled Dipole method is used to simulate Elastic Light Scattering from arbitrary
shaped particles. To facilitate simulation of relative large particles, such as human white
bloodcells, the number of dipoles required for the simulation is approximately 105 to 106. In
order to carry out such simulations, very powerful computers are necessary. We have
designed a parallel version of the Coupled Dipole method, and have implemented it on a
Massively Parallel computer, a Parsytec GCel-3, containing 512 T805 transputers. The
efficiency of the parallel implementation is investigated for simulations of model particles
containing a small number of dipoles, and the results are extrapolated to large scale
simulations. Scattering by a sphere, modelled with 33552 dipoles, is simulated and compared
with analytical Mie theory. Finally the suitability of the Coupled Dipole method to simulate
Elastic Light Scattering from larger particles, such as white bloodcells, is investigated.

5.1 INTRODUCTION

Elastic light scattering (ELS) from arbitrary particles has many important
applications, both in exact sciences and industrial or environmental
utilisations. Examples are ELS from human white bloodcells [e.g. 1, 2], from
interstellar and interplanetary dust particles [e.g. 3, 4], from soot particles in
combustion flames [e.g. 5, 6], or from airborne particles [e.g. 7, 8]. In many
cases these particles are not highly symmetrical (e.g. ellipsoidal or spherical),
preventing separation of variables in the Maxwell equations and subsequent
analytical solution of the ELS problem. Nor is their surface smooth enough to
exploit the powerful T-matrix method [9, chapter 3]. Furthermore, many of
these particles also fall outside the range of approximation theories of ELS,
such as Rayleigh-Debey-Gans theory or anomalous diffraction [see e.g. 10]. Yet,
the need to calculate ELS from these particles definitely exists. For instance, if
one has to verify models of particles, solely on the basis of ELS information, as
was the case for the interstellar dust particles [3]. Or if one has to define an
optimal scattering experiment to detect subtle changes in particle morphology,
as is the case in our flowcytometric experiments on human white bloodcells [1].
More examples can be found in [11].

This observation, the need to calculate ELS from arbitrary particles,
prompted much research to methods allowing a numerical solution of the ELS
problem. One such method is the Coupled Dipole (CD) method [12], which is
equivalent with the VIEF method[13, 14]. The original CD method is due to



Purcell and Pennypacker. Afterwards many authors have contributed to the
method [15, 16, 17, 18, 19, 20]. However, these additions to, and refinements of the
original CD method have no major consequence to the main subject of this
report, as will become clear in the sequel.

The CD method treats an arbitrary particle as a collection of coupled
induced dipoles. The electric field on each dipole, due to an external field and
the fields radiated by all other dipoles, must be calculated. Once the electric
field on the dipoles is known, the scattered field is calculated by summing the
contributions of all dipoles in the far field region. The main computational
problem in the CD method is the calculation of the electric fields on the dipoles.
For this a system of 3N equations with 3N unknowns, N being the number of
dipoles, must be solved. In our application, simulation of ELS from human
white bloodcells, N becomes large (O(104) to O(106)), implying that the
computation time gets very high. Therefore, to keep the computation times
acceptable, an efficient method to solve linear system must be implemented on
a very powerful computer [21, 22].

We have implemented a Conjugate Gradient method, suited for the linear
system from the CD method, on a parallel MIMD computer [22]. Here we report
on an implementation of the CD method, using this parallel kernel, on a 512
node transputer Parsytec GCel MIMD computer. After a short explanation of
the CD method, we will describe the parallelization of the CD method and will
give performance results of the implementation, focusing on parallel efficiency
and total execution time as a function of the model parameters. Finally we will
present results of simulations of systems consisting of up to 33.000 dipoles.

The performance measurements should answer two questions. First, is
the parallel CD method suitable for massively parallel processing, using a very
large number of processors, and secondly, extrapolating the results to the
largest MPP systems, is it possible to carry out our desired simulation of ELS
from randomly oriented white bloodcells?

5.2 THE COUPLED DIPOLE METHOD

Consider an arbitrary particle, located at the origin of a Cartesian
coordinate system. The particle is illuminated by a monochromatic
electromagnetic field E0(r). The wavelength is λ, and for simplicity we assume
that the incident field is travelling in the positive z direction. Our task is to
calculate the scattered electric field Es(r) in the full solid angle around the
particle, for an incident field polarised in the x direction, and an incident field
polarised in the y direction. With these scattered fields the complete scattering
matrix S of the particle can be calculated [10].

The CD method divides the particle in N subvolumes. The size of a
subvolume must be small enough to ensure that its response to an
electromagnetic field is the response of an ideal induced dipole. Recommended
values in the literature range from λ /20 < d < λ /10, with d the size of a
subvolume [23]. The field at ri  radiated by a dipole located at rj is [24]
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k is the wavenumber, defined by k = 2π/λ; p is the induced dipole moment; n is
the direction vector defined by

n = r / r , and r = ri − rj  ; r =|r|.

The induced dipole moment is assumed to depend linearly on the electric field
on the dipole:

p = γγ E, [2]

γγγγ is the polarizability tensor. We will assume an isotropic polarizability: g = γI,
with I the identity matrix and γ a scalar polarizability. This means that we
take spherical subvolumes to build the original particle. The field at ri  radiated
by a dipole located at rj, with an isotropic polarizability γj, can now be written
as

E(ri ) = γ j Fij E j  , [3]

with the functional Fij defined by equations 1 and 2.
The electric field on dipole i (1 ≤ i ≤ N), due to the external field E0(r) and

the field radiated by all other dipoles is

E(ri ) = E0(ri ) + γ j Fij E j
j≠i

N

∑
 
, 1 ≤ i ≤ N. [4]

The summation in equation 4 runs over all dipoles, except dipole i. This term,
the so-called eigenterm, is neglected in the original CD method. As was shown
by several authors [e.g. 13, 25], this term is required to satisfy energy
conservation in the scattering process. However, neglecting this term has a
very small effect on the calculated scattering matrix [25]. The exact form of this
eigenterm still is under discussion [see e.g. 25, 26]. Introduction of an
eigenterm in the numerical simulation is trivial. Keeping all this in mind, the
eigenterm will be neglected in the sequel of this paper. To simplify even more,
we assume that the particle is homogeneous, i.e. γi = γ, for all values of i.

Equation 4 defines a set of 3N equations for the 3N unknowns (Ex(ri),
Ey(ri), Ez(ri)). These equations can be reformulated as a matrix equation Ax = b,
with
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The matrix A is the 3N×3N interaction matrix. The diagonal elements are
unity. In the presence of an eigenterm, only these diagonal elements are
changed. It is obvious from the definition of Fij, that Fij = Fji. Therefore, the
interaction matrix is symmetric. Even for non-homogeneous particles the
interaction matrix can be made symmetric by solving the equations for p(ri)
instead of E(ri). This property of the interaction matrix will be used in the
implementation of the CD method.

After solving the matrix equation, the scattered electric field E s is
calculated by summing the fields, radiated by the dipoles, at the observation
point robs:

Es (robs ) = γ Fobs,i E(ri )
i=1

N

∑
 
. [6]

The dipoles are placed on a cubic grid with grid spacing d. The diameter of
the spherical dipoles is equal to the grid spacing d. The Cartesian co-ordinates
of the middle point of the dipoles is [(k+1/2)d, (l+1/2)d, (m+1/2)d], with (k,l,m)
integer numbers. The scalar polarizability is calculated using the Claussius-
Mossotti relation [24]

γ = 4πε0
3n

m2 − 1

m2 + 2  
, [7]

with m the relative refractive index of the particle and n the number of dipoles
per unit volume, i.e.

n = d-3.

Both the position of the dipoles and the calculation of the polarizability can be
modified to improve the model [see e.g. 27, 28]. Once again, these adaptations of
the original CD method have no consequences for the parallel implementation
of the CD method.

Figure 1 gives an estimate of the number of dipoles needed to describe a
compact particle, as a function of the size parameter α, with d equal to λ/20,
λ/10, and λ/5. Even for modest size parameters the number of dipoles is O(104)
or larger. In our specific application, simulation of ELS from human white
bloodcells, α is in the range of 20 to 60. This means that the number of dipoles
should be larger than 100.000.
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Figure 1: Estimation of the number of dipoles needed to model a compact particle.

5.3 PARALLEL IMPLEMENTATION

5.3.1             Numerical considerations

The CD method consists of three parts. First an initialisation, in which the
dipole positions, the incident field, and the other model parameters are
specified. Second the calculation of the field at the dipoles and third the
calculation of the scattered field.

Calculation of the electric field on the dipoles, equation 4, is the
computational most expensive part of the CD method. From a numerical point
of view, this calculation boils down to solving a very large system of linear
equations Ax = b, with A a n×n complex symmetric matrix, b a known complex
vector and x the unknown complex vector. Generally speaking linear systems
are solved by means of direct or iterative methods [29]. In the past both
approaches were applied to solve the coupled dipole equations. For instance,
Singham et al. used a direct method (LU factorisation) [27], Singham and
Bohren described a reformulation of the CD method, which from a numerical
point of view is a Jacobi iteration to solve the matrix equation [16], and Draine
applied a Conjugate Gradient iteration [15].

Direct methods require O(n3) floating-point operations to find a solution,
whereas iterative method require O(n2) floating-point operations, provided that
the number of iterations is much smaller than n. Solely the size of the system
matrix forces us to use iterative methods. Suppose that the implementation can
run at a sustained speed 1.0 Gflop/s, and n = 3.0 105. In that case a direct
method roughly needs O(10) months to find a solution. An iterative method
needs O(100) seconds per iteration. If the number of iterations can be kept small
enough, execution times can be acceptable.

The Jacobi iteration is not very well suited for a large number of dipoles;
already for a relative small number of dipoles (N ~ 500), the Jacobi iteration
becomes non-convergent [28]. A very efficient iterative method is the Conjugate
Gradient method [29]. Draine [15] showed that the Conjugate Gradient method



is very well suited for solving the coupled dipole equations. The number of
iterations needed to find the solution is much smaller than the dimension of
the matrix. For instance, for a typical small particle with 2320 dipoles (n = 6960)
the Conjugate Gradient method only needs 17 iterations to converge. We apply a
Conjugate Gradient method, the so-called CGNR method [30], to find the
electric field on the dipoles. In reference [22] we describe how this method was
parallelised for distributed memory computers.

Calculation of the scattered field, using equation 6, is very
straightforward. It requires O(n) floating-point operations, which is negligible
compared to the O(n2) operations of the CGNR method. Therefore we use our
parallel implementation of the CGNR method [22] as a basis of the parallel CD
method. We adapted the processor ring topology and rowblock matrix
decomposition of the parallel CGNR. The next subsection shortly summarises
the parallel CGNR implementation, followed by a subsection describing how
the scattered fields are calculated in parallel, and finally some important
details of the complete parallel implementation of the CD method are
highlighted.

5.3.2             Parallel calculation of the dipole fields

The CGNR method was parallelised by a data decomposition of the
interaction matrix A. First an extensive time complexity analysis of parallel
CGNR methods, suited for complex symmetric matrices, as a function of
different parallelization strategies was made [22]. Based on this analysis the
CGNR method was implemented on a ring of transputers, with a rowblock
decomposition of the matrix. Rowblock decomposition means dividing A in
blocks of rows, with every block containing n/p consecutive rows (p denotes the
number of processors), and assigning one block to every processing element.

The CGNR method contains two matrix vector products, three vector
updates and three inner products per iteration. Figure 2 schematically shows
how these operations are performed in parallel [22]. The vector update can be
performed completely in parallel, all data is present in local memory of the
processors. The inner product is calculated in two steps. First all processors
calculate a partial inner product from their local vector data. This partial inner
product is send to all other processors and all the results are summed (the so-
called scalar accumulate operation). In this way the result of the inner product
is known in all processors. The rowblock decomposition of the matrix dictates
how the parallel matrix vector product is executed. First the argument vector,
which is divided among all processors, must be completely known by all
processors. This means that all processors must send their part of the
argument vector to all other processors. After this vector gather operation the
matrix vector product can be performed in parallel. The result vector is again
divided among the processors.
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2.c: the parallel matrix vector for a rowblock decomposed matrix.

Figure 2: A schematic drawing of the parallel implementation of the numerical operations.
The decomposition of the vector and matrix is symbolised by the dashed lines; a single
arrow (->) means a communication, and the implication mark (=>) means a (parallel)
calculation.

The parallel CGNR uses two communication routines: the scalar
accumulate operation (see figure 2.b) and the vector gather operation (see
figure 2.c). These operations are very similar. In both operations every
processor must send data from local memory to all other processors, and
receive data from all other processors. On the bidirectional ring this is achieved
as follows: first every processor sends its local data to the left and the right
processor and, at the same time, receives from the left and the right processor
their local data; in the following steps, the parts received in a previous step, are
passed on from left to right and vice versa, and in parallel, parts coming from
left and right are received and stored.

The efficiency of a parallel program is defined as [31]

ε =
Tpar (1)

pTpar (p)  
, [8]

where Tpar(p) is the execution time of the parallel program on p processors.
Note that we use the so-called relative efficiency, where the execution of the
parallel program, running on 1 processor is used to calculate ε, opposed to the
fair efficiency, which uses the fastest sequential execution time. The relative
efficiency however is a good measure of the scalability of a parallel
implementation. The total computation time of the parallel CGNR is
O(n2/p)τcalc, the communication time is O(n)τcomm. [22]. The parameters τcalc
and τcomm are the times to perform one floating-point operation on a processor
and to send one byte from a processor to a neighbouring processor. Thus, the
efficiency of the parallel CGNR is

ε ≈ 1 + O
p

n
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. [9]

Here we neglected many details of the communications and computations, for
this see reference [22]. Still, equation 9 contains the most important conclusion.
If n/p is large, the efficiency of the parallel CGNR method can be very close to
one. Performance measurements of the actual implementation support this
conclusion [22].

The parallel CGNR was designed for any complex symmetric matrix.
However, since we implemented it for the benefit of the CD method, it is useful
to see what the data decomposition of the matrix implies in terms of the CD



method. Basically the rowblock decomposition means that N/p dipoles are
assigned to each processor, and that each processor calculates the fields on
these dipoles, using the CGNR method. The CGNR method works with three
vectors: xk, the approximation of the solution x after k iterations; rk, the
residual vector, defined as

rk = b − Axk  ;
and pk, the direction vector in the k'th iteration, used to update xk. These three
vectors all have the dimension of an electric field. The vector update calculates
a new field on each dipole, using only a combination of fields on the dipole itself.
All processors can work fully in parallel, since they all have the information of
their local dipoles in memory. In a matrix vector product a new field on the
dipoles is also calculated, but now fields radiated by other dipoles are taken into
account. This means that a processor must receive information about a specific
field on the dipoles which were not assigned to it. The vector gather operation
takes care of this. The inner product operation is an inner product of two
vectors with the dimension of an electric field. In that case the result of the
inner product has the dimension of energy contained in the field. Therefore we
can identify the inner product as a measure of some total energy of the system.
This is a global variable, and can only be calculated if the local field energies,
calculated in each processor, are accumulated and added. This is exactly what
happens in the scalar accumulate operation.

5.3.3             Parallel calculation of the scattered fields

The scattered electric field is calculated according to equation 6. The most
straightforward way to do this calculation in parallel is by calculating the
radiated electric fields from the dipoles in parallel, and summing them
afterwards. This strategy matches the data decomposition used in the parallel
CGNR implementation. After convergence of the CGNR every processor has
the electric field on its local dipoles in memory. All processors calculate the
scattered fields due to their local dipoles in all observation points (e.g. the
scattered field as a function of the scattering angle θ). Next the results of all
processors are accumulated and summed in the root processor (see next
subsection), which writes the results to disk for further analysis.

Both the calculation time and the communication time of the parallel
calculation of the scattered fields are negligible compared to the calculation -
and communication time of the parallel CGNR. Therefore, the efficiency of the
parallel CD method will be as good as the efficiency of the parallel CGNR.
However, the parallel calculation of the scattered fields also has a very good
parallel efficiency on its own right, as a straightforward analysis reveals.

5.3.4             Details of the implementation

The parallel CD method is implemented on IC3A's* Parsytec GCel-3
massively parallel MIMD computer, with 512 T805 transputers. The
implementation was brought about under Parsytec's programming

* IC3A is the Interdisciplinary center of Computer based Complex systems Research
Amsterdam; for more information contact the authors.



environment Parix** ; the programming language was C.
Parix' programming model is Single Program Multiple Data (SPMD) [32];

i.e. every processor contains the same main program. However, depending on
the location of the processor in the network, different branches of the program
can be executed, operating on different sets of data. The processors
synchronise, and exchange data, by means of message passing.

The transputer has a very efficient context switching mechanism build in
hardware. Therefore a transputer can be programmed very efficiently in a
"multi-process" way, where each process has a specific task (i.e.
communication of data through a link or numerical tasks). Parix offers this
feature in the form of a threads library.

On a bare transputer, programmed in its native language Occam [33],
communication is done explicitly over the transputer hardware links. This
point-to-point communication is synchronous. Parix offers a more abstract
view of the transputer, based on the possibilities which are realised in
hardware of the new T9000 transputer [34]. Communication is performed
through so-called virtual links. A set of virtual links between different
processors can be grouped into a virtual topology. Users can define their own
virtual topologies, or can use predefined virtual topologies, such as rings,
meshes, or trees, by calling appropriate functions of the virtual topology library
of Parix. These library functions guarantee an optimal mapping of the virtual
topology on the actual physical two dimensional network of the GCel computer.

The main program of the parallel CD method, which runs on each
processor, is shown below.

main ()

{ /* main of parallel CD method */

MakeRing (...); /* Create Ring Topology */

GetRing_Data (...); /* Extract information of Ring

topology */

StartThread (Calculator,...); /* Start the Calculator thread */

StartThread (Router,...); /* Start the Router thread */

Wait for threads to terminate

}

First, the ring topology is established by a call to the MakeRing function,
which installs a ring topology on the booted partition, and numbers all
processors in the ring from zero to p, where p is the total number of processors
in the ring. The GetRing_Data call makes this information available to the
program. In our implementation processor zero is assigned a special role; i/o is
performed by this processor. Strictly speaking this is not necessary, all
processors can perform i/o operations using Parix' remote procedure calls to
the Unix system of the host computer.

Next two threads are started, a calculator and a router. These two
processes are connected via an internal link, see figure 3. The Calculator
performs all the numerical work. If data should be transferred to other
processors (e.g. a vector gather operation), the calculator sends a command to
the Router, which calls appropriate communication routines. After

** We used Parix version 1.1



termination of the communication, a 'ready' signal is send to the calculator.
This style of programming has some advantages. The Calculator code

strongly resembles the 'sequential' code, with occasional calls to the router. In
this way the complete parallel program can be easily maintained and adapted,
if necessary. Furthermore, the Router and the Calculator can actually run in
parallel on a transputer. The CPU and link hardware runs in parallel, thus
enabling to communicate and calculate at the same time. Therefore, instead of
waiting for the 'ready' signal, the Calculator could perform some calculations,
and then wait for the 'ready signal'. Finally, many parallel scientific codes
share many generic global communication routines. If the Router contains all
these calls, a reusable harness for parallel programming on a ring (or any
other topology) can be created, and application programmers only need to
develop the Calculator part of the code.
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Figure 3: Threads running on each transputer; the Router connects to the neighbouring
processors in the ring, the calculator performs the numerical tasks and issues commands to
the Router to perform specific communications. Mem is the memory of a transputer

The kernel of the parallel CD method, the CGNR method, was originally
implemented in Occam [22]. Porting of the original Occam code to Parix-C
turned out to be very straightforward, because many powerful concepts in
Occam to express parallelism are mimicked by functions in Parix libraries.

5.4 RESULTS

We have measured the execution time of the CGNR kernel, the calculation
of the scattered fields, and the complete CD simulation, including startups and
i/o. These execution times were measured as a function of the number of
dipoles and the number of processors, using the high priority clock of the
transputer (ticks every µs).

As a test problem we simulate scattering by a homogeneous sphere, whose
scattering properties are known analytically (the so-called Mie theory [10]). In
the CD method we discretised a sphere as follows: place dipoles on grid points
with co-ordinates [(i+1/2)d, (j+1/2)d, (k+1/2)d], with i,j,k integers, demanding
that



(i+1/2)2 + (j+1/2)2 + (k+1/2)2 ≤ l2 [10]

The number l determines the number of dipoles in the discretization, e.g. l = 3
results in N = 136 and l = 5 gives N = 552. In all experiments the diameter of the
dipoles was d = λ/10. The wavelength was 488 nm and the refractive index was
1.05.

For small problem sizes (N < ~2200) the execution times on 1 processor
could be measured, allowing to express the measurements with more
processors in terms of parallel efficiencies. These results can be extrapolated to
larger problem sizes.

Figure 4 shows the execution time, and parallel efficiency, of one iteration
of the GCNR kernel for several (small) numbers of dipoles, as a function of the
number of processors. Figure 5 and 6 show these results for the calculation of
the scattered field, and for the complete parallel CD simulation, respectively.
Note that in figure 6 the maximum problem size is smaller than in figure 4
and 5.
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Figure 4: The total execution time (left figure), and efficiency (right figure) of one iteration
of the CGNR as a function of the number of processors p; the execution time is in seconds.
The solid line is for a simulation with 8 dipoles, the dotted line is with 136 dipoles, the
dashed line is with 512 dipoles and the dotted-dashed line is with 2176 dipoles.
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Figure 5: The total execution time (left figure), and efficiency (right figure) of the
calculation of the scattered electric field as a function of the number of processors p; the
execution time is in seconds; the field was calculated for scattering angles from 0o to 180o,
with steps of 0.1o. The solid line is for a simulation with 8 dipoles, the dotted line is with 136
dipoles, the dashed line is with 512 dipoles and the dotted-dashed line is with 2176 dipoles.
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Figure 6: The total execution time (left figure), and efficiency (right figure) of a total
coupled dipole simulation, including initialisations and i/o, as a function of the number of
processors p; the execution time is in seconds. The solid line is for a simulation with 8
dipoles, the dotted line is with 136 dipoles, the dashed line is with 512 dipoles and the dotted-
dashed line is with 912 dipoles.

Figure 7 shows the result of a CD simulation of scattering by sphere,
together with the analytical Mie result. The number of dipoles was 33552
(corresponding to l = 17), the diameter of the dipoles was λ/10, resulting in a
size parameter α  = 12.6. This calculation required 11 hours on 512 processors.
The parallel speedup was estimated to be larger than 500, the computational
speed was 250 Mflop/s. As soon as new updates of the C compilers are available,
this number is expected to be increased with a factor 2 (due to much better code
optimisers).
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Figure 7: Coupled Dipole simulation (dots) of scattering by a sphere, and Mie calculations
(line). The S11 element of the scattering matrix S, as a function of the scattering angle is
shown. The size parameter of the sphere is α = 12.6, the refractive index is m = 1.05. The
number of dipoles in the CD simulation was 33552, the size of the dipoles was λ/10.

5.5 DISCUSSION AND CONCLUSIONS

We want to simulate ELS from human white bloodcells and bonemarrow
cells. The simulations must include orientational averages and biological
variability of the cells, and will assist to define optimal light scattering
experiments to distinguish between subsets of white bloodcells (e.g. between the
three forms of Granulocytes), or between malign and healthy cells.



Approximate theories for ELS, such as Rayleigh-Debye-Gans (RDG) scattering
[10], are sometimes very successful to describe certain properties of ELS from
white bloodcells. For instance, we showed that a modified form of RDG
scattering [35] can describe anomalous scattering behaviour of osmotically
active Lymphocytes very well [36], even giving rise to new biophysical insights
concerning the biomechanics of Lymphocytes [37]. However, more subtle
properties of ELS, involving the polarisation of the scattered light, cannot be
described with these approximate theories [1]. It are exactly these properties
that play a key role to distinguish between subsets of white bloodcells, as was
shown very elegantly by for instance de Grooth et al. [2], who measured
depolarisation of the scattered light to differentiate between Eosinophilic - and
Neutrophilic Granulocytes.

These observations promted us to start the development of a computer
simulation of ELS, capable to find the complete scattering matrix S of an
arbitrary shaped particle. For this we choose the Coupled Dipole model,
because of its physical intuitive nature and its proven suitability for small
particles. Furthermore, as was shown by Lakhtakia [14], the CD method is
equivalent with a discretization of the integro-differential equation which is
found after directly solving the Maxwell equation using Green’s functions.
This observation provides the CD method with a rigorous mathematical
physics backing, based on the macroscopic Maxwell equations.

Figure 1 shows that our simulations require O(105) or more dipoles (white
bloodcells: 20 < α < 60). This implies that we have to solve a very large, dense
system of equations (equation 4). According to Edelman [38] our desired
simulation can be shared among the largest Computational Electromagnetics
simulations reported to date. To solve these large simulations requires the most
powerful computers, which are Massively Parallel computers. Therefore, our
strategy was to develop a parallel version of the Coupled Dipole method, and
extensively study the scalability properties of this implementation, both
theoretically and on real MPP systems. This study should answer two
questions. First, is the parallel CD method suitable for massively parallel
processing, using a very large number of processors? Secondly, extrapolating
the results to the largest MPP systems, is it possible to carry out the desired
simulation of ELS from randomly oriented white bloodcells, including
biological variability?

The calculation of the electric field on the dipoles, i.e. solving equation 4
with the CGNR method, consumes most computer time. We have extensively
studied the parallelization of this kernel, both theoretically and by measuring
the performance on a 64 node Meiko Computing Surface [22]. The main
conclusion of this work is summarised by equation 9. If each processors
contains many dipoles (i.e. the grainsize n /p >> 1), then the efficiency can be
very close to 1. On the Parsytec we measured GCel τcomm /τcalc = O(1) (data not
shown). Therefore, if n/p = 3N/p > ~100, then ε > 0.99; i.e. the efficiency will be
very close to 1 if each processor contains approximately 30 dipoles or more.
Although these numbers are estimates, they show that in real simulations,
containing tens of thousands of dipoles, or more, the efficiency will be very good
on the full domain of the Parsytec (p = 512 processors). The performance
measurements shown in figure 4 support this conclusion. If the number of
processors is gradually increased, keeping the problem size constant, then the
efficiency decreases. However, for larger problem sizes, i.e. larger grainsizes



n/p, the efficiencies are larger. Clearly this effect is caused by the
communication times, scaling linear with the number of dipoles and being
independent of the number of processors, compared to the calculation time
which scales quadratic with the number of dipoles and is inversely
proportional with the number of processors (see section 5.3.2). Note that the
measured efficiencies for the simulations with 8 dipoles on 8 processors, 136
dipoles on 128 processors, and 512 dipoles on 512 processors all are
approximately the same: ε ~ 0.4. This is a nice demonstration of the fact that the
efficiency is, in this case, mainly determined by the grainsize of the parallel
program; the number of dipoles per processor was, in all cases, one. The
largest simulation for which we measured the time for one iteration on one -
and more processors was with 2176 dipoles. For p = 128 (17 dipoles per
processor) we measured ε = 0.99, and even on the full domain (p = 512, 4 or 5
dipoles per processor) we measured ε = 0.81.

The parallel calculation of the scattered field is not as efficient as the
parallel implementation of the CGNR (see figures 4 and 5). The execution time
shows a minimum for a certain number of processors. This behaviour is
readily explained with a qualitative time complexity analysis. As was clarified
in section 5.3.3, the scattered field is obtained by calculating the contribution of
each dipole in parallel, and summing the results afterwards. The scattered
field is calculated at a fixed number of points in space (e.g. as a function of the
scattering angle, from zero to 180 degrees, with steps of 0.1 degrees). This
implies that the summation of the scattered fields calculated in each processor,
boils down to communicating a fixed-size vector from all processors to
processor zero. Processor zero calculates the total scattered field, and writes the
results to disk. This implies that the communication time grows linearly with
the number of processors, and is independent of the number of dipoles. The
time needed to calculate the scattered field however, is linearly dependent on
the number of dipoles, and inversely proportional to the number of dipoles.
Therefore, the total time needed for the parallel calculation of the scattered
fields is: T = c1 N/p + c2 (p-1), where c1 and c2 are constants. This function
shows a minimum for pmin  = (c1 /c2  N)1/2. Increasing N will shift the
minimum to a larger number of processors, as seen in figure 5. Furthermore,
the efficiency at pm i n  is [2 - (pm i n )-1  ]-1 . For large pm i n  this will be
approximately 0.5. This is also observed in figure 5. In conclusion, the parallel
calculation of the scattered fields can have a very high efficiency, close to 1, if
pmin is much larger than the total number of available processors, or N/p2 >>
c2/c1. The grainsize, defined as the number of dipoles per processor is now not
determining for the efficiency, as was the case for the parallel CGNR.

The execution time of both major parts of the parallel CD method scales
very good with the number of processors in realistic simulations (large N).
However, most interesting is the execution time of the total parallel CD
implementation, including i/o and initialisation. The i/o is constant and
limited. Only the scattered field is written to disk, and it is not necessary to read
data from disk. Furthermore, booting a partition of the GCel machine is only
weakly depended on the number processors in the partition. Furthermore, the
total number of CGNR iterations needed to find the internal field increases
with the problem size, and the execution time of one iteration becomes
dominant, compared to the calculation of the scattered field, for larger N.
Therefore, we expect that the total CD implementation will behave just like one



iteration of the parallel CGNR if N is large enough.
The measured execution times and derived efficiencies, as depicted in

figure 6, show the expected behaviour. For a very small simulation (N = 8, the
solid line) the total execution time is completely dominated by i/o: the execution
time is constant. However, increasing N leads to still better efficiencies, and the
largest simulation which was timed (N = 912, the dotted-dashed line) shows the
behaviour of one iteration of the CGNR, although the efficiencies are still lower
than for just one iteration. This is caused both by the i/o, and the low efficiency
of the E-field calculation. However, it can be concluded that, by increasing N/p
(the grainsize), the efficiency can be made better than 0.99, even for 512
processors.

Figure 7 shows the results of a large simulation. We could not carry out
simulations with more dipoles due to memory limitations. The simulation
results compare very well with the analytical Mie calculations (this is also true
for the other matrix elements; data not shown). Only in the backscattering the
simulations deviate slightly from the Mie calculations. This is caused by the
relative large size of the dipoles. The convergence of the Conjugate Gradient
iteration was very fast. Only 19 iterations were required for convergence. The
norm of the residual vector decreases exponentially after each iteration. The
good agreement between the simulation and Mie theory, combined with the fast
convergence and numerical stability of the CGNR iteration, gives us confidence
that the CD method can be upgraded successfully to O(105) dipoles or more.

A huge drawback is the execution time. Currently we achieve speeds of
250 Mflop/s, resulting in a simulation time of 11 hours. The execution time of
one iteration of the CGNR method scales quadratic with N, due to the matrix
vector product. Furthermore, the number of iterations needed for convergence
increases with increasing N. Therefore, the execution time of the CD method
scales approximately with cN2, were c is a function of N which describes the
increase in the number of iterations. Currently we are investigating this
function, by looking at the condition number of the interaction matrix A (see
equation 5). However, in the sequel of this discussion we will neglect this
function.

Realistic simulations of white bloodcells require a factor three to ten more
dipoles, i.e. a 10 to 100 times increase in execution time. On our Parsytec this
would lead to execution times of 100 to 1000 hours. Even on the fastest
computers available today, running 1000 times faster than the Parsytec,
simulation times will be in the order of hours. As was shown by Singham [28],
orientational averaging requires simulations in 1000 to 2000 random positions
of the particle (depending on the particles in question), placing a even more
severe burden on computational power.

The conclusion is that CD simulations containing O(104) dipoles can be
performed on powerful MPP systems. For instance, the simulation of ELS from
the sphere, as presented in section 5.4, would take approximately 8 minutes on
e.g. a 4096 node T9000 system. Here we assume that the T9000 transputer runs
10 times faster than the T805 transputers [34], and that the efficiency of the
parallel CD is very close to 1 on this machine. However, simulations with O(105)
or even O(106) dipoles, as we require, are currently not possible.

The execution time of CD simulations, using iterative solvers, scales as
N2. This is due to the matrix vector products in the CGNR method. From a



physical point of view this matrix vector product is a calculation of the electric
field on the dipoles, due to radiation from all other dipoles. In this sense the CD
method can be viewed as a many-body simulation, which requires to calculate
all pairwise interactions between the interacting particles (the dipoles). A very
important class of "clever" many-body algorithms, which reduce the
complexity from O(N2) to O(N LogN) or even to O(N), are the so-called
hierarchical tree methods [39, 40]. In these methods the interaction is not
calculated for each particle pair directly, but the particles are grouped together
in a hierarchical way, and the interaction between single particles and this
hierarchy of particle groups is calculated. We will develop such a hierarchical
tree algorithm for the vector potential of radiating dipoles (in three
dimensions). This algorithm replaces the matrix vector products in the
iterative solver of the CD simulation. Now the interaction between the dipoles is
not calculated for each dipole pair directly, but the dipoles are grouped together
in a hierarchical way, and the interaction between single dipoles and this
hierarchy of dipolar groups is calculated. In this way the complexity of the
complete CD simulation can be reduced to O(N). This would facilitate CD
simulations with O(105) or more dipoles on high end parallel computing
systems, and light scattering simulations form smaller arbitrary particles on
workstations or personal computers.
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A comparison of native and generic
programming environments  for a transputer

platform

ABSTRACT

We compare the Iserver-Occam, Parix, and Express parallel programming environments
on a 512 node Parsytec GCel. The comparison is made by a detailed analysis of the
performance of a particular application. In our approach we start with the application and
isolate the basic (environment) dependent building blocks. These basic building blocks,
which depend on floating point performance and communication capabilities of the
environments, are analysed independently. We have measured point to point
communication times, global communication times and floating point performance. All
information is combined into a time complexity analysis, allowing us to compare the
environments on all relevant degrees of functionality. Together with demands for
portability of the code, and development time (i.e. programmability), an overall judgement
of the environments can be made.

6.1 INTRODUCTION

Real success of Massively Parallel Processing critically depends on
programmability of the parallel computers and on portability of parallel
programs. We are made to believe that “parallel computing has come to age”.
Although it is safe to say that parallel hardware has reached a convincing
stage of maturity, both programmability of the parallel hardware and
portability of parallel programs still pose serious problems to developers of
parallel applications.

Today, an application programmer is usually faced with a situation as
drawn in figure. 1. A parallel computing platform supports native
environments, which allow very low level programming, or allow a more
abstract view of the hardware. Furthermore, generic environments, also
available on other platforms, can be used. These environments can be grouped
in order of decreasing hardware visibility and increasing portability. Of course,
one expects that the price to be paid for portability is a decrease of control of the
hardware and associated degradation of performance.

A typical example is provided by the developments in transputer based
parallel processing, to which we will restrict ourselves in this paper. The first
generation of these parallel systems consisted of transputers hardwired into
grids, and had to be programmed in the transputer’s native language Occam.



The programmer had to now all the details of the parallel hardware, routing of
messages had to be done explicitly, and the topology of the network was fixed.
The next generation allowed software reconfigurable topologies and
programming of the system in the standard languages C and Fortran 77,
extended with message passing primitives. Furthermore, programming
environments, like e.g. CS-Tools [1], allowed to send messages between
processes, not necessarily located on adjacent processors: the routing was done
implicitly by the system. The next step should have been systems based on the
new T9000 transputer. The delay in production of this chip forced
manufacturers to turn to other chips, or downgrade their new systems to T805
transputers and emulate the T9000 Virtual Channel Routing [2] in software.
This resulted in e.g. the GCel series of Parstyec [3], with its programming
environment Parix [4]. Here concurrent processes communicate via virtual
channels and the machine can be configured into virtual topologies.

Native Environments

low level                      Occam

more abstract view       Parix
of hardware

Generic Environments

                     Express or PVM

Decreasing hardware 
visibility

Increasing portability
Increasing
performance

?

Figure 1: a typical situation encountered by application programmers of parallel systems.

Despite these efforts, portability of parallel programs developed in native
transputer environments, to other parallel computing systems, is rather poor.
Fortunately, parallel programming environments have been developed which
are supported on a large number of different parallel computers. These
environments carry the potential of true source level portability of parallel
programs between very different types of parallel systems, including clusters of
workstations and heterogeneous systems. Two very popular environments are
now also available on transputer based systems. First, the Express [5] system of
Parasoft, which is available on e.g. networks of workstations, or the Intel
Paragon, is also available on transputer systems. Secondly, the PVM
environment [6], which seems to become the standard parallel programming
environment, has been ported to the Parsytec GCel system by our group [7].

In this paper we will compare two native environments, Iserver-Occam
and Parix, with one generic environment, Express. All experiments are
executed on the Parsytec GCel. In this way we can judge the trade-off which
clearly exists between native environments, usually offering a better
performance at the price of extensive programming effort, and generic
environments which allow to develop more portable programs. Currently we
are running benchmarks of PVM on the Parsytec GCel, and these results will
be available soon.

As a representative case study we have implemented an application from
Physics, i.e. Elastic Light Scattering simulations using the Coupled Dipole



method [8, 9], in these three environments on the Parsytec GCel. This
application has the following characteristics:
• It is a real application. This means that the application is actually used

for simulations.
• The time complexity of the program is predictable. The execution time of

the program can be expressed in terms of problem size, number of
processors, and a small set of basic system parameters. This allows a first
comparison of the environments by measuring this very limited set of
parameters.

• It contains global communication routines. Global communication
requires routing of messages to all processors. Explicit coding of this in
e.g. Occam is an extensive programming effort, which is not necessary in
environments like Express.

• The implementation does not exhibit (severe) load imbalance. Load
balancing is a research area by itself, and would obscure our current
experiment. The Parsytec GCel is a monolithic platform, i.e. all processors
have the same capabilities, unlike e.g. networks of workstations.
Therefore, the only possible source of load imbalance in our experiment
would be the program itself.
We will analyse the behaviour of the parallel Coupled Dipole method in the

three environments by analysing basic and global communication routines,
floating point performance, and actual execution times of the parallel program
as a function of problem size and number of processors. We will investigate if
the basic measurements can predict the runtime of the application, and if such
basic measurements can be used as a heuristic to assess the merits of a
programming environment.

6.2 THE HARDWARE AND SOFTWARE ENVIRONMENT

6.2.1             The Parsytec GCel

The Parsytec GCel-3/512, which was installed at IC3A* in Amsterdam in
January 1993, consists of 512 T805 transputer, running at 30 MHz, with 4 Mbyte
external RAM each. The transputers are physically connected into a 16×32 two
dimensional grid. The architecture of the machine is drawn schematically in
figure 2.

* IC3A is the Interdisciplinary Centre for Computer based Complex systems research
Amsterdam. For more information, please contact the authors
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Figure 2: Schematic drawing of architecture of the Parsytec GCel-3/512 installation.

The basic logical unit of the GCel is an “atom”, constituting of a total of 16
transputer. An atom consists of 4 boards each equipped with 4 transputers. The
basic building block is a “cube”, containing 4 atoms, i.e. 64 transputers. GCel
installations consist of multiple cubes, in our case 8.

All atoms are arranged in a large number of overlapping partitions.
Users can request a partition. In this way the user can get parts of the
machine, containing multiples of 16 transputers. Users enter the machine via
a front-end, a Sun Sparc 10 workstation.

6.2.2             Parix

The standard programming environment for the GCel is Parix [4], an
acronym for parallel extensions to Unix. All experiments described here are
performed under Parix release 1.2. Parix is a cross-development system.
Applications are developed and compiled on the front-end, and subsequently
downloaded on the transputers. The programming model is Single Program
Multiple Data (SPMD) [4]; i.e. every processor contains the same main
program. However, depending on the location of the processor in the network,
different branches of the program can be executed, operating on different sets
of data. Furthermore, each processor can load different code segments during
runtime.

The processors synchronise, and exchange data, by means of message
passing. Communication is performed through so-called virtual links, and can
be synchronous and a-synchronous. Every processor can define a virtual link to
any other processor in the network. Parix takes care of routing the messages
through the network. A set of virtual links between different processors can be
grouped into virtual topologies. Users can define their own virtual topologies, or
can use existing virtual topologies, such as rings, meshes, or trees, by calling
appropriate functions from the virtual topology library of Parix. These library



functions guarantee an optimal mapping of the virtual topology on the actual
physical two dimensional network of the GCel computer. Messages can also be
exchanged without using virtual links, however this mechanism, which
heavily relies on the Virtual Channel Routing capabilities of the T9000
transputer, is not very efficient on the T805 hardware. Furthermore, new
releases of Parix contain global communication routines, such as broadcasts,
global sums etc. However, during development of the application these routines
were not yet available, and are therefore not included in the experiments
described in this paper.

Parix programs can be developed in ansi C or Fortran 77, and all standard
Unix tools can be used. Communication between processors is performed
through library calls. Input and output to the front-end is performed through
remote procedure calls to appropriate Unix system calls, and communication
with the front-end is also possible through Unix sockets. Parix 1.2 is equipped
with a performance analyser called Patop. A parallel debugger is not yet
present.

6.2.3             Iserver-Occam

The Iserver-Occam environment consists of the Occam toolset to develop
Occam 2 programs and run them on, in our case, the Parsytec GCel. Occam
and the transputer were developed together, and Occam can be considered the
native language of the transputer. Occam allows maximal exploitation of the
transputer hardware. Occam programs are developed and compiled (compiler
version d7205) on the Unix front end, and subsequently downloaded on the
Parsytec. Mapping of transputer links to Occam channels, and configuration of
the network is carried out by a special configuration file, which is included in
the Occam program.

Occam can only handle synchronous communication through Occam
channels. If such a channel is mapped onto a transputer link, parallel
processes running on neighbouring transputers can exchange data. In order
to send data to an arbitrary processor the programmer has to route the data
explicitly through the network.

6.2.4             Express

The Express system [5] is a product of Parasoft, and is based on the early
work of Fox et al. [10]. Express is available on a wide range of platforms
including Suns, Cray systems, and Meiko systems. Currently we have a β
version running directly on the transputers of the Parsytec GCel. Currently we
are investigating the possibility to put Express on top of Parix. In this way,
Express itself will be portable to all platforms running Parix.

Express consists of a set of libraries to describe the parallelism in the
program. For instance, a communication library is present, offering primitives
for sending messages between nodes, and high-level global communication
routines such as broadcast and global data gathering. Furthermore, Express
contains a parallel graphics system, that offers a variety of graphical functions
to all nodes in the system. Express supports C and Fortran77 programming,



and contains a number of programming tools such as a parallel debugger and
a graphical performance analyser.

Express offers two different working models: the host-node model and the
so-called cubix model. In the host-node model one dedicated node, usually the
front-end machine of the parallel system, starts and controls the computation
on the parallel nodes, and all I/O operations have to be performed by the host.
In the cubix model a dedicated host node does not exist, and all work is
performed by the parallel nodes. Operating systems services that the parallel
nodes may require are transparently redirected to the front-end. The cubix
model implies SPMD programming and is comparable with Parix'
programming model. The Coupled Dipole program is implemented in the
cubix model.

A cubix program is executed as follows. First a partition is booted in the
Parsytec GCel. Next, Express is initialised by loading the Express kernel and
the routing tables on each transputer in the partition. Finally the program is
started by loading it on a user specified number of processors inside the
Express partition.

On the Parsytec version the user has no control over the mapping of the
parallel processes into the partition. Furthermore, the physical location in the
partition is unknown, only process identification numbers can be assessed.
However, by using e.g. the exgridinit call the parallel processes can order
themselves into N dimensional grids and communicate in for instance the left
or north direction. This is comparable to the virtual topologies of Parix.

6.3 THE COUPLED DIPOLE APPLICATION

6.3.1             Functional aspects

The Coupled Dipole (CD) method [11] simulates Elastic Light Scattering
from arbitrary particles. The particle is discretised in N small subvolumes,
called dipoles. The simulation consists of two stages. First, the internal electric
field on the dipoles is calculated, and secondly the scattered electric field is
calculated using the previously obtained internal field. The first stage can be
formulated as a matrix equation Ax = b, with A a dense, complex symmetric
3N×3N interaction matrix, b a known vector of length 3N, and x the wanted
vector of length 3N containing the internal electric field. To solve this matrix
equation is the most demanding part of a CD simulation. The equation is solved
by means of the CGNR method [12], which is a Conjugate Gradient method
suited for complex non-Hermitian matrices.

The scattered field is calculated by summation of the radiation of all N
dipoles at the observation point. For every dipole one must calculate a matrix
vector product Bxi, with B a 3×3 complex matrix and xi a subvector from the
large vector x, with length 3. The main computational difficulty of the CD
method lies in the fact that for realistic simulations the number of dipoles N
has to be very large [8]; typical values for N are 104 to 105. The calculation of the
internal field is the most demanding part of the CD simulation.



We have developed a parallel version of the CD method [8]. Parallelism
was introduced by means of a data decomposition: each processor receives N/p
dipoles (p is the number of processors). In conjunction with the CGNR method,
this decomposition is equivalent with a row-block decomposition of the
interaction matrix A [8]. We have studied in great detail parallel versions of the
CGNR method [13], and concluded that parallel CGNR with a rowblock
decomposition is very efficient if the number of rows (i.e. the number of dipoles)
per processor is large enough.

The CGNR method is an iterative method to solve matrix equations. One
iteration contains two matrix vector products, three vector updates (y = ax + y)
and three inner products (r = x • x). The parallel implementation of the CGNR
method and the complete Coupled Dipole method, using a rowblock
decomposition of the interaction matrix, are described in chapter 4 and 5 of this
thesis.

Assume that one floating point operations takes τcalc µs. The execution
time for the parallel vector update is (remember, all elements are complex
numbers)

Tvu(N,p) = 24
N
p









τcalc

 
, [1]

with x the ceiling function of x. The parallel inner product has an execution
time
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, [2]

with tsa the time to perform the scalar accumulate operation. Finally, the
execution time of the parallel matrix vector product with row block
decomposition of the matrix is

Tmv (N,p) = 3
N
p









 24 N− 2( )τcalc + tvg

 
, [3]

with tvg the time for the vector gather operation. In real CD simulations, the
decomposed matrix A  cannot be kept in local memory of the processors.
Fortunately we can compute the matrix elements as they are needed. This is
exactly what happens in the experiments described in this paper. Therefore, an
additional time to compute the matrix elements has to be included in Eq. 3.
Every 3×3 block in A, describing an interaction between two dipoles, requires
107 floating point operations to be calculated. This results in

Tmv (N,p) = 3
N
p




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


 24 N− 2( )τcalc + 107N

N
p









τcalc + tvg

 
. [4]

Assume that the scattered field is calculated at w observation points (for
instance scattered field as a function of scattering angle). This means that



every processor has to calculate the contribution of its local dipoles to the
scattered field at w observation points. To find the total scattered field, the fields
calculated in all processors must be accumulated, and summed. The total
execution time for the parallel calculation of the scattered fields therefore is

Tsf (N,p) = w
N
p









 66 + 107( )τcalc + tva

 
. [5]

The factor 66 is due to the complex matrix vector product Bxi, and the factor 107
is due to the calculation of the matrix elements of B.

The time for one iteration of the CGNR method is

Titer = 2Tmv + 3Tvu + 3Tip  . [6]

Assume that the CGNR method requires v iteration to find the solution vector
x. Then, the total execution time for one Coupled Dipole simulation TCD is

TCD = v Titer + Tsf + T IO  . [7]

Here we included the time TIO needed for Input-Output operations.
We have now specified the execution time of the parallel Coupled Dipole

simulation in terms of floating point operations and global communications.
Both the global communications and the cost of a floating point operation
depend on the specific programming environment. If we can measure τcalc
and the global communication cost we can estimate the performance and
scalabilty of the parallel simulation.

6.3.2             Implementation

6.3.2.1 General

Starting with the sequential Coupled Dipole method C-source code, the
parallel implementation in Parix and Express is straightforward. First, some
bookkeeping code to establish the data decomposition must be implemented.
Subsequently, the loop indices in the matrix vector products, inner products
and vector updates must be adapted to match the data decomposition. These
additions to the source code are independent of the programming environment,
except for one call to get the number of processors available in the network, and
to find the location of each processor in the network.

Next, the communication routines must be included into the code. Before
executing a parallel matrix vector product the argument vector must be
gathered in each processor. After calculating partial inner products in parallel
a scalar accumulate operation must be performed. Finally, after calculating
the scattered field of the local dipoles in parallel, the resulting field must be
accumulated. The implementation of these routines strongly depends on the
programming environment, and will be discussed in the following sections.

The parallel Coupled Dipole method was first implemented on a Meiko
Computing surface, containing 64 T800 transputers [13]. This implementation



was in Occam, in the Occam Programming System. This code was ported to the
Iserver environment to run on the Parsytec GCel. The structure of the
implementation in Parix (in the language C) strongly resembles the Occam
version. The Parix version was ported to Express, by adapting the
communication routines and part of the bookkeeping code. We will first discuss
the Occam version, followed by the Parix and Express versions of the program.

6.3.2.2 The Iserver-Occam program

The Coupled Dipole method with the rowblock decomposition of the
interaction matrix was implemented on a bi-directional ring topology. The
vector gather operation is implemented as follows:
1) In the first step every processor sends its local part of the vector to the left
and the right processor and, at the same time, receives from the left and the
right processor their local part.
2) In the following steps, the parts received in a previous step, are passed on
from left to right and vice versa, and in parallel, parts coming from left and
right are received and stored.
After p/2 steps (with x the floor function of x), every processor in the ring has
received the total vector. The scalar - and vector accumulate are implemented
likewise, but in addition the processor must summate the received data with its
local data.

The pseudo Occam code for the vector gather operation is given below:

Vector Gather
PAR
  SEQ -- from right to left
    PAR -- start the communication
      send to left
      receive from right
    PAR i=1 FOR "p/2-1" -- pass data from right to left
      send to left which was received from right in the previous step
      receive from right
  SEQ -- from left to right
    PAR -- start the communication
      send to right
      receive from left
    PAR i=1 TO "p/2-1" -- pass data from left to right
      send to right which was received from left in the previous step
      receive from left

The operation consists of two parallel branches, one receiving data from the
right and sending data to the left, the other vice-versa. Each branch consists of
a starting up of the communication, which is the first PAR inside the SEQ
branches, subsequently the gather operation is carried out in the replicated
PAR operation. The Occam language is very powerful to express such
complicated communication patterns. Due to the close relationship between
Occam and the transputer, this part of the code runs very efficiently on a
transputer (see section 6.4). The complete Occam source code of the vector
gather operation however is much more complicated due to the special way we



had to store the vector with complex variables and due to the small load
imbalance which is introduced if the number of dipoles N is not exactly
divisible by the number of processors p.

In our application, all transputers run two processes, a router and a
calculator. Router processes on neighbouring transputers are connected via a
channel. These channels are associated with hardware transputer links via a
configuration file. The router process calls communication routines, such as
the vector gather operation. The calculator process performs the work on the
decomposed data. This work is divided in cycles, at the end of every cycle a
communication step occurs. The calculator sends a command, in the form of a
single character, to the router process. The router process receives this
character, interprets it and issues the desired communication routine. During
this communication step the calculator process is idle. After finishing the
communication, the router process sends a 'ready' signal to the calculator
process, which then proceeds with the next cycle in the algorithm.

The original implementation of the Occam code for the Meiko system was
carried out in approximately 8 months, porting of the code to the Iserver
environment took approximately 3 weeks. The total Iserver-Occam source code
contains 4500 lines.

6.3.2.3 The Parix program

The structure of the Parix implementation, developed in C, is similar to
the Occam program. A virtual ring topology is defined by a call to the virtual
topology library, and two threads are started on each transputer, a calculator
and a router thread. The main program is globally shown below:

main ()
{

/* main of parallel CD method */
MakeRing (...) /* Create Ring Topology */
GetRing_Data (...); /* Extract information of Ring topology */
StartThread (Calculator,...); /* Start the Calculator thread */
StartThread (Router,...); /* Start the Router thread */
Wait for threads to terminate

}

First, the ring topology is established, next the location in the ring is found by
the GetRing_Data call, and the two threads are started.

We could have mimicked the vector gather operation as described in the
previous section using Parix' asynchronous communication calls, as shown
below:

Vector Gather
{

/* start the communication */
Asend (to right);
ARecv (from left);
ASend (to left);
ARecv (from right)



Synchronise, wait until all asynchronous communication is ready

/* pass data from left to right and vice-versa */
for (i=1 to "p/2 -1") {

Asend (to right);
ARecv (from left);
ASend (to left);
ARecv (from right)
Synchronise, wait until all asynchronous communication is ready

}
}

To start an asynchronous communication in Parix is very expensive, and
would result in prohibitive startup costs of this vector gather operation.
Therefore we redesigned the vector gather operation. First, the data is sent in
just one direction, from left to right, and the send and receive operations are
synchronous. To achieve this, the vector gather operation must start two
threads: one to receive data from the left and a second to send the data to the
right. Furthermore, a mechanism to synchronise the receiving and sending
thread must be implemented.

The final vector gather operation is shown below:

Vector Gather
{

StartThread (Send_to_Right,...); /* Start sending thread */
StartThread (Recv_from_Left,...); /* start receiving thread */
Wait for threads to terminate

}

Send_to_Right
{

/*start the communication */
Send (to right);
synchronise with receiving thread

/* pass data from left to right */
for (i=1 to p-1) {

Send (to right);
synchronise with receiving thread

}
}

Recv_from_Left
{

/*start the communication */
Recv (from left);
synchronise with sending thread

/* pass data from left to right */
for (i=1 to p-1) {



Recv (from left);
synchronise with sending thread

}
}

The synchronisation is implemented by establishing a virtual link
between the sending and receiving thread, and communicating ready signals
between both threads. This version is much more efficient, and is used in the
actual Coupled Dipole implementation.

This parallel program was developed using the existing sequential C code,
and the experience we gained during the development of the Occam code. The
parallel program was developed in two weeks, the final version of the
communication routines, as described above consumed two more weeks, and
optimisation of the numerical parts of the application, especially the matrix
vector product, lasted another three weeks. The complete C source code
contains 3800 lines.

6.3.2.4 The Express program

The Express program is based on the optimised Parix C program. The
main structure of the Express program however is very different from the
Parix implementation. Express offers global communication routines which
are actually used in our implementation. These global communications free
the application programmer from the notion of a topology. The Express
program consists of p parallel processes communicating via (global) message
passing routines. The Express kernel takes care of placing the processes on
processors and of the actual routing of messages through the network.

The Express program solely consists of the calculator process. The calls in
the original Parix calculator to the router are replaced by calls to global
communication routines of the Inter Process Communication library of
Express. Of course we could have implemented the communication routines
using constructs like the Parix program, but we feel that a typical application
programmer will use the global communication routines if they are available.
The numerical part of the code remained unchanged.

The vector gather operation is implemented using the exconcat function.
This function concatenates the data of each participating node into a single
buffer. If the data of each participating node is not equally sized (that is if N / p
is not an integer), the resulting buffer must be compacted. The vector gather
operation is now reduced to

Vector Gather
{

exconcat ();
if necessary, compact the resulting buffer

}

The accumulate operations are implemented using the excombine
function which allows each node to combine data from all other nodes using a
user supplied function (i.e. in this case addition).

Express has buffers for the communication routines. These buffers can be



adjusted by the user, and large buffers result in better communication
characteristics. However, it turned out that we had to choose very small buffers
of 1 kbyte to be able to run Express on large partitions. This resulted in a small
degradation of the communication routines.

The time to port the Parix program to Express was three days, including
reorganising the original code as described above. The resulting Express
version of the Coupled Dipole code runs without change on a cluster of
workstations, on the Meiko Computing Surface and the Parsytec GCel. The
total source code contains 2400 lines.

6.4 RESULTS

6.4.1             Description of the measurements

The run time of the parallel Coupled Dipole implementation is determined
by τcalc, and the global communication times (see section 6.3.1). In the Iserver-
Occam and Parix implementation the global routines are explicitly
implemented using (nearest neighbour) point to point communications. The
global routines in Express are also implemented using basic point to point
communication. However, as an application programmer we do not exactly
know how these global routines are actually implemented.

In order to compare the environments we have measured floating point
performance (i.e. τcalc), the basic communication routines, the global
communication routines and finally the execution time of the parallel Coupled
Dipole method.

6.4.2             Floating point performance

We have modelled the floating point performance with just one parameter
τcalc (section 6.3.1). Beside the raw power of the floating point unit of the T805,
this parameter should also include the effects of loop overhead, memory access,
cache behaviour etc. Clearly τcalc depends on the type of operation that is
performed, and one can argue that this single parameter model is to simple to
predict the floating point performance. However, by keeping our specific
application in mind, we can use this single parameter.

The numerical work in the Coupled Dipole method consists of matrix
vector products, inner products, and vector updates. Since the largest portion of
the numerical work is the matrix vector product, we have measured the
execution time of the matrix vector product on 1 processor, as a function of the
number of dipoles N. The parameter τ calc  was extracted from the
measurements by fitting them with equation 4.

Figure 3 shows the results of the measurements, together with the fitted
functions. The τcalc that resulted from the fits are; for Parix τcalc = 1.28 µs/flop,
for Iserver-Occam τcalc = 2.63 µs/flop, and for Express τcalc = 1.72 µs/flop.
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Figure 3: The execution time (in µs) of the matrix vector product on 1 processor, as a
function of the number of dipoles. The dots are the measurements, the lines are the fits; the
solid line is for Parix, the short-dashed line for Iserver-Occam, and the long-dashed line for
Express.

6.4.3             Basic point to point communication

Point to point communication can be described with a linear two
parameter model. The point to point communication time tpp is

tpp = τsetup + n τsend, [8]

with n the number of bytes, τsetup a setup time to initialise and start the
communication, and τsend the send time to transfer 1 byte. Communication in
Occam, and communication on virtual links and virtual topologies in Parix
can be modelled with equation 8. In Express the situation is slightly
complicated by the buffering which occurs during communication. If the
message size is larger than the buffer size an extra overhead is introduced,
which can be modelled by adding a term nbuffer / nτbuffer, with nbuffer  the
buffer size and τbuffer  the extra overhead time.

In Occam all communication is synchronous, and between neighbouring
transputers. We have measured tpp as a function of n. The result were perfectly
linear (data not shown), and were fitted to equation 8 with a least squares
method. We could distinguish three different situations: communication
between transputers inside one atom (see figure 2), communication between
neighbouring transputer in two adjacent atoms inside one cube, and
communication between neighbouring transputer in two adjacent cubes. Table
1 shows the results of the fits, together with estimates of the error. The setup
time is almost constant, the send time increases with increasing "distance"
between the nodes.

which communication τsend (µs/byte) τsetup (µs)

inside atom 0.71 ± 0.01 3.73 ±0.02

between atoms inside cube 0.87 ± 0.01 3.82 ± 0.02

between cubes 0.90 ± 0.01 3.84 ± 0.02
Table 1: Send - and setup times for nearest neighbour point to point communication for
Iserver-Occam.



Parix's virtual links allow point to point communication between any
node, the kernel of Parix routes the messages through the hardware. However,
in the Coupled Dipole implementation (see section 6.3.2.3) the only point to point
communication consists of synchronous send/receive pairs between adjacent
processors in the virtual ring topology. Therefore we have only measured
synchronous point to point communication between neighbouring processors
in a virtual ring topology. In most cases the virtual ring can be mapped onto
the physical two dimensional mesh such that neighbouring processors in the
virtual ring are also neighbouring processors in the physical two dimensional
mesh. We have analysed the same nearest neighbour communications as with
Iserver-Occam. However, we could not distinguish significant differences
between the results; in all cases we find τsend = 0.92 ± 0.02 µs/byte and τsetup = 67
± 2 µs.

The analysis of point to point communication in Express is complicated by
two effects. First, the localisation of the parallel processes is not known, and
therefore we do not know if a communication is between physical neighbouring
processors. Secondly, in the Express program we only use global
communication primitives. Although these global communication functions
are implemented using point to point communication, we do not know in detail
how  these global functions operate. In order to get a picture of the basic
communication performance of Express we therefore measured all possible
point to point communications between node zero and all other nodes in an
Express partition, and analysed the distribution in the resulting setup - and
send times.

Figure 4 shows in one figure the tpp as a function of the number of
transferred bytes for point to point communication between node 0 and nodes 1,
2, and 3 in a 4 processor partition. We can see one fast communication and two
slower communication. Note that we can actually observe two different types of
behaviour in the slower communication if the message size exceeds the buffer
size. The nature of this behaviour is unknown to us. Table 2 shows the results
of fitting the three data sets with equation 8.
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Figure 4: Point to point communication time (in µs) as a function of the number of
transferred bytes, for communication from node 0 to node 1, 2, and 3 in a 4 node Express
partition.



which communication τsend (µs/byte) τsetup (µs)

node 0 -> node 1 0.90 ± 0.01 88.2 ±0.2

node 0 -> node 2 1.54 ± 0.01 21.7 ± 0.2

node 0 -> node 3 1.54 ± 0.01 290 ± 3
Table 2: Send and setup times for the point to point communications in a 4 node Express
partition, see figure 4.
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Figure 5: All measured point to point communication times (in µs) as a function of the
number of transferred bytes for the 256 node Express partition.
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Figure 6: The histogram of the occurrences of send times (in µs/byte) in the 256 node Express
partition; the step size is 0.01 µs/byte.
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Figure 7: The histogram of the occurrences of setup times (in µs) in the 256 node Express
partition; the step size is1 µs.

If the experiment is performed in a 16 processor partition we observe the
same behaviour. After fitting we find 2 links with a fast τsend of 0.9 µs/byte and
a τsetup of 85 µs. All other links have a τsend of ±1.5 µs/byte, and have setup
times clustered around 20 µs and 290 µs. By increasing the partition size we
continue to observe these clear clustering of τsend and τsetup. Figure 5 shows all
measured point to point communications in the 256 node partition. We have
fitted all 255 experiments and generated histograms of τsend and τsetup. The
histograms are drawn in figures 6 and 7.

We clearly observe the clustering of especially the τsend. The two fast
connections have a τsend of 0.88 µs/byte and 1.05 µs/bytes. The rest of the
connections clusters around 1.53 µs/byte, 1.73 µs/byte, and 1.88 µs/byte.
Clustering of τsetup is less obvious, a large peak around τsetup = 48 µs can be
seen, and a very broad distribution between 100 and 300 µs.

6.4.4             Global communication

We have measured the time for the vector gather operation as a function of
the number of processors and as a function of the total vector length n in bytes.
For Iserver-Occam and Parix we exactly know how the vector gather operation
is implemented, and we can formulate a model for the execution time of the
vector gather. In Iserver-Occam we have to perform p/2 times point to point
communications between neighbours on the ring. In each communication step
n/p bytes must be transferred. Therefore,

(tvg)Iserver = p/2 (τsetup + n/p τsend) + τinit . [9]

In equation 9 we have included a term τinit which describes the initialisation
time for the vector gather operation. The setup - and send time are known from
the point to point measurements.

In Parix the vector gather operation is almost identical to the Iserver
version, but now the data is transferred through a mono directional ring and
therefore we have to carry out (p-1) point to point communications. This results
in



(tvg)Parix = (p-1) (τsetup + n/p τsend) + τinit . [10]

Although Express' exconcat function is described for hypercube
architectures by Fox et al. [10, chapter 14], we will not attempt to find a detailed
model for the exconcat as implemented on the two dimensional grid of the
Parsytec GCel. We assume that the exconcat is linear in n because it uses point
to point communications which are linear in n.

For each value of p we have plotted the measured communication time as
a function of n. In all cases the results are linear. We have fitted the
measurements to tvg = τa n + τb; table 3 shows the results of the fit.

p τa (µs/byte) τb (µs)
Iserver Parix Expres

s
Iserver Parix Expres

s
2 - 0.98 0.59 - 9.80 102 2.79 102

4 0.34 0.91 1.75 5.00 102 1.24 103 -92
8 0.42 0.92 4.22 5.34 102 1.98 103 8.32 102

16 0.45 0.93 5.62 6.85 102 3.42 103 1.46 104

32 0.49 1.07 13.2 1.30 103 6.06 103 8.37 104

64 0.49 1.08 19.8 2.82 103 1.21 104 3.13 105

128 0.48 1.13 31.9 6.13 103 2.27 104 1.25 106

256 0.48 1.12 59.3 1.30 104 5.28 104 5.96 106

512 0.48 1.11 - 2.56 104 9.98 104 -
Table 3: Result of fitting the global communication time to a linear model tvg = τa n + τb.

A goodness of fit analysis revealed that the linear model is significant to
describe the experimental data. Only the Express results for p = 4 and p = 8
cannot be fitted accurately with a linear model. Furthermore, for the Express
results on large partitions, the noise level (estimated by repeatedly measuring
the communication time) was very high and the resulting fit parameters also
posses large (± 10 %) errors. The errors in τa and τb for the Iserver and Parix
results are estimated to be smaller than 1 %.

Comparison of the τa and τb for Iserver-Occam and Parix with equations 9
and 10 shows that the observed behaviour is quantitatively in agreement with
the models for the vector gather operation. The parameter τb is in both case
linearly dependent on p. However, fitting τb as a function of p to a line results in
much larger values for e.g. τsetup as those expected from the point to point
communication measurements (data not shown).

The fitted values for τa of Iserver-Occam agree very well with the model,
as can be seen by comparing table 3 with table 1 and equation 9. The agreement
in case of Parix is also satisfying, especially for large p.

Finally, the execution time of the vector gather operation in Express (i.e.
the exconcat function) is, as expected, linear in p. However, we can observe two
fundamental differences with the Iserver-Occam and Parix results. First, the
τa  depends on p, and increases sub linear (probably as Log(p)) in p.
Furthermore, the initialisation τb increases faster than linear with p, which
results for large p in (unacceptably) high initialisation times of e.g. 6 seconds
on a 256 partition. This result is a very good example of the trade-off of
programmability against performance. The Express vector gather operation



consists of just one call to exconcat, and a trivial buffer compacting. However,
the price to be paid is a very bad scaling behaviour, as compared to Iserver-
Occam or Parix.

6.4.5             Performance of the Coupled Dipole implementation

We have measured the execution time for one Conjugate Gradient
iteration, for the calculation of the scattered field and for a total Coupled Dipole
simulation (including I/O) as a function of the number of dipoles N in the
simulation and as a function of the number of processors. The number of
dipoles was limited to 2176 to prevent prohibitive execution times on 1
processor.

Figures 8, 9, and 10 give the execution times as a function of the number of
processors. The time for one iteration is shown for N = 32, N = 552, and N = 2176,
and the time for the calculation of the scattered field is shown for N = 32 and N
= 2176. The time for the total Coupled Dipole simulation is shown for N = 32 and
N = 912. All other problem sizes exhibit a comparable behaviour. Note that in all
following figures the solid lines are for Parix, the short-dashed lines for
Iserver-Occam, and the long-dashed lines for Express. Furthermore, note that
in figures 8, 9, and 10 both the number of processors and the execution time are
drawn on a logarithmic scale.

From these execution times one can calculate speedups and efficiencies.
We will only show the efficiencies of one Conjugate Gradient (N = 32 and N =
2176, figure 11) and of the total Coupled Dipole simulation (N = 32 and N = 912,
figure 12). The efficiency is defined as T(p=1)/(p T(p)), with T(p) the execution
time on p processors.
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Figure 8: The execution time of one iteration of the Conjugate Gradient method, as a
function of the number of processor, for N = 32, N = 552, and N = 2176; the solid line is for
Parix, the short-dashed line for Iserver-Occam, and the long-dashed line for Express.
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Figure 9: The execution time of scattered field calculation, as a function of the number of
processor, for N = 32 and N = 2176; the solid line is for Parix, the short-dashed line for
Iserver-Occam, and the long-dashed line for Express.
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Figure 10: The execution time of a total Coupled Dipole simulation (including I/O), as a
function of the number of processor, for N = 32 and N = 912; the solid line is for Parix, the
short-dashed line for Iserver-Occam, and the long-dashed line for Express.
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Figure 11: The efficiency of one Conjugate Gradient iteration, as a function of the number of
processor, for N = 32 and N = 912; the solid line is for Parix, the short-dashed line for
Iserver-Occam, and the long-dashed line for Exress.
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Figure 12: The efficiency of a total Coupled Dipole simulation (including I/O), as a function
of the number of processor, for N = 32 and N = 912; the solid line is for Parix, the short-
dashed line for Iserver-Occam, and the long-dashed line for Exress.

6.5 DISCUSSION

This paper compares native and generic parallel programming
environments; i.e. Iserver-Occam and Parix versus Express. An exhaustive
comparison between the complete functionality of all three environments is not
very useful. We need a guideline in the form of an application that must be, or
is implemented in these environments. Our particular application, the Coupled
Dipole simulation, relies on a representative subset of the complete
functionality of the environments.

We analysed basic - and global communication routines which are needed
in the Coupled Dipole program, floating point performance, and the execution
time of the application. In this discussion we will compare the environments
on the first three levels, and investigate if we can predict the performance of the
Coupled Dipole program. As will be shown, this is indeed possible and this
result shows that our basic measurements can be used as a heuristic to assess
the merits of parallel programming environments.

The floating point performance, which in our definition is the lumped
sum of floating point unit performance, loop overheads, memory access
overheads and others, basically is a test of the compilers. Remember that we
timed a computational kernel of the Coupled Dipole method, and therefore the
resulting numbers should not be compared with other results for floating point
performance. We can however compare the results of the same computational
kernel compiled by the three different compiles. Parix has the best
performance, with a τcalc of 1.28 µs/flop. Express has the second best
performance with τcalc = 1.72 µs/flop and surprisingly the Iserver-Occam
result is much worse with a τcalc = 2.63. This large τcalc for Iserver-Occam is
probably due to the fact that the code was compiled such that all runtime
cheques are maintained. In the future we will also perform experiments with
the Occam code without runtime cheques and we expect that the results will



compare with the Parix results.
The point to point communication results show the power of Iserver-

Occam. A setup time of only 3.8 µs, compared to 67 µs for Parix, and 50 µs <
τsetup < 300 for Express, shows that the Occam channels are directly mapped
onto the transputer hardware. The abstractions of Parix and Express induce
much larger setup times. The same is true for the sending time, but here the
difference between Iserver-Occam and Parix is not that large, and the fastest
connections in the Express partition also compare very good with Iserver-
Occam and Parix. Still, the situation as drawn in figure 1 is confirmed for the
point to point communication, and the question mark can in this be replaced by
an exclamation mark.

The global communication routine reveals the same picture: decreasing
performance as the price to be paid for decreasing hardware visibility and
increasing programmability. The Iserver-Occam implementation has the
smallest initialisation time and fasted transfer rate. The initialisation time in
Parix is a factor 2 to 4 larger than in Iserver-Occam, and the transfer rate is a
factor 2 smaller.

Except for very small partitions the Express vector gather operation is
always slower than Iserver-Occam and Parix. Furthermore, as shown in
section 6.4.4, the exconcat function has a fundamental different scaling
behaviour, i.e. an increasing τa as a function of p, and a faster than linear
increase of τb as a function of p. This results in transfer rates of 60 µs/byte**

and initialisation times in the order of seconds! In compute intensive
applications like the Coupled Dipole simulation, where the computational work
scales with N2, this does not need a problem (as can be seen in the sequel).
However, for applications where the computational work is linear in N, and
which need such global communications, this scaling behaviour will result in
very bad performance on real massively parallel systems with much more
than say 32 processors.

The global communication can be modelled quantitatively for Iserver-
Occam and Parix. The observed scaling behaviour agrees with the model.
However, using the results of the point to point communication experiments in
the model will result in an under estimation of the global communication time.
Still we are able to estimate the order of magnitude of the global
communication time. We did not attempt to model the exconcat function of
Express. However, based on the relative good results of the Express for the point
to point communication, as compared to e.g. Parix, we did not expect the
relative poor behaviour of the exconcat function.

Figures 8 - 10 show the execution time of one iteration, the scattered field
calculation, and the total simulation, as a function of p and N. The calculation
time is of order O(N2 / p) (see section 6.3.1), whereas the total communication
time is of order O(N). Therefore, for large N and small p we actually observe the
floating point performance of the environments. This is most obvious in figure
8 and 10. The Parix implementation is the fastest, secondly is Express and due
to its poor floating point performance the Iserver-Occam implementation is the
slowest. However, if p is increased for a constant N, the communication time

** Remember however how this transfer rate τa is defined in section 6.4.4. It is not the
same as the linkspeed of the point to point communication, but is defined as the rate at
which the total vector is transferred through the network in the vector gather operation.



becomes more important, and at some point becomes larger than the
calculation time. Due to the very poor performance of the exconcat function the
Express results already show an increase in execution time of one iteration for
e.g. p = 100 and N = 552, whereas the execution time of the Iserver-Occam and
Parix implementation still decrease. For an even larger number of processors
the Parix implementation also shows an increase in execution time and for N =
552 the Iserver-Occam implementation has a comparable execution time as the
Parix implementation.

Scalabilty of the three parallel implementations is much better observed by
looking at the efficiency plots. From figures 11 and 12 we can see that in all
cases the Iserver-Occam has the best efficiency, followed by Parix and finally by
Express. We have to be very careful with this comparison. The Iserver-Occam
spends much more time in the parallel calculations and will therefore have a
better efficiency. Or, if we can decrease τcalc of Iserver-Occam, both the
runtime - and efficiency results will be comparable to those of Parix.

The efficiency plots however allow one important conclusion, which holds
for the parallel Coupled Dipole implementation in all three environments. If
the number of dipoles is very large compared to the number of processors (N / p
>> 1), the efficiency can be very close to 1. However, for Express N/p has to be
much larger than e.g. Iserver-Occam to reach efficiencies close to 1. In that
situation, which is frequently encountered in real production runs, the
execution time is mainly determined by τcalc, and the Parix implementation is
the fastest.

We should note that in principle we can implement the vector gather
operation in Express in the same way as in Parix. This would induce a large
programming overhead, but we may expect from the histograms as reported in
figures 6 and 7 that the vector gather operation will then be comparable to the
Parix results. Finally, next versions of Parix also contain global
communication routines. This greatly increases the programmability of global
communications in Parix, but experiments will have to establish if the same
price as in Express has to be paid.

Knowledge of the floating point performance and the global
communication capabilities of the environments allowed us to interpret and
understand the execution time and efficiency of the application. Let us now
investigate if we can predict the execution time of the Coupled Dipole
application. We only show results for the execution time of one Conjugate
Gradient iteration. We use equations 1, 2, 4 and 6 to calculate Titer as a function
of p and N. The times for the vector gather operation, and for the vector - and
scalar accumulate operation are calculated by using the results of table 3, and
finally τcalc as reported in section 6.4.2 is used. Figures 13 and 14 show the
comparison between the measurements (the points) and theory (the lines: solid
line for Parix, short-dashed line for Iserver-Occam, and long-dashed line for
Express) of the execution time of one Conjugate Gradient iteration, as a
function of the number of dipoles N, for p = 32 and p = 256 respectively.
Furthermore, figure 15 shows the results for Parix and Iserver-Occam for p =
512.

In all cases we can accurately predict the execution time of the Parix and
Iserver-Occam implementation. For small partitions (i.e. p = 32, see figure 13,
but also others) we can also accurately predict the execution time of the
Express implementation. However for larger partitions errors between theory



and experiment as large as 30 % are observed (see figure 14). These errors can
be traced back to the uncertainties in the fit parameters of the exconcat
function, as reported in section 6.4.4.
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Figure 13: The execution time (in µs) on 32 processors, for one Conjugate Gradient iteration,
as a function of the number of dipoles N ; the dots are the measurements, the lines are the
theoretical predictions; solid line for Parix, short-dashed line for Iserver-Occam, and long-
dashed line for Express.
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Figure 14: The execution time (in µs) on 256 processors, for one Conjugate Gradient
iteration, as a function of the number of dipoles N ; the dots are the measurements, the lines
are the theoretical predictions; solid line for Parix, short-dashed line for Iserver-Occam, and
long-dashed line for Express.
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Figure 15: The execution time (in µs) on 512 processors, for one Conjugate Gradient
iteration, as a function of the number of dipoles N ; the dots are the measurements, the lines
are the theoretical predictions; solid line for Parix, and short-dashed line for Iserver-Occam.

6.6 CONCLUSIONS

We can predict the execution time of our specific application in the
different environments using basic performance measurements in these
environments. Therefore, these basic performance measurement, combined
with a time complexity model as presented in section 6.3.1 and information on
programmability and portability, allows us to compare the environments. Table
4 compares the three environments on a scale from good (++) to poor (--). The
environments are judged on programmability (Prog.), on source level
portability between hardware platforms (Port.), on the availability of tools, such
as a performance analyser, debuggers etc. These first three characteristics are
independent of the particular application. The rest of the columns are devoted
to application dependent characteristics. These characteristics are the floating
point performance (F.P.), the communication performance (Comm.), and the
scalability, or efficiency, of the resulting parallel program (Scal.). Depending on
the importance of e.g. portability versus scalability or floating point
performance an overall judgement of the environments can be made.

Prog. Port. Tools F.P. Comm. Scal.
Iserver -- -- -- - ++ ++
Parix +- +- +- ++ + +
Express + ++ ++ + -- -
Table 4: A comparison of the Iserver-Occam, the Parix, and the Express environment on
programmability (Prog.), on source level portability (Port.), on the availability of tools
(Tools), on floating point performance (F.P.), on communication performance (Comm.), and
on scalability, or efficiency, of the resulting parallel program (Scal.).

In conclusion, we have compared the Iserver-Occam, Parix, and Express
parallel programming environments on a Parsytec GCel, by a detailed analysis
of the performance of a particular application. Our approach, in which we start
with an application, isolate the basic (environment) dependent building blocks
which are analysed independently, and combining all information in a time



complexity analysis, allowed us to compare the environments on all relevant
degrees of functionality. Together with demands for portability of the code, and
development time (i.e. programmability), an overall judgement of the
environments can be made.

In general we observe that increasing portability and programmability, in
going from Iserver-Occam, via Parix to Express, results in a degradation of
especially the communication capabilities. The global communication routine
of Express that we tested has a very bad scaling behaviour which clearly shows
up in the larger partitions. This results in poor scalability of the Express
implementation. Fortunately, in real production situations, with large problem
sizes, the application has an efficiency very close to one, and the run time is
mainly determined by the floating point performance. In that situation Parix is
the fastest, but Express, offering portable and easily implementable code, also
has a very good performance.
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Dipolar Unit Size in Coupled Dipole
Calculations of the Scattering Matrix Elements

ABSTRACT

The Coupled Dipole method is widely used to calculate the light scattering matrix S from
arbitrary particles. An important parameter in the model is the size of the dipolar subunits.
Usually a size of ~1/10 to ~ 1/20 of the wavelength of the incident light is sufficient for
accurate calculations. However, it was noted that accurate S34 calculations require much
smaller dipolar subunits. Here we will show that this conclusion is too pessimistic, by
examining the sensitivity of the S34 elements on surface roughness of spherical particles.
Furthermore we will give an example of an accurate S34 calculation with dipolar subunits as
large as 1/10 of the wavelength.

7.1 INTRODUCTION

The Coupled Dipole (CD) method, originally formulated by Purcell and
Pennypacker [1], is a very powerful method to calculate Elastic Light Scattering
from arbitrary particles. The CD method divides a particle in small
subvolumes, which are assumed to behave as ideal dipoles. The electric field on
each dipole, due to the external field and the field radiated by all other dipoles is
calculated. Next the scattered field is obtained by summing the fields radiated
by all dipoles in the observation points. By repeating this calculation for a
parallel - and a perpendicular polarised incident electric field, the complete
(4×4) scattering matrix S of the particle can be computed. Although the basic
concepts of the model are straightforward, the model possesses many
parameters which are topic of active research. An example is the choice of the
polarizability of the dipolar subunits. Lakhtakia gives a review of the CD
method [2].

A very important parameter of the CD method is the size of the dipoles.
The dipoles are placed on a cubic grid, with grid spacing d. The dipoles
therefore are assumed to describe the response of a cube with volume d3. The
computation of the electric field on the dipoles requires solving a set of 3N
equations with 3N unknowns, where N is the number of dipoles. Therefore it is
most advantageous to choose d as large as possible, thus decreasing N. On the
other hand, if d becomes too large the dipole approximation breaks down and
the results of CD simulations will no longer be reliable. By comparing CD
computations on spheres with the exact Mie results, it was concluded that λ/20
≤ d ≤ λ/10 gives a good agreement between the simulated and exact differential



cross sections (e.g. [1]).
Singham [3] calculated the S34 element with the Coupled Dipole method.

By comparing the calculations with exact results for a sphere, it was concluded
that accurate S34 simulations require much smaller dipoles, with d ~ λ/45
(depending on the refractive index of the particle), which is two to four times
smaller than for accurate S11 simulations. Since N scales as d-3, the total
number of dipoles would be 8 to 64 times larger as for accurate S11 calculation.
If the system of equations is solved with an O(N2) iterative method, this would
require a factor of 64 to 4096 longer execution times on a computer. This is a
very discouraging conclusion. Especially if one realises that the S34 element is
known to be very sensitive for slight changes in structure and optical constants
of a particle (see e.g. [4, 5]), and therefore of main interest. In this paper we
show that Singham's conclusion is too pessimistic.

7.2 RESULTS

Singham simulated a sphere with size parameter α equal to 1.55 and
relative refractive index m equal to 1.33. This sphere was simulated with the
CD method containing 123 up to 5575 dipoles. The CD results for the S11
elements are already in good agreement with the Mie results for the model
with 123 dipoles (d ~ λ/10). However, even for 5575 dipoles (d ~ λ/45) the results of
the CD simulation of the S34 element are still not in good agreement with the
Mie results, although the CD results do approximate the Mie results if the
number of dipoles is gradually increased [3]. Based on this result, and on
simulations with m = 1.1 and 1.02 it was concluded that accurate S3 4
computation require much smaller dipolar subunits.

In order to verify these results we conducted CD simulations with a much
larger number of dipoles, but with d = λ/10. Figure 1 shows a CD calculation†

(the dots) of the S34 element of a sphere with α = 10.7 and m = 1.05; the number
of dipoles was 20672 and d = λ/10. The agreement with the Mie calculation (line)
is excellent. This example, and other calculations indicate that if the number of
dipoles in the simulation is large enough, S34 can be calculated with the same
accuracy as the other matrix elements, with λ/20 ≤ d ≤ λ/10.

† the calculation was performed with our implementation of the CD method on a 512 node
Parsytec GCel computer.
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Figure 1: S34/S11 as a function of the scattering angle, for a sphere with α = 10.7 and m =
1.05.; the line is the Mie calculation, the dots are the CD calculations with d = λ/10 (20672
dipoles).

This counter example shows that another, overlooked argument must
enter the discussion. The coarseness of the discretization seems to be the key
issue. The CD method discretizes a particle with small cubes (assuming
dipoles on a cubic grid). This means that we simulate the sphere by a spherical
particle with a rough surface. If the same particle is discretised using more
dipoles, the surface roughness will be smaller and the particle will be more
closely approximated. We investigated the influence of surface roughness on
the α = 1.55 sphere, and show that the decrease of the surface roughness of the
discretised particle, as the number of dipoles is increased, obscures the
conclusions of Singham.

In the CD method we discretised a sphere as follows: place dipoles on grid
points with co-ordinates [(i+1/2)d, (j+1/2)d, (k+1/2)d], with i,j,k integers,
demanding that

(i+1/2)2 + (j+1/2)2 + (k+1/2)2 ≤ l2 . [1]

The number l determines the number of dipoles in the discretization, e.g. l = 3
results in N = 136 and l = 5 gives N = 552. The size of the dipoles determines the
radius of the simulated sphere, via rsphere = (3N/4π)1/3d (the equal volume
sphere [1]). The discretised sphere has a radius r = rsphere[1 ± O(ε)] with ε a
measure of the surface roughness. In our case the radius is modulated with an
amplitude of approximately d/2, therefore ε = 0.5 (3N/4π)-1/3.

Consider a particle with "radius"

r = r0 [1.0 - (2l)-1 cos(4lθ)], [2]

with θ an azimuthal angle. This is a spherical particle with mean radius r0
and roughness 1/(2l). If l is increased, the roughness decreases, but at the same
time the frequency of the modulation is increased (the cosine term). This is
exactly what happens if we increase the number of dipoles in the discretization
of the sphere by increasing l in equation 1. Figure 2 shows a cross section of the
rough spheres for l = 3 and l = 5.



l = 3 l = 5

Figure 2: cross section of rough spheres, defined by equation 2, with l equals 3 and 5
respectively.

Note that (2l)-1 is approximately equal to the estimated roughness of the
discretised sphere. We calculated the S11 and S34 elements of a random
distribution of this rough sphere for l = 3, l = 5, and l = 17, and adjusted r0 such
that in all cases the volume of the particle was the same and equal to the test
sphere with α = 1.55. The scattering properties of this axis-symmetric particle
were calculated with the T-matrix method, using the computer programs of
Barber and Hill [6]. This calculation serves as a model of the surface roughness
of the discretised sphere.

Figure 3 and 4 give the results for S34 and S11 for the l = 3 and l = 5 rough
sphere, together with Mie calculation for the α  = 1.55 sphere. The l = 17
calculation is indistinguishable from the Mie calculation.
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Figure 3: The S34 element as a function of the scattering angle for a sphere with α  = 1.55
(line), and of equal volume rough spheres with l = 3 (short dash) and l = 5 (long dash); the
refractive index was 1.33.
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Figure 4: The S11 element as a function of the scattering angle; rest as in figure 3.

7.3 DISCUSSION AND CONCLUSIONS

The influence of surface roughness is most obvious for the S34 element.
The S11 element of the rough sphere deviates slightly from the sphere in the
backscattering direction. For l = 5 the results are almost equal to the sphere.
The same is true for the S12 and S33 element (data not shown). However the
roughness has a much more pronounced effect on the S34 element, as is
obvious from figure 3. Therefore, a coarse discretization of the sphere in the CD
method can result in larger errors in the S34 element, compared to errors in
the other scattering matrix elements.

If we compare the calculations on the rough sphere with the CD
calculations of Singham (figures 1 and 2 in reference [3]) we see the same
trends. For a small number of dipoles (123, comparable with l = 3), the S34
computation deviates significantly from the exact Mie result, in the same way
as the rough sphere (see figure 3). The S11 result of the CD computation already
is very good, with only a deviation from the exact Mie result in the
backscattering directions. If the number of dipoles is increased in the CD
calculations, the S11 result is in excellent agreement with the exact Mie
calculation. The S34 result is approaching the exact results, but the agreement
is far from good.

Surface roughness has a strong effect on the S34 element. Therefore, if one
wants to exploit the CD method to calculate the S34 element of a smooth
particle, surface roughness induced by the discretization of the particle must be
very small. This is achieved by using a large number of dipolar subunits (large
l). If the particle is small (e.g. the α = 1.55 sphere), this results in relative small
dipolar subunits. However, for larger particles (see figure 1) the subunits can
be much larger. In that case S34 calculations with comparable accuracy as S11
calculations can be achieved with dipolar subunits with λ/20 ≤ d ≤ λ/10.
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Chapter 8

COUPLED DIPOLE SIMULATIONS OF
SCATTERING OF SPHERES ILLUMINATED

BY A HIGHLY FOCUSED LASERBEAM

FIRST RESULTS AND COMPARISON WITH GENERALISED LORENZ-MIE
THEORY



Coupled Dipole Simulations of Scattering of
Spheres illuminated by a highly focused

Laserbeam

first results and comparison with generalised Lorenz-Mie theory

ABSTRACT

We have included a new element into Coupled Dipole simulations of Elastic Light
Scattering: scattering by a Gaussian beam. The feasibility of the Coupled Dipole method to
accurately describe this situation is investigated. We compare Coupled Dipole simulations of
scattering from spheres located in a Gaussian beam with the generalised Lorenz-Mie theory.
Although the range of these first tests is limited, it can be concluded that the Coupled Dipole
method is capable to describe scattering from Gaussian beams by arbitrary particles.

8.1 INTRODUCTION

Elastic Light Scattering (ELS) is an important technique to assess
morphological or optical information from scattering particles. Especially if
measurements must be non-invasive, or if particles cannot be sampled and
placed under a microscope (e.g. white bloodcells in Centrifugal Elutriation
equipment [1], or interstellar dust particles [2]), ELS is a very powerful method.
Unfortunately, in most cases the particles in question are not spherical [see e.g.
3] and Mie theory to describe the ELS cannot be used. Furthermore, in many
cases approximate theories to describe the scattering process are also not
appropriate [see e.g. 4].

For example, we want to simulate ELS from human white bloodcells and
bonemarrow cells. The simulations will assist to define optimal light scattering
experiments to distinguish between subsets of white bloodcells (e.g. between the
three forms of Granulocytes), or between malign and healthy cells.
Approximate theories for ELS, such as Rayleigh-Debye-Gans (RDG) scattering
[5], are sometimes very successful to describe certain properties of ELS from
white bloodcells. We showed that a modified form of RDG scattering [6] can
describe anomalous scattering behaviour of osmotically active Lymphocytes
very well [7], even giving rise to new biophysical insights concerning the
biomechanics of Lymphocytes [8]. However, the polarisation of the scattered
light cannot be described with these approximate theories [4]. It are exactly
these properties that play a key role to distinguish between subsets of white



bloodcells, as was shown very elegantly by for instance de Grooth et al. [9], who
measured depolarisation of the scattered light to differentiate between
Eosinophilic - and Neutrophilic Granulocytes.

Observations like those above initiated much research to methods capable
to describe ELS from arbitrary shaped particles. One such method is the well-
known Coupled Dipole (CD) method, which was originally developed by Purcell
and Pennypacker [10]. We want to use this method for simulations of ELS from
human white bloodcells. We developed a version of the CD method, suitable for
parallel computing [11, 12], and showed that the complete scattering matrix
can be calculated accurately with simulations containing a large number of
dipoles [11, 13, 14].

Another constraint implicitly present in most ELS theories was also
removed during the last two decades. Textbook theories all assume an incident
plane wave [see e.g. 5]. In many practical situations however this assumption
is not valid. For instance, in our experimental studies of ELS from human
white bloodcells we apply flowcytometry [4, 8]. In a flowcytometer cells are
forced, by means of a technique called hydro-focusing, to pass through the focal
point of a strongly focused laser beam one-by-one [15]. Therefore, our goal is to
simulate ELS from arbitrary particles in focused beams. Other examples can
be found in scattering from particles in optical traps [e.g. 16, 17, 18, 19].

A number of groups have published methods and results of scattering of
beams of light by particles, with most emphasis on laserbeams operating in the
(Gaussian) TEM00 mode. For instance, Yeh et al. [20] introduced an incident
focused beam into the T-matrix method, thus developing a method to find
solutions of scattering of sharply focused beams by arbitrary particles. Barton
et al. [21] developed a method to find internal and near surface fields of spheres
irradiated by a focused beam, and Gouesbet et al. [22] developed a
generalisation of the Lorenz-Mie theory (coined GLMT), to describe scattering
from spheres located at an arbitrary position in a Gaussian beam. Chevaillier
et at. [23] included a Gaussian beam into the Fraunhofer approximation, and
calculated near-forward scattering of glass spheres located in any position in
the beam. Later this approximation was compared with the GLMT theory [24,
25]. Esam et al. [26] studied Morphology Dependent Resonances in droplets
situated off-axis in a Gaussian beam, and Schaub et al. [27] studied the internal
field in methanol droplets as a function of the local diameter of a focused
laserbeam. Recently, Lock [28] has reviewed much of the work done in this area
and has applied his formalism, based on the work of Gouesbet et al. and Barton
et al. to find high-order rainbows in the far-field scattered intensities by
illuminating a sphere with an off-axis highly focused laserbeam.

In principle the CD method allows to simulate scattering by an arbitrary
incident field* (see section 8.2). However, all CD simulations published to date**

assume incident plane waves. Therefore, in this paper we study the feasibility
of the CD method to simulate scattering by focused laserbeams. We simulate
scattering of strongly focused laserbeams from a sphere with the CD method,
and compare the results with analytical calculations using the generalised
Lorenz-Mie theory (GLMT).

* Arbitrary in the sense that the incident field must be a solution of the Maxwell
equations.

** Known to the authors.



Section 8.2 shortly introduces the Coupled Dipole method and the
generalised Lorenz-Mie theory, the results of CD simulations and comparisons
with GLMT calculations are made in section 8.3. Finally, section 8.4 and 8.5
give a discussion and conclusions.

8.2 THEORY

8.2.1             The Coupled Dipole Method

Consider an arbitrary particle, located at the origin of a Cartesian
coordinate system. The particle is illuminated by a monochromatic
electromagnetic field E0(r). This external field can have any form which is
consistent with the Maxwell equations. The exact form is given in section 8.2.2.
The wavelength is λ, and for simplicity we assume that the incident field is
travelling in the positive z direction. Our task is to calculate the scattered
electric field Es(r) in the full solid angle around the particle.

The CD method divides the particle in N subvolumes. The size of a
subvolume must be small enough to ensure that its response to an
electromagnetic field is the response of an ideal induced dipole. Recommended
values in the literature range from λ /20 < d < λ /10, with d the size of a
subvolume [13]. The field at ri  radiated by a dipole located at rj is [29]

E(ri ) = 1

4πε0

k2 (n × p) × n
eikr

r
+ 3n(n ⋅ p) − p[ ] 1

r3
− ik

r2





 eikr





; [1]

k is the wavenumber, defined by k = 2π/λ; p is the induced dipole moment; n is
the direction vector defined by

n = r / r , and r = ri − rj  ; r =|r|.

The induced dipole moment is assumed to depend linearly on the electric field
on the dipole:

p = ααE , [2]

αααα is the polarizability tensor. We will assume an isotropic polarizability :a = αI,
with I the identity matrix and α a scalar polarizability. The field at ri  radiated
by a dipole located at rj, with an isotropic polarizability αj, can now be written
as



E(ri ) =
α j

4πε0
FijE j

 
, [3]

with the functional Fij defined by equations 1 and 2.
The electric field on dipole i (1 ≤ i ≤ N), due to the external field E0(r) and

the field radiated by all other dipoles is

E(ri ) = E0(ri ) + 1

4πε0
α jFijE j

j≠i

N

∑
 
, 1 ≤ i ≤ N. [4]

The summation in equation 4 runs over all dipoles, except dipole i. This term,
the so-called eigenterm, is neglected in the original CD method. As was shown
by several authors [e.g. 30, 31], this term is required to satisfy energy
conservation in the scattering process. However, neglecting this term has a
very small effect on the calculated scattering matrix [31]. The exact form of this
eigenterm still is under discussion [see e.g. 31, 32, 33]. Introduction of an
eigenterm in the numerical simulation is trivial. Keeping all this in mind, the
eigenterm will be neglected in the sequel of this paper. To simplify even more,
we assume that the particle is homogeneous, i.e. αi = α, for all values of i.

Equation 4 defines a set of 3N equations for the 3N unknowns (Ex(ri),
Ey(ri), Ez(ri)). After solving these equations, the scattered electric field Es is
calculated by summing the fields, radiated by the dipoles, at the observation
point robs:

Es (robs ) = α
4πε0

Fobs,iE(ri )
i=1

N

∑
 
. [5]

The dipoles are placed on a cubic grid with grid spacing d. The diameter of
the spherical dipoles is equal to the grid spacing d. The Cartesian co-ordinates
of the middle point of the dipoles is [(k+1/2)d, (l+1/2)d, (m+1/2)d], with (k,l,m)
integer numbers. Here we will simulate scattering by a homogeneous sphere.
In that case the (k, l, m) numbers are found demanding that

(i+1/2)2 + (j+1/2)2 + (k+1/2)2 ≤ l2 [6]

The number l determines the number of dipoles in the discretization, e.g. l = 3
results in N = 136 and l = 5 gives N = 552. In all experiments the diameter of the
dipoles was d = λ/10 [13]. The wavelength was 488 nm and the refractive index
was 1.05. The radius of the simulated sphere is found by demanding that the
volume of the sphere equals Nd3 (i.e. the equivalent sphere [10]). Therefore by
adapting l and/or d any sphere can be simulated.

The scalar polarizability is calculated using the Claussius-Mossotti
relation [29]

α = 4πε0

3n

m2 − 1

m2 + 2  
, [7]



with m the relative refractive index of the particle and n the number of dipoles
per unit volume, i.e.

n = d-3.

8.2.2             Description of a Gaussian beam

We use the theory of electromagnetic beams of Davis [34] to describe the
electric field of a focused laserbeam. This theory embeds the very successful
theory of laserbeams which is based on a paraxial approximation to the scalar
wave equation [e.g. 35]. Furthermore, it resolves an apparent paradox in
traditional paraxial beam theory which was first noticed and solved by Lax et
al. [36]. In paraxial beam theory one assumes that the electric field if plane
polarised in e.g. the x-direction. Under this assumption, the Maxwell equations
dictate that the field must be independent of the x-coordinate. For plane waves
this condition is fulfilled, but in the paraxial approximation Gaussian
solutions are found in the transverse direction, in spite of the fact that ∂Ex/∂x
has to be zero. Lax et al. showed that these Gaussian solutions are consistent
zero-order solutions of the Maxwell equation [36]. Furthermore, they
established a first order correction, a small longitudinal component in the field.

Davis' theory is more attractive, because of its relative simplicity
compared to the work of Lax et al. Furthermore, it reproduces the results of
Lax et al., and it gives explicit expressions for second and third order
corrections to the field and a method to get to even higher order correction if
necessary. Barton et al. derive expressions for the fifth order corrections [37].
Davis starts with the proposal that the electromagnetic vector potential A is
linearly polarised in e.g. the x direction; A = (A,0,0). The only non-vanishing
component A obeys a scalar wave equation. The equation is solved by putting A
= ψ(r)exp(-ikr), subsequent scaling of the equation in the transverse (x and y)
direction with the beamwaist radius ω0 and in the longitudinal (z) direction
with the diffraction - or spreading length l = kω02, and expanding ψ as

ψ = ψ0 + s2ψ2 + s4ψ4 + ...,

with s a small parameter defined as s= ω0/l = 1/kω0. The function ψ0 is the well
known fundamental mode solution from paraxial beam theory. Davis also gives
expressions for ψ2, and expressions for the electric fields up to third order in s.

In this paper we only use the fields to first order in s to be consistent with
the GLMT (see section 8.2.3), but higher order corrections are easily included
into the CD simulations (see also section 8.4). Realising that we assume an
exp(ikr) spatial dependence for the electric fields in the CD method, and
converting the results of Davis to S.I. units, the electric field to first order in s is,

ΕΕx = ψ0 exp(ikz) , [8]

ΕΕy = 0  , [9]



ΕΕz = − 2Qx

l
ΕΕx

 
, [10]

with

ψ0 = iQexp(−iQr†
2 ) , [11]

Q = 1
i + 2z†  

, [12]

r†
2 = x†

2 + y†
2
 , [13]

and x†, y†, and z† the scaled co-ordinates

x† = x / ω0 , y† = y / ω0  , z† = z / l  . [14]

The focal point is assumed to be located at the origin. In the CD simulations
however the particle is located in the origin of the coordinate system, relative to
which the scattered fields are calculated, and the focal point is shifted to
another position (x0, y0, z0). The expressions for the electric field change in an
obvious way by this translation of the position of the focal point. As shown by
Gouesbet et al. [22], this description of the electric field will give errors of O(s2).

8.2.3             The Generalised Lorenz-Mie Theory

The Generalised Lorenz-Mie theory (GLMT), developed by professor
Gouesbet and his group, describes elastic light scattering from a homogeneous,
isotropic, non-magnetic sphere located at an arbitrary position in a Gaussian
laserbeam [22]. This theory introduces a new set of coefficients, the gn,TE

m  and

gn,TM
m  (n = 1,… ,∞;  m = -n,… ,n), into the familiar expressions for Lorenz-Mie

scattering. These GLMT coefficients describe the effect of the Gaussian beam.
Gouesbet et al use Davis' description of a Gaussian beam (see previous section)
to lowest order in s (equations 8 - 10). This is called order L of approximation.
As was shown by Gouesbet et al., this order L of approximation will result in
errors of O(s2), which will be negligible in most cases.

In general, the complete double set of GLMT coefficients is needed,
however, if the particle is located on the axis of the beam it is found that

gn,TM
1 = gn,TM

−1 = 1
2

gn
  
,
  

gn,TE
1 = gn,TE

−1 = − i

2
gn

  
,

and for |m| > 1 the coefficients are zero. Furthermore, in the limit of an
infinite beamwaist radius (a plane wave), the gn coefficients are equal to 1, and
the GLMT reproduces the Lorenz-Mie formula. We will not reproduce the
expressions for the scattered electric fields, and the gn,TM,TE

m  coefficients, as they



can be found in the original papers on the subject (reference 22, and references
therein). However, it should be noted that the gn,TM,TE

m  coefficients are double
quadratures, containing highly oscillatory functions. Computation of the
coefficients is far from trivial, e.g. direct evaluation of the quadratures on a
IBM 3090 mainframe takes 30 seconds up to more than 2 hours of CPU time
[38].

Beside direct evaluation, two more efficient methods were introduced to
calculate the GLMT coefficients [38, 39]. The first method is rigorous, and relies
on a finite series description, and the second method is an approximation
which relies on van de Hulst's localisation principle. The localised formulation
is most simple and efficient, and is readily included into existing Lorenz-Mie
programs.

In the localised approximation, the small longitudinal element of the
incident beam is not present, and therefore it should be seen as an
approximation of the order L description of the GLMT. Gouesbet et al. call this
the order L- description. According to van de Hulst's localisation principle [40]
a term of order n in the Mie series corresponds to a ray passing the origin at a
distance (n + 1/2)(λ /2π ). In the original formulation of the localised
approximation [41], for a sphere located in the centre of the beam, the gn factors
were associated with the amplitude of the Gaussian beam at a distance (n +
1/2)(λ /2π) from the origin. Later, more rigorous methods to derive the
expressions for the localised approximation were introduced. The localised
approximation was extensively studied for a sphere located on-axis of the beam
[38]. The gn factors in the localised approximation compare very well with
rigorous calculations, except for extreme small values of the beamwaist radius
(ω0 = λ).

In case of an off-axis location of the sphere, a localised approximation was
also developed [39]. This formulation relies on a rather unorthodox method to
find correct expressions for needed normalisation constants. However, the
validity of the conjecture leading to the normalisation constants, and the
validity of the resulting localised approximation was shown numerically.

In the sequel of this paper we will present GLMT calculations using a
computer program which was kindly provided to us by professor Gouesbet.
This program includes the localised approximation to calculate the GLMT
coefficients.

8.3 RESULTS

The difference between plane wave scattering and scattering from a
focused beam is most prominent if ω0/r is small, with r the radius of the sphere
[see e.g. 41]. Therefore we should try to simulate the largest possible sphere, in
combination with the smallest possible beamwaist radius.

The largest CD simulation that we can carry out at this moment is for l =
20, yielding a sphere discretised with 33552 dipoles [11]. This limit is due to
memory limitations of the parallel computer. On the 512 node Parsytec GCel of



IC3A* the l = 20 simulations runs for approximately 11 hours. As was shown in
e.g. reference 13 the size of the dipoles can be as large as λ/10. With this value of
d we find for the radius of the equivalent sphere r =2.0λ. This corresponds to a
scattering parameter α = 2πr/λ = 12.556. In the sequel we put λ = 488 nm,
corresponding to the most intense blue line of an Ar-ion laser.

According to van de Hulst [40], the amplitudes of an and bn in the Mie
series are large for n < α, drop sharply for n near α, and become virtually zero
when n exceeds α by 2 or 3. This observation is clarified by his localisation
principle. From this we can conclude that if it is possible to calculate the
gn,TM,TE

m  coefficients accurately for n ≤ α + 3, the resulting scattered field is also
very accurate, since the contributions of n > α  + 3 in the Mie series, and
therefore also in the GLMT series, can be neglected.

As was shown by Gouesbet et al. [reference 38, table V], the localised
approximation to calculate gn, with the sphere positioned at the beam waist
centre and λ = 500 nm, gives errors smaller than 1 % for n ≤ 1 if ω0 = λ, for n ≤
10 if ω0 = 2λ, n ≤ 28 if ω0 = 4λ, and n ≤ 80 if ω0 = 8λ.

Therefore, if we put ω0 = 4λ = 1.952 µm, the localised approximation of the
GLMT will give good results for our sphere with α = 12.556 located at the
beamwaist centre. Furthermore, from reference 38 and 39 we may conclude
that in this case the localised approximation still yields reliable results for
small displacements of the sphere. To find a numerical value for these small
displacements we rely once more on the localisation principle. A term with n =
28, for which the localised approximation still yields accurate results,
corresponds to a ray at a distance of (n + 1/2)(λ/2π) = 2.2 µm from the z axis.
Now we assume that if the particle is shifted in say the x direction with no
more than 2.2 µm, the resulting gn,TM,TE

m  coefficients calculated with the
localisation principle are still accurate.

Therefore, we simulate scattering of a focused laserbeam with λ = 488 nm
from a sphere with r = 0.976 µm, resulting in α = 12.556. The refractive index of
the sphere was 1.05. The focused laserbeam is travelling in the positive z-
direction, and the beamwaist centre (the focal point) has co-ordinates (x0, y0, z0).
The laserbeam is plane polarised in the x-direction and the field is described by
equations 8 - 10. The middle point of the sphere is located at the origin. We
calculate the intensity of the scattered field in the far field region in the y-z
plane, as a function of the scattering angle θ. The configuration is drawn in
figure 1. Table 1 gives an overview of the simulations that have been carried
out.

Numb
er

ω0
(µm )

x0
(µm )

y0
(µm )

z0
(µm )

1 1000 0.0 0.0 0.0
2 1.952 0.0 0.0 0.0
3 1.952 0.976 0.0 0.0
4 1.952 1.952 0.0 0.0
5 1.952 1.952 1.952 1.952

* IC3A is the Interdisciplinary centre of Computer based Complex systems Research
Amsterdam; for more information contact the authors.



6 1.952 3.904 0.0 3.904
7 0.976 0.0 0.0 0.0
8 0.976 0.976 0.0 0.0
9 0.976 1.952 0.0 0.0

Table 1: An overview of the CD simulations

In experiment number 1 a CD simulation was performed with a very
large beamwaist. This should effectively result in plane wave scattering. In
figure 2 the results of this CD simulation are presented (the dots), together with
the results of a Mie calculation (dashed line). Figures 3 until 10 show the
results of experiments 2 until 9. In all these figures the dots are the results of
the CD simulation, the straight line the corresponding GLMT calculation and
the dashed line the plane wave (Mie) scattering result of figure 2.

X

Z

Y

x
0

y
0

z0

ω
0

θ

robs

Figure 1: The scattering configuration; the centre of the sphere (radius = 0.976 µm; refractive
index = 1.05) is positioned at the origin of a Cartesian coordinate system. The Gaussian
laserbeam, with beamwaist radius ω 0 , is travelling in the positive z-direction, the
wavelength is 488 nm and the beam is plane polarised in the x-direction. The beamwaist
centre has co-ordinates (x0, y0, z0). The intensity of the scattered light (in the far-field
region) is measured in robs, as a function of the scattering angle θ.
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Figure 2: Results of experiment 1 (see table 1); ω0 = 1000 µm, x0 = 0.0 µm, y0 = 0.0 µm, z0 =
0.0 µm, the dots are the CD simulation, the dashed line is the plane wave Mie calculation.
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Figure 3: Results of experiment 2 (see table 1); ω0 = 1.952 µm, x0 = 0.0 µm, y0 = 0.0 µm, z0 =
0.0 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.
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Figure 4: Results of experiment 3 (see table 1); ω0 = 1.952 µm, x0 = 0.976 µm, y0 = 0.0 µm, z0 =
0.0 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.
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Figure 5: Results of experiment 4 (see table 1); ω0 = 1.952 µm, x0 = 1.952 µm, y0 = 0.0 µm, z0 =
0.0 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.
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Figure 6: Results of experiment 5 (see table 1); ω0 = 1.952 µm, x0 = 1.952 µm, y0 = 1.952 µm, z0
= 1.952 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the
dashed line is the plane wave Mie calculation.
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Figure 7: Results of experiment 6 (see table 1); ω0 = 1.952 µm, x0 = 3.904 µm, y0 = 0.0 µm, z0 =
3.904 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.
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Figure 8: Results of experiment 7 (see table 1); ω0 = 0.976 µm, x0 = 0.0 µm, y0 = 0.0 µm, z0 =
0.0 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.
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Figure 9: Results of experiment 8 (see table 1); ω0 = 0.976 µm, x0 = 0.976 µm, y0 = 0.0 µm, z0 =
0.0 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.
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Figure 10: Results of experiment 9 (see table 1); ω0 = 0.976 µm, x0 = 1.952 µm, y0 = 0.0 µm, z0
= 0.0 µm, the dots are the CD simulation, the solid line is the GLMT calculation, the dashed
line is the plane wave Mie calculation.

8.4 DISCUSSION

A need to compare CD simulations with exact solutions definitely exists,
as was once again pointed out by Flatau et al. [42]. They specifically want to
compare CD simulations with exact solutions for non-spherical particles.
However, we concentrate here on another aspect of CD simulations, i.e. the
ability to include arbitrary incident fields into the simulations. We have
compared CD simulations of a spherical particle illuminated by a Gaussian
beam with GLMT calculations, using the localised approximation to calculate
the GLMT coefficients.

Unfortunately, both the localised approximation, and our current CD
implementation pose their limits on the comparison that we can make. The
localised approximation gives a lower limit on the size of the beamwaist radius
ω0, and our current CD simulations are limited to ~35000 dipoles, resulting in a
simulated sphere of r = 0.976 µm. Therefore, our results should be viewed as
first and limited, but still convincing experiments to show the ability of the CD
method to describe scattering from Gaussian beams.

Our experiments can be grouped in four sets. Set one (experiment 1 from
table 1) is a check of the plane wave limit of the CD simulation, set two
(experiments 2 - 4) are experiments with ω 0  = 1.952 µ m and small
displacements of the sphere. In this region the localised approximation is
known to be valid. Set three (experiments 5 and 6) consists of two experiments
with the same ω0, but with larger displacements of the sphere. Finally set 4
(experiments 7 - 9) comprises simulations with ω0 = 0.976 µm. The localised



approximation is now no longer guaranteed.
Figure 2 shows that the CD simulations converge to the plane wave limit

for very large ω0. The CD results are identical to CD simulations with a plane
wave incident beam (data not shown). The results compare very well with the
Mie calculations, except for the backscattering directions.

The effect of focusing the beam to ω0 = 1.952 µm is not very dramatic (see
figure 3). Still, minor shifts in e.g. the position of the first minimum, and a
decrease of intensity of the maxima are accurately described by the CD
simulation, and agree very well with the GLMT calculations. By gradually
shifting the focal point in the x-direction (see figures 4 and 5) the overall
intensity of the scattered light decreases, and the position of especially the first
few minima shift to larger scattering angles. Again, the CD simulations agree
very well with the GLMT calculations. From this set of experiments we can
conclude that the CD method is able to accurately describe scattering from a
focused laserbeam. However, in future research we will extend the domain of
our tests considerably in order to provide more data to support this conclusion.

Figures 6 and 7 show the results for larger displacements of the focal
point. In figure 6 the beamwaist centre is shifted in both the x, y and z direction
with 1.952 µm, so within the tentatively derived 2.2 µm range. The results
compare very well with the GLMT calculations. For more extreme
displacements, as in experiment 6 (figure 7) the CD simulations are in error
with the GLMT calculations. However, because we expect that the localised
approximation is no longer valid in this region, we cannot conclude whether
the CD simulations are in error. For this we need better reference data (e.g.
GLMT calculations, using finite series to calculate the GLMT coefficients).

Finally figures 8 - 10 show the results for simulations and GLMT
calculations for a very small beamwaist radius (ω0 = 2λ = 0.976 µm). In the
forward scattering the agreement is good, especially for the case of the particle
located at the beamwaist centre (figure 8). The agreement between the CD
simulations and GLMT calculations becomes gradually worse if the beamwaist
centre is shifted in the x-direction. One should be very careful to draw
conclusions from this last set of simulations. The difference between plane
wave scattering and the focused beam with the particle in focus (figure 8) is
now much more prominent, and thus provides a much better test case for
focused beam scattering. Furthermore, the CD simulation is in good
agreement with the GLMT calculation , except for θ > 1200. However, as was
argued in the previous section, in this case the localised approximation will
introduce errors larger than 1% into the calculation of the gn factors. It is very
tempting to conclude that the localised approximation still yields accurate
results, but this would reverse the role of the CD data and the GLMT data. The
only accurate conclusion is that the CD simulations and the GLMT calculation
using the localised approximation still agree very well for this extremely
focused beam. Reliable reference data however is needed to decide whether  the
results are (indeed) correct. Of course one can speculate, based on the good
results of the other experiments (1 - 6), that the CD simulations are correct for
this highly focused beam, and that the limits of the localised approximation
show up in the last three experiments.

An important point to remember in these calculations is the accuracy of
the description of the Gaussian beam itself. In experiment 2 - 6 the beamwaist
radius was ω0 = 4λ, thus s = 1/(kω0) = 1/(8π). Our first order description of the



incident field is accurate to 1.6E-3. However, in the case of the last 3
experiments, ω0 = 2λ, thus s = 1/(4π), and the fields are accurate to 6E-3. In
these highly focused beams one should probably have to include higher order
terms into the description of the beam. In future research we will investigate
the importance of these higher order terms for such highly focused beams, by
using the results of Barton et al. [37], and examine if the CD method can handle
that situation as accurate as the first order approximation of the Gaussian
beam.

However, in practical situations, such as our flowcytometric experiments,
ω 0 is much larger than the wavelength and higher order terms in the
description of the Gaussian beam can be neglected. In that case we expect,
based on the results presented in this work, that the CD method with a first
order description of the Gaussian beam can accurately simulate the scattering
of arbitrary shaped particles illuminated by a focused beam.

8.5 CONCLUSIONS

We have included a new element into Coupled Dipole simulations,
scattering from incident fields other than plane waves. It was shown that the
CD method can describe scattering of Gaussian beams from spheres very
accurately. Unfortunately, the range of our tests was limited and more
research is required. However, from these first results we can conclude that
the CD method is able to describe the scattering of particles illuminated by a
focused beam.
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CONCLUDING REMARKS

9.1 INTRODUCTION

Are we able to simulate Elastic Light Scattering from human white blood
cells, or more general, from typical biological particles using the Coupled
Dipole method? The material presented in this thesis offers several viewpoints
to answer this question. In retrospect, and keeping the original project
description [1] in mind, we will address the question from a Physical,
Numerical, and Computational point of view. In all three cases the answer to
the question will be "Yes!", but the road which has to be travelled remains a
long one. Therefore, looking into the future, we should also contemplate on the
applicability of such Coupled Dipole simulations.

9.2 A PHYSICAL POINT OF VIEW

The largest Coupled Dipole simulations reported to date contain 30.000 to
80.000 dipoles (see chapter 5 and [2]). These simulations were compared with
analytical results, and the agreement was very good. One may speculate that
this agreement remains as good if the number of dipoles is increased to what is
needed to model human white blood cells (O(106), see chapter 5).

The Coupled Dipole method has a strong foundation in the macroscopic
Maxwell equations, from which it can be derived directly (see chapter 1).
Therefore we can expect that the model will yield reliable results for larger
particles. The main problem is to find accurate values for the refractive index
of the particles of interest.

All our calibration experiments as described in chapters 5 and 8 assume a
relative refractive index of 1.05. If we want to simulate white blood cells, a good
method to assess the refractive index of the constituents of a white blood cells
must be available. Fortunately, Biology provides a plethora of techniques to
separate cell compartments. Refractometer techniques can then be used to
measure the refractive index of the cell compartments. Furthermore, we must
be able to get the morphology of the particle in the computer. Here, advanced
microscopy, combined with state of the art image processing technology, can be
used to our advantage.

A combination of optical trapping techniques, confocal scanning
microscopy of the trapped particle, and measurement of light scattered from
the trapped particle, would result in a unique experiment to validate the
Coupled Dipole simulations. Experiments to measure light scattering from
white blood cells in optical traps are currently being set up by the group of de
Grooth of the University of Twente. Furthermore, microwave analogy
experiments, which we planned in the original proposal [1], provide important



calibration data for Coupled Dipole simulations. Unfortunately the facilities to
perform such experiments are no longer available. However, the data which
was gathered in the many microwave analogy experiments can of course be re-
used to validate simulation methods like the Coupled Dipole method.

In conclusion, we expect that the Coupled Dipole method is able to
simulate scattering from white blood cells. Moreover, comparison with
analytical models and techniques to validate Coupled Dipole simulations of real
particles can be developed.

9.3 A NUMERICAL POINT OF VIEW

From a numerical point of view, the Coupled Dipole simulation mainly is
a very large set of coupled linear equations, with a complex, dense, symmetric,
and diagonally dominant system matrix (see chapter 1 and 4). As was argued
in chapter 4, merely the size of the matrix forces us to use iterative methods to
solve the matrix equation. The question now is: if we increase the dimension of
the systems matrix to O(106), can we still solve the matrix equation? More
specifically, will the iterative method converge and is the result of the iteration
accurate enough.

Convergence and accuracy of our iterative method, a Conjugate Gradient
method (see chapter 4), is determined by the spectrum of eigenvalues of the
system matrix, and its associated condition number. Although we tried to
estimate condition numbers for small interaction matrices, the results were
not conclusive and could not be extrapolated to large matrix dimensions.

However, indirect evidence shows that the Coupled Dipole interaction
matrix is a well conditioned system. First, the number of iterations needed for
convergence is very small (see chapter 5: only 19 iteration for a matrix with
dimension 105). Furthermore, the resulting scattered fields are very accurate
compared to the analytical models. This implies that the result of the
Conjugate Gradient iteration is also accurate.

The mathematician Alan Edelman publishes yearly accounts of Dense
Numerical Linear Algebra. In his 1993 account, entitled "Large Dense
Numerical Linear Algebra in 1993, the Parallel Computing Influence" [3],
Edelman says "The electromagnetics community is by far the leader for large
dense linear systems solving", and "the largest linear systems right now are
generated from moment methods; these matrices are quite well-conditioned".
The Coupled Dipole interaction matrix is equal to those generated from
moment methods in electromagnetics, and therefore we are lead to expect that
it is possible to scale the matrix to very large dimensions and still find accurate
results.

Off course, as was also mentioned by Edelman, we should include
condition estimators into the Coupled Dipole method. These estimates can be
used to find an order of magnitude of the numerical error. Furthermore, they
can be used to decide if preconditioning techniques have to be used to decrease
the number of iterations and increase the numerical accuracy. In chapter 4 we
shortly mentioned the polynomial preconditioners, which are promising



candidates as parallel preconditioners. Development of a (polynomial)
preconditioner, suited for the Coupled Dipole interaction matrix, will be very
important. This is especially true if one wants to use the Coupled Dipole
method for large arbitrary particles, with refractive indices larger than those of
typical biological material. As shown in chapter 4, in that situation the number
of iterations needed for convergence rises sharply.

9.4 A COMPUTATIONAL POINT OF VIEW

9.4.1             Parallel Computing

We have parallelised the Coupled Dipole model for MIMD-DADM systems,
and we have shown that the efficiency of our parallel Coupled Dipole method
can be very close to 1 if the number of dipoles per processor is large enough (e.g.
on the Parsytec GCel, programmed using Parix, larger than 30). Therefore, we
can successfully exploit the enormous power of massively parallel systems.

However, the memory efficiency of the current implementation is not very
good (see chapter 1). The largest simulations that can be carried out on the
Parsytec contain 33.000 dipoles. If we would increase the number of nodes by a
factor 2 and with that increase the complete memory in the system also with a
factor 2, the maximum number of dipoles can hardly increase. This is due to
the fact that most of the local memory of every node is consumed by the large
buffer to store the argument vector in the parallel matrix vector product. This
implies that we are not able to scale (i.e. increase) the problem size with the
number of processors, which can result in very bad scalability (see chapter 1).
Furthermore, a situation where the maximum problem size is determined by
the local memory of one node instead of the total memory available in the
massively parallel system, is off course highly undesirable.

This situation can be solved in two ways. First, we can redesign the
parallel implementation to a grid decomposition of the interaction matrix
implemented on a cylinder topology. According to chapter 4 this parallel
version of the Coupled Dipole method will also posses very good scalability
properties. Furthermore, this implementation does not need a buffer of size 3N
(with N the number of dipoles), but buffers of size 3N/(p)1/2. Therefore, if the
number of processors is increased with a factor 2, the maximum problem size
can be increased with a factor (2)1/2.

The second, and in our opinion most preferable solution, is to redesign the
parallel matrix vector product with the column block decomposition of the
matrix, to a systolic-like matrix vector product as described by e.g. Dontje et al.
[4]. Here, one basically interleaves the vector gather operation and the matrix
vector product. Every time a packet of 3N/p elements is received it is
immediately processed by the matrix vector product. In this way we only need a
buffer of length 3N/p instead of length 3N. The memory efficiency of this



implementation is εm = 1, resulting in a perfectly scalable algorithm, both from
memory usage and performance point of view.

9.4.2             Mflop/s, Gflop/s, or Tflop/s?

Despite all previous arguments, the Coupled Dipole method has one huge
drawback (as was shown in chapter 5): execution time. Even on the fastest
available systems (1024 node CM-5, capable of 60 Gflop/s on the linpack [5]) the
execution times for systems with O(106) dipoles will be prohibitive. However,
simulation of Light Scattering from human white blood cells requires such
large systems. Therefore, is there any hope that we will ever be able to reach
our goals?

The prohibitive execution time is due to the quadratic scaling of the
execution time with the number of dipoles, which in its turn can be attributed
to the matrix vector product. If want to carry out simulations containing O(106)
dipoles, the simulation must have a much smaller complexity, preferably
linear in the number of dipoles.

As was noticed in chapter 5, the matrix vector product is a calculation of
the electric field on the dipoles, due to radiation from all other dipoles.
Therefore, the Coupled Dipole method can be viewed as a many-body
simulation.

Many-body methods possess an algorithmic complexity of O(N2/2) if all
pairwise interactions are calculated (the direct algorithm). For realistic
simulations the number of interacting particles has to be very large. The
O(N2/2) complexity of the direct algorithm is a severe restriction for these large
scale many-body simulations. Even on the most powerful (massively parallel)
supercomputers the execution times of realistic many-body simulations will
soon rise above acceptable (or affordable) values.

The conclusion is that the algorithmic complexity of the direct method
must be reduced. Some interaction potentials (e.g. Lennard-Jones) allow the
use of cut-off techniques, which can reduce the complexity to O(N). However, for
long range interaction potentials, such as the dipolar interaction potential, cut-
off techniques cannot be applied. A very important class of "clever" many-body
algorithms, which reduce the complexity to O(N LogN) or even to O(N), are the
so-called hierarchical tree methods [6, 7]. In these methods the interaction is
not calculated for each particle pair directly, but the particles are grouped
together in a hierarchical way, and the interaction between single particles
and this hierarchy of particle groups is calculated.

Appel [8] introduced the first hierarchical tree method, which relies on
using a monopole (centre-of-mass) approximation for computing forces over
large distances, and on sophisticated data structures to keep track of which
particles are sufficiently clustered to make the approximation valid. This
method achieves dramatic speedups compared to the direct algorithm, but is
less efficient when the distribution of particles is relatively uniform and the
required precision is high. Barnes and Hut applied this method in simulations
of interacting galaxies [9]. The next step, which was set by Greengard [6], is the
use of multipole expansions to compute interaction potentials or forces. This
approach is known as the Fast Multipole Method (FMM), and requires an
amount of work proportional to N to evaluate all pairwise interactions to any
degree of accuracy. Up till now FMM algorithms are developed for scalar 1/r



potentials in two and three dimensions [6, 10]. Salmon presents an overview of
hierarchical tree methods [7].

We have to develop a FMM algorithm for the vector potential of radiating
dipoles (in three dimensions). This FMM algorithm should replace the matrix
vector products in the iterative solver of the Coupled Dipole simulation. Now the
interaction between the dipoles is not calculated for each dipole pair directly,
but the dipoles are grouped together in a hierarchical way, and the interaction
between single dipoles and this hierarchy of dipolar groups is calculated. In
this way the complexity of the complete CD simulation can be reduced to O(N).
It should be noted that N has to be large to reach a cross over in execution time
between the direct algorithm and the FMM algorithm. The FMM algorithm
should be build along the same lines as Greengard's FMM algorithm for
scalar 1/r potentials in three dimensions [6]. The algorithm will consist of three
steps (we omit the mathematical and algorithmic details):

1] form multipole expansions for the vector potentials of the hierarchy of
dipolar groups (upward pass);

2] compute the interactions between all dipoles at the coarsest possible level
in the hierarchy; for a given group of dipoles in the hierarchy this is
accomplished by including interactions between groups which are well
separated from each other, and whose interactions are not accounted for
at a higher stage in the hierarchy (downward pass);

3] using the resulting vector potential on each dipole, calculate the wanted
electric field.

Hierarchical tree methods have proven to be very efficient and accurate,
and well suited to be used in realistic many-body simulations. However,
efficient implementation on High Performance Computing platforms,
specifically massively parallel distributed memory computing systems, if far
from obvious. Salmon has successfully implemented the Barnes-Hut method
on the Caltech hypercubes [7]. The FMM is implemented on shared memory
multicomputers [11], and on the connection machine CM-2 [12]. Furthermore,
Leathrum and Board report on FMM implementations on a number of
platforms, such as the Intel Touchstone, transputers, Encore Multimax, and
distributed workstations running PVM and Linda [13].

The importance of hierarchical many body methods, and especially
efficient implementations of such methods on massively parallel systems, is
also recognised in the Netherlands. Recently a pilot project was started [14]
which will, among others, concentrate on methodologies to find efficient
implementations of hierarchical methods on massively parallel distributed
memory computers. Off course, this research is directly applicable in the
parallel Coupled Dipole method.

9.5 A LOOK INTO THE FUTURE

Do we still need large scale simulations such as the Coupled Dipole



method? Yes, the light scattering - and optical particle sizing community needs
these simulations. The most recent Optical Particle Sizing conference [15]
contained several applications of the Coupled Dipole method, which all suffered
from the fact that they could not simulate large enough systems. Furthermore,
many groups rely on analytical or approximate theories to describe scattering
from arbitrary particles, although they never were able to test if they are
allowed to do so. Coupled Dipole simulations may serve as a validation of such
approximate theories.

Our own application of scattering from human white blood cells can also
still profit from these simulations. Although flowcytometric experiments are
very powerful to distinguish human white blood cells (see chapter 1), the
wealth of information hidden somewhere in the light scattering matrix is just
waiting to be uncovered, either by experimentation and/or by simulation.

Which role will be reserved for Coupled Dipole simulations? As was
argued in chapter 5 and in reference 16, Coupled Dipole simulations up to 1.000
dipoles can be performed routinely on (networks of) powerful workstations.
Systems containing O(104) dipoles need much more computing power, and
orientational averages will become prohibitive. Finally, even larger systems
will need innovations as described in section 9.3. Even if we are able to design
an efficient parallel implementation of an O(N) Coupled Dipole method, it
remains to be seen if such programs can routinely be used to simulate very
large system with O(106) dipoles. Probably, these simulations will only be
carried out sporadically and serve as calibrations or validations of less compute
intensive methods.

Finally, is it possible to find alternatives for the Coupled Dipole method? A
popular method, which was developed in conjunction with radar-cross section
calculations, is direct integration of the Maxwell equations in the time domain
[17]. These finite difference time domain (FDTD) methods are very efficient to
solve scattering of pulses of electromagnetic radiation. However, this method is
also applicable to plane wave scattering. Especially if we are dealing with weak
scatterers (i.e. small refractive indices) the FDTD approach can be much more
efficient than the Coupled Dipole method. Furthermore, one can speculate if
the accuracy which is offered by the Coupled Dipole method is absolutely
necessary in our application, where all fine structure in the differential cross
section will be damped by biological variability of the particles. If one accepts
larger errors in the final solution, one can stop the integration of the FDTD
algorithm after only a few cycles of the incident wave, thus reducing the
computations drastically.

9.6 CONCLUSIONS

The Coupled Dipole method allows, in principle, simulation of Elastic
Light Scattering of arbitrary particles. In practice however the calculation
times to solve the Coupled Dipole equations soon become prohibitive. We have
developed a parallel Coupled Dipole simulation system, which allows us to
perform these simulations on modern massively parallel computing platforms,



but also on clusters of workstations. Now very large CD simulations can be
performed on high end systems, and light scattering from smaller arbitrary
particles can be simulated on workstations or personal computers. In the near
future, hierarchical methods will open the way to simulations containing
O(106) dipoles, thus allowing us to simulate scattering from human white blood
cells.
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SUMMARY

Elastic Light Scattering is a powerful technique to asses morphological or
optical properties of small particles. We apply this technique to identify subsets
of human white blood cells and bonemarrow cells. Previous work has shown
that the polarisation of the scattered light is an indispensable element to
achieve this goal, but also that exact - and approximate theories of Elastic Light
Scattering cannot accurately describe the complete scattering matrix of
arbitrary particles.

The main part of this thesis describes the development and
implementation of a computer experiment to simulate Elastic Light Scattering
from arbitrary particles. The basis of this simulation is the Coupled Dipole
method. Although this method can describe the complete scattering matrix of
arbitrary particles, it has very large computational requirements when applied
to particles with scattering parameters in the order of 30, like white blood cells
scattering visible light. Parallel computers can offer this computational power
if the parallel program has good scalability properties.

The scalability of the kernel of the Coupled Dipole method, calculation of
the electric field on the dipoles using a Conjugate Gradient iteration method, is
thoroughly investigated. Several data decompositions of the interaction matrix,
implemented on three different processor network topologies were analysed.
This complexity analysis showed that a rowblock decomposition of the matrix,
implemented on a ring of processors, will result in efficiencies very close to 1 if
the number of rows per processor can be kept large enough. Furthermore,
actual run time measurements of the parallel Conjugate Gradient method
agree within 5 % with the theoretical time complexity formulas.

The parallel Coupled Dipole method was implemented using the parallel
Conjugate Gradient kernel, and the scalability properties were measured.
These measurements confirm that our parallel Coupled Dipole
implementation has a very good efficiency and therefore is able to exploit the
power of massively parallel computers.

The parallel Coupled Dipole method is applied to simulate the scattering
of spheres. These simulations serve as a further calibration of the computer
experiment. First, the influence of the size of the dipoles on the quality of
Coupled Dipole simulations of the scattering matrix elements is investigated.
We conclude that the size can be as large as λ / 10 provided that the surface
roughness of the discretised particle is small enough. Secondly a new element
is introduced into Coupled Dipole simulations, scattering of focused beams
from arbitrary particles. Scattering by focused beams is highly relevant for the
simulation of Elastic Light Scattering in flowcytometers. By comparing the
simulation results with generalised Lorenz Mie calculations, it is shown that
the Coupled Dipole method can predict scattering from focused beams.

Finally this thesis contains a continuation of our experimental studies of
the Elastic Light Scattering from human white blood cells. First, we elaborate
on the hypothesis that the nuclear volume of osmotically stressed lymphocytes
has to change in order to explain observed Elastic Light Scattering data. It is
shown that this hypothesis is correct. Furthermore, we propose a possible
mechanism of this nuclear growth, a mechanical link between the cell
membrane and the nuclear envelope, and model this system by means of a



straightforward one-dimensional visco-elastic system.
Finally, we have continued the effort to measure the complete scattering

matrix of particles in flowcytometers. The polarisation properties of the
scattered light contain a wealth of information, and are absolutely necessary to
distinguish all subsets of human white blood cells and bonemarrow.  In co-
operation with de Grooth of the University of Twente, the Netherlands, we
extended the first experiments carried out by Sloot. During calibration of the
new equipment we encountered an exiting phenomenon: Lissajous loops in
scatterplots of spheres. These loops are investigated by a computer simulation
of the experiment. We show that these loops originate from the extreme
dependency of the intensity of the sideward scattered light on the radius of the
spheres.




