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Abstract. We introduce the concept of Grid Speedup as a scalability metric for 
parallel applications on the grid and analyze it theoretically. It is shown that 
classes of applications exist for which good grid speedups can be expected. The 
class of stencil-based applications is taken as an example. The Grid computing 
community is challenged to demonstrate large grid speedups on real Grid com-
puting environments. 

1   Introduction 

We consider ‘traditional’ tightly coupled parallel applications in Grid Computing en-
vironments. This is the Computation-Centric class of Grid application [1] which, ac-
cording to Allen et al. “turned to parallel computing to overcome the limitations of a 
single processor, and many of them will turn to Grid computing to overcome the limi-
tations of a parallel computer.” However, common wisdom is that running a tightly 
coupled parallel application in a computational grid is of no general use because of 
the large overheads that will be induced by communications between computing ele-
ments (see e.g. [2]) and the inherent unreliable nature of a computational Grid. 

We introduce the concept of Grid Speedup and analyze it theoretically on a Homo-
geneous Computational Grid. To do so we assume a two-level hierarchical decompo-
sition. We will show that in terms of Grid Speedup good performance of Computation 
Centric Grid applications is possible, provided that workloads per Computing Ele-
ment remain at a sufficiently high level. This large grain size demand is off course not 
very surprising and well known from parallel computing. Moreover, we introduce 
grid fractional overhead functions that are sources of grid efficiency reductions. Fi-
nally, we will consider one specific example and analyze for which problem sizes grid 
computing is beneficial. 

This new scalability metric will be useful to predict performance of applications on 
a computational grid, and may be used in e.g. intelligent grid resource managers to fa-
cilitate more advanced selection of resources for applications requesting computa-
tional power from a Grid. 
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2   Notation 

We use the notation of parallel work Wi as in [3-5]. So, Wi represents the amount of 
work (expressed e.g. in Mflop) with a degree of parallelism (DOP) i. Define ∆ as the 
computing capacity of a processor (expressed in e.g. Mflop/s). The amount of work 
executed while running a part of the program with DOP = i is 

ii itW ∆= , (1) 

where ti is the total amount of time during which DOP = i. The total amount of work is 
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with m the maximum DOP in the application. Now assume that the workload W is 
executed on p processors. The execution time for the portion of work with DOP = i is 
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Notice that in the formulation of Eq. [3], possible load imbalance is implicitly 
taken into account. The total execution time of workload W on p processors, Tp(W), 
equals 
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with the (communication) overhead for a p processor system for completion of the 
workload W defined as Q(W,p), and understanding that Q(W,1) = 0. 

In this paper we assume the simplest possible workload: Wi = 0 if  i ≠ p, i.e. a fully 
parallel workload. In this case we find 
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and from this we derive expressions for relative speedup Sp and efficiency εp  
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with f(W,p) the fractional overhead function 
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3   Hierarchical Decomposition 

We will now consider the case of a parallel application with a workload W running in 
a grid-computing environment. We assume that within the Virtual Organization (VO) 
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in which the application is running, the workload is decomposed among C Computing 
Elements (CE’s), and that each CE in itself is some HPC system (typically a parallel 
computer with p nodes). Such hierarchical resource models were already proposed in 
[6,7] So, we see a two-level hierarchical decomposition appearing. First, the workload 
is decomposed between C CE’s, and next within each CE the portion of workload is 
again decomposed between the processors within a specific CE (see Fig. 1). Examples 
of Grid Enabled parallel applications applying such hierarchical decompositions can 
be found in the recent literature, e.g. [8]. 

Q1(W,C) Level 1 

Level 0 

Level 2 Q2(W/C,p) 

W 

W/C W/C
C CE’s 

p processors p processors
 

Fig. 1. The hierarchical decomposition 

Referring to Fig. 1, we identify three levels. This first is level 0, which is the full 
non-decomposed workload W. This level would be the sequential computing level. 
The second level is level-1 decomposition, i.e. the division of the workload between 
the CE’s. This decomposition induces a level-1 overhead Q1(W,C), e.g. communica-
tion between CE’s. Next, within each CE the workload W/C is again decomposed be-
tween the p processors of the CE. On this level we again encounter an overhead 
Q2(W/C,p). If we have one CE (i.e. C = 1 and understanding that Q1(W,1) = 0) we re-
turn to the standard parallel case where Q2(W,p) now plays the role of Q(W,p) of the 
previous section.1 

Please note that by now we have made the implicit assumption that each CE re-
ceives an equal share of the total workload, and that each CE has the same amount of 
processors. We will work under this assumption. Moreover, we will assume that each 
processor in each CE has the same computing capacity ∆, and that within each CE the 
same overhead function Q2(W,p) applies. We refer to this situation as a Homogeneous 
Computational Grid (HCG). The formalism can be extended to Heterogeneous sys-
tems in a straightforward way, using e.g. concepts from [9]. 

                                                           
1  Clearly we can write Q2(W,p) = Q(W,p). 
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4   Grid Speedup 

We denote the execution time on a HCG with C CE’s and p processors per CE as 
TC,p(W), and with the definitions as introduced earlier we find 
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The question now is how to interpret Eq. 8. As already noted in Section 1, common 
wisdom is that running a application decomposed over several CE’s is not very use-
full because of the large overheads that will be induced by the communication be-
tween the CE’s. A first look at Eq. 8 confirms this, the extra overhead expressed by 
Q1(Wp,C) contains it all. However, by running the application on more than one CE, 
we also have more processors to do all the work (a factor C more, reducing the time 
for pure computation by a factor C). Moreover, the overhead per CE is changed, from 
Q2(Wp,p) in the case of running on one CE to Q2(Wp/C,p) in the case of running on C 
CE’s. Although we do not know this function without turning to specific applications, 
at this point it is clear that a more detailed analysis is needed. 

One can now easily compute the parallel speedup of the application on the HCG. 
One can however question to what extend this speedup is a good metric to assess the 
added value of decomposing an application over CE’s. Let us recall the reason why par-
allelism was introduced. Researchers wanted to use parallel computers for two reasons. 

1. They were compute bound, meaning that on one processor the computing time 
was unacceptably high, and more computing power was needed. 

2. They were memory bound, meaning that the memory consumption of the 
application was so large that it would not fit in memory of a single processor. 
Using more processors (assuming distributed memory computers here) would 
not only increase the computational power, but also the amount of available 
memory. 

In many cases both reasons applied. To assess the quality of the parallel applica-
tion, the speedup/efficiency metric was applied. Also, scaled speedup models were in-
troduced, to cope with the fact that researchers will immediately increase the amount 
of computational work once they get more computing power and available memory. 

The bottom line of the previous discussion is that in order to analyze the added 
value of parallelism, one compared the execution time of the parallel application with 
a reference value: the execution time on a sequential computer. Let us now analyze 
performance in a grid-computing environment. We can argue that our reference value 
in this case should not be the single processor, but the execution time on one single 
CE. The reason that we decide to decompose our application over more that one CE 
are exactly the same as our original reasons to parallelize our application, we are 
compute bound or memory bound in one CE, or a combination of both. So, the ques-
tion that we must ask ourselves is: “does decomposing over C CE’s give us any added 
value as compared to running on one CE?”. This leads us to the concept of Grid 
Speedup, defined as 
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So, in Grid Speedup we take the quotient of the execution time of our application 
on 1 CE and the execution time on C CE’s. If p = 1 we are back in the normal situa-
tion of a parallel computation, with C now playing the role of the number of proces-
sor. Also note that Grid speedup depends on two parameters, the number of CE’s and 
the number of processors per CE. Grid efficiency is now defined as 
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Let us compute the grid speedup for the example of a single parallel workload Wp. 
Substitute Eq. 8 into Eq. 10, which after some algebra results in 
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We defined two fractional grid overhead functions: 
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The first fractional grid overhead function g1 plays exactly the same role as the 
fractional overhead f (Eq. 7) in the simple parallel case. This analogy becomes clear 
by realizing that f can be rewritten as f = pQ(Wp,p)/T1(Wp). So, we can obtain good 
grid speedups if the grid fractional overhead g1 is small, that is, if we let the grain 
size, defined as the portion of work per CE, be large enough such that the amount of 
work per CE is much larger than the amount of overhead induced by the level-1 de-
composition Q1. 

The hierarchical decomposition introduces another fractional grid overhead g2, 
which expresses the relative difference in overhead inside a CE between the level-1 
decomposed workload Wp/p and the original workload Wp. For the special case that 

),(),( 22 pWQpCWCQ =  (14) 

we immediately find that g2 = 0 and 
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5   An Example: Stencil-Based Operations 

Let us consider a prototypical scientific computation: that of a stencil based operation. 
So, we assume some computational mesh, and we assume an iterative procedure on 
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this mesh where during each iteration each mesh point is updated, using information 
from a small local neighborhood of that point. This could e.g. be a time dependent 
explicit finite difference, finite volume or finite element computation, a Cellular 
Automaton, or a pixel based image analysis algorithms. In the sequel we assume a 
two-dimensional square Cartesian mesh with n × n points. 

First consider the case where we apply a 1 dimensional ‘strip wise’ decomposition 
of the computational domain. This is schematically drawn in Fig. 2. The left panel 
shows the decomposition in the normal parallel case (i.e. C = 1), and the right panel 
shows the hierarchical decomposition. Note that in the hierarchical decomposition we 
choose to decompose the computational domain in each CE along the dimension with 
the shortest size. 

p = 1 

p = 2 

p = 0 

C = 2C = 1C = 0p = 2p = 1 p = 0 

 

Fig. 2. Decomposition in case 1, strip wise. The left panel shows the decomposition in the nor-
mal parallel case, the right panel shows the hierarchical decomposition. In this figure we as-
sume C = p = 3 

The execution time on one CE in this case becomes 
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p

n
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where τcom is the communication time needed to send the stencil information of a 
point on the boundary of the processor domain to a neighboring processor. The factor 
2 emerges because each processor should communicate with its left and right 
neighbor.2 On more than one CE the hierarchical decomposition results in the follow-
ing execution time: 
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Here, τgrid is the communication time needed to send the stencil information of a 
point on the boundary of a CE to a neighboring CE. Note that we assume here a 
                                                           
2  For 2 processors this could change from a factor 2 to a factor 1 if the algorithm does not as-

sume period boundary conditions. We neglect this here. 
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communication pattern where we first communicate between CE’s (giving rise to the 
term 2nτgrid) followed by a communication step inside each CE (the 2n/C τcom term).  

Inspection of Eq. 16 and 17 shows that we can write for the overhead functions 

gridnCWQ τ2),(1 =  (18) 
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In this example ),(),( 22 pWQpCWCQ =  applies, so we find immediately for the 

Grid speedup, using Eq. 15, 
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which we rewrite to 
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Note that dimensionless parameter α expresses the imbalance between inter- and 
intra CE communication. The dimensionless number β contains the grain size of the 
application running on 1 CE, and the balance between computational speed and com-
munication within one CE. Note that if one would compute the fractional communica-
tion overhead in this example (Eq. 7) one would find that f = 2/β. Large grid speedups 
are obtained if α is very small and/or β is very large. 

We should explicitly analyze the case of C = 2 and assuming no periodic boundary 
conditions in our application. In that case we have 

gridnCWQ τ== )2,(1  (24) 

and Eq. 21 changes to 
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The first question one could ask is: “when does it pay off to execute my application 

on more than one CE?”. Translated in our formalism, when will 1≥ΓC
p . Clearly, a 
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speedup marginally larger then 1 is probably not worth the effort of porting an appli-
cation to the grid. A better analysis would be to demand that the Grid efficiency 
should be larger than a certain value, say larger then γ0. So, we demand that 

0/ γ≥Γ CC
p . This results in 
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Note that if we put γ 0 = 1/C we return to demanding that the grid speedup should 
be larger than 1. 

Let us now try to find some representative numbers for the parameters, and com-
pute grain sizes for which we expect to see a beneficial effect of using a Grid for 
tightly coupled applications.  

As a representative application that falls in the category of the stencil based opera-
tions as analyzed in this section we choose the Lattice Boltzmann Method [10]. As 
was recently reported by Wellein et al. during ICMMES 2004 in Braunschweig [11] a 
Lattice Boltzmann simulation attains computational speeds in the order of 1 Gflop/s 
on modern processors such as a 1.3 GHz Itanium2 or a 2.4 GHz Opteron. Updating 
one lattice point requires in the order of 200 floating point operations, so we find ∆ = 
1×109 / 2×102 = 5×106 sites/s. Now let us assume that α = 10, i.e. inter CE communi-
cation is 10 times faster then intra CE communication (see e.g. discussion in [12]). 
Finally, assume that processors in a CE can communicate at a speed of 10 Mbyte/s 
and that in a 2D Lattice Boltzmann simulation 4 floating point numbers must be sent 
in both directions. Under these assumption we find τcomm = 4×8 / 107 ~ 3×10-6. 

Let us first consider the case of two CE’s. In this case the result is that (see Eq. 26, 
using α = 10) 
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The breakeven point is for γ0 = 1/C = 0.5, so β ≥ 18. Using Eq. 23 we find 

comm
p

n τ∆≥ 18 . 
(28) 

With the numbers as defined above Eq. 28 results in n/p ≥ 270. So, only if n ≥ 
270×p the Grid Speedup will be larger than 1 and therefore the execution time of run-
ning the simulation on 2 CE’s will be smaller than running on 1 CE. Now suppose we 
want to have a grid efficiency of at least 0.8 (i.e. a grid speedup of 1.6 on 2 CE’s). In 
that case we find n/p ≥ 1170. We clearly see that in order to get real benefits of run-
ning this stencil-based operation on a Computational grid we need very large do-
mains. Assuming e.g p = 10 (which would be a relatively small parallel computer) 
boils down to demanding that in order to pay off, n ≥ 2700, and in order to get real 
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benefit n ≥ 11700. The positive conclusion is that albeit large, these are not unrealisti-
cally large grain sizes and that such applications can truly achieve grid speedup on 2 
CE’s. Clearly for C > 2 larger dimensions are needed, and our analysis gives a quick 
estimate of what to expect. 

6   Discussion and Conclusions 

We have introduced a new metric, Grid Speedup Γ, that allows analyzing the per-
formance of tightly coupled parallel applications on a Homogeneous Computational 
Grid. Using the concept of a two level hierarchical decomposition of the workload, a 
general formalism was introduced that allows computing Grid Speedup in terms of 
two fractional overhead functions. Using this formalism we analyzed in detail a proto-
typical application based on a two-dimensional stencil operation. In turns out that two 
dimensionless numbers now determine Grid Speedup. The number α  expresses the 
ratio of inter- and intra CE communication and the other, β, is inversely proportional 
to the well-known fractional communication overhead of the parallel application. Es-
timating the parameters appearing in the model leads to the conclusion that for a small 
number of CE’s good Grid Speedups is attainable, as long as the work per CE is large 
enough. 

More extended analysis then the one presented here clearly is possible. For in-
stance, in our example a more efficient decomposition, in which the intra- and inter 
CE decomposition run in the same direction, can be used, leading to the count intui-
tive conclusion that for such decomposition the Grid Speedup can be larger due to a 
latency hiding effect. A more realistic case in which CE’s have different number of 
processors, leading to the concept of a fractional C, could be discussed. Or, more real-
istic workloads, including a sequential workload W1 could be considered. We will 
analyze all this in more detail in a future paper. 

We must now test these theoretical ideas and try to measure Grid Speedups on real 
Computational Grids. It will be quite challenging to try to apply our theoretical ideas 
to real Grids, that will behave must more dynamic and erratic as our ideal Homogene-
ous Computational Grid. Fortunately test systems, such as the Dutch ASCI – DAS2 
computer [13], that come close to the idea of a Homogenous Computational Grid are 
available as a first test site, before embarking on scalability measurement on real 
Grids, such as the European CrossGrid test bed [14]. 
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