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The Coupled Dipole method is widely used to calculate the light scattering matrix S from

arbitrary particles. An important parameter in the model is the size of the dipolar subunits.

Usually a size of ~1/10 to ~ 1/20 of the wavelength of the incident light is sufficient for

accurate calculations. However, it was noted that accurate S34 calculations require much

smaller dipolar subunits. Here we will show that this conclusion is too pessimistic, by

examining the sensitivity of the S34 elements on surface roughness of spherical particles.

Furthermore we will give an example of an accurate S34 calculation with dipolar subunits

as large as 1/10 of the wavelength.

The Coupled Dipole (CD) method, originally formulated by Purcell and Pennypacker,1 is

a very powerful method to calculate Elastic Light Scattering from arbitrary particles. The CD

method divides a particle in small subvolumes, which are assumed to behave as ideal dipoles.

The electric field on each dipole, due to the external field and the field radiated by all other

dipoles is calculated. Next the scattered field is obtained by summing the fields radiated by all

dipoles in the observation points. By repeating this calculation for a parallel - and a

perpendicular polarized incident electric field, the complete (4×4) scattering matrix S of the

particle can be computed. Although the basic concepts of the model are straightforward, the

model possesses many parameters which are topic of active research. An example is the choice

of the polarizability of the dipolar subunits. Lakhtakia gives a review of the CD method.2

A very important parameter of the CD method is the size of the dipoles. The dipoles are

placed on a cubic grid, with grid spacing d. The dipoles therefore are assumed to describe the

response of a cube with volume d3. The computation of the electric field on the dipoles requires

solving a set of 3N equations with 3N unknowns, where N is the number of dipoles. Therefore

it is most advantageous to choose d as large as possible, thus decreasing N. On the other hand,
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if d becomes too large the dipole approximation breaks down and the results of CD simulations

will no longer be reliable. By comparing CD computations on spheres with the exact Mie

results, it was concluded that λ/20 ≤ d ≤ λ/10 gives a good agreement between the simulated

and exact differential cross sections.e.g. 1

Singham3 calculated the S34 element with the Coupled Dipole method. By comparing the

calculations with exact results for a sphere, it was concluded that accurate S34 simulations

require much smaller dipoles, with d ~ λ/45 (depending on the refractive index of the particle),

which is two to four times smaller than for accurate S11 simulations. Since N scales as d-3, the

total number of dipoles would be 8 to 64 times larger as for accurate S11 calculation. If the

system of equations is solved with an O(N2) iterative method, this would require a factor of 64

to 4096 longer execution times on a computer. This is a very discouraging conclusion.

Especially if one realizes that the S34 element is known to be very sensitive for slight changes

in structure and optical constants of a particle,see e.g. 4, 5 and therefore of main interest. In this

letter we show that Singham's conclusion is too pessimistic.

Singham simulated a sphere with size parameter α equal to 1.55 and relative refractive

index m equal to 1.33. This sphere was simulated with the CD method containing 123 up to

5575 dipoles. The CD results for the S11 elements are already in good agreement with the Mie

results for the model with 123 dipoles (d ~ λ/10). However, even for 5575 dipoles (d ~ λ/45)

the results of the CD simulation of the S34 element are still not in good agreement with the Mie

results, although the CD results do approximate the Mie results if the number of dipoles is

gradually increased.3 Based on this result, and on simulations with m = 1.1 and 1.02 it was

concluded that accurate S34 computation require much smaller dipolar subunits.

In order to verify these results we conducted CD simulations with a much larger number

of dipoles, but with d = λ/10. Figure 1 shows a CD calculation† (the dots) of the S34 element

of a sphere with α = 10.7 and m = 1.05; the number of dipoles was 20672 and d = λ/10. The

agreement with the Mie calculation (line) is excellent. This example, and other calculations

indicate that if the number of dipoles in the simulation is large enough, S34 can be calculated

with the same accuracy as the other matrix elements, with λ/20 ≤ d ≤ λ/10.
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† the calculation was performed with our implementation of the CD method on a 512 node Parsytec GCel

computer.
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Figure 1: S34/S11 as a function of the scattering angle, for a sphere with α = 10.7 and m = 1.05.; the line is the

Mie calculation, the dots are the CD calculations with d = λ/10 (20672 dipoles).

This counter example shows that another, overlooked argument must enter the

discussion. The coarseness of the discretization seems to be the key issue. The CD method

discretizes a particle with small cubes (assuming dipoles on a cubic grid). This means that we

simulate the sphere by a spherical particle with a rough surface. If the same particle is

discretized using more dipoles, the surface roughness will be smaller and the particle will be

more closely approximated. We investigated the influence of surface roughness on the α = 1.55

sphere, and show that the decrease of the surface roughness of the discretized particle, as the

number of dipoles is increased, obscures the conclusions of Singham.

In the CD method we discretized a sphere as follows: place dipoles on grid points with

coordinates [(i+1/2)d, (j+1/2)d, (k+1/2)d], with i,j,k integers, demanding that

(i+1/2)2 + (j+1/2)2 + (k+1/2)2 ≤ l2 . [1]

The number l determines the number of dipoles in the discretization, e.g. l = 3 results in N =

136 and l = 5 gives N = 552. The size of the dipoles determines the radius of the simulated

sphere, via rsphere = (3N/4π)1/3d (the equal volume sphere1). The discretized sphere has a

radius r = rsphere[1 ± O(ε)] with ε a measure of the surface roughness. In our case the radius

is modulated with an amplitude of approximately d/2, therefore ε = 0.5 (3N/4π)-1/3.

Consider a particle with "radius"

r = r0 [1.0 - (2l)-1 cos(4lθ)], [2]

with θ an azimuthal angle. This is a spherical particle with mean radius r0 and roughness 1/(2l).

If l is increased, the roughness decreases, but at the same time the frequency of the modulation

is increased (the cosine term). This is exactly what happens if we increase the number of

dipoles in the discretization of the sphere by increasing l in equation 1. Figure 2 shows a cross

section of the rough spheres for l = 3 and l = 5.

l = 3 l = 5

Figure 2: cross section of rough spheres, defined by equation 2, with l equals 3 and 5 respectively.
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Note that (2l)-1 is approximately equal to the estimated roughness of the discretized sphere. We

calculated the S11 and S34 elements of a random distribution of this rough sphere for l = 3, l =

5, and l = 17, and adjusted r0 such that in all cases the volume of the particle was the same and

equal to the test sphere with α = 1.55. The scattering properties of this axis-symmetric particle

were calculated with the T-matrix method, using the computer programs of Barber and Hill.6

This calculation serves as a model of the surface roughness of the discretized sphere.

Figure 3 and 4 give the results for S34 and S11 for the l = 3 and l = 5 rough sphere,

together with Mie calculation for the α  = 1.55 sphere. The l = 17 calculation is

indistinguishable from the Mie calculation.
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Figure 3: The S34 element as a function of the scattering angle for a sphere with α = 1.55 (line), and of equal

volume rough spheres with l = 3 (short dash) and l = 5 (long dash); the refractive index was 1.33.
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Figure 4: The S11 element as a function of the scattering angle; rest as in figure 3.

The influence of surface roughness is most obvious for the S34 element. The S11 element

of the rough sphere deviates slightly from the sphere in the backscattering direction. For l = 5

the results are almost equal to the sphere. The same is true for the S12 and S33 element (data

not shown). However the roughness has a much more pronounced effect on the S34 element,

as is obvious from figure 3. Therefore, a coarse discretization of the sphere in the CD method

can result in larger errors in the S34 element, compared to errors in the other scattering matrix

elements.

If we compare the calculations on the rough sphere with the CD calculations of Singham

(figures 1 and 2 in reference 3) we see the same trends. For a small number of dipoles (123,

comparable with l = 3), the S34 computation deviates significantly from the exact Mie result, in

the same way as the rough sphere (see figure 3). The S11 result of the CD computation already
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is very good, with only a deviation from the exact Mie result in the backscattering directions. If

the number of dipoles is increased in the CD calculations, the S11 result is in excellent

agreement with the exact Mie calculation. The S34 result is approaching the exact results, but

the agreement is far from good.

Surface roughness has a strong effect on the S34 element. Therefore, if one wants to

exploit the CD method to calculate the S34 element of a smooth particle, surface roughness

induced by the discretization of the particle must be very small. This is achieved by using a

large number of dipolar subunits (large l). If the particle is small (e.g. the α = 1.55 sphere),

this results in relative small dipolar subunits. However, for larger particles (see figure 1) the

subunits can be much larger. In that case S34 calculations with comparable accuracy as S11

calculations can be achieved with dipolar subunits with λ/20 ≤ d ≤ λ/10.
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