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Unsteady flow in a 2D elastic tube with the LBGK method
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Abstract

We report results of unsteady, harmonic flow simulations with the lattice BGK method in two-dimensional elastic tubes. The
tubes are assumed to obey a simple constitutive equation, linearly relating the diameter of the tube to the pressure difference
inside and outside the tube. First, as a benchmark, we present results of steady flow in such elastic tubes, and compare the
performance of three different boundary conditions for the solid wall. Next, we present results of unsteady (harmonic) flow
in the elastic tube, and validate the results by comparing them with theoretical expressions for the dispersion relation of the
complex speed of traveling waves in the tube. Within the range of Womersley numbers tested the agreement between the
simulations and the theory is good.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We have a strong interest in simulating unsteady
flow in complex geometry using the lattice Boltzmann
BGK method (LBGK, for an introduction we refer to
[15]). In particular, we focus on modeling blood flow
in the large arteries of the human body. We recently
showed that LBGK is in principle capable of simu-
lating such flows within the range of Reynolds and
Womersley numbers that exist in the large arteries[1].
As a proof of concept we applied LBGK to simulate
flow in the lower abdominal aorta, including the bi-
furcation to the left and right illiac arteries (supplying
the legs with blood)[2,3].
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In those simulations we assume that (1) blood is
a Newtonian fluid and (2) that the arteries are rigid
structures. The first assumption is generally acknowl-
edged to be valid in the large arteries[4,11,17]. This is
because of the relative high shear stress in those arter-
ies that renders a constant viscosity of 4 cP for whole
blood. Despite this a number of groups do investigate
the influence of the true non-Newtonian nature of
blood on the flow profiles and shear stresses in the ar-
teries (see, e.g.[9,10]). As to the second assumption,
arteries as rigid structures, it is well known that, due
to the pulsatile nature of blood flow and the elasticity
of the arteries and surrounding tissue, during a sys-
tolic cycle the diameter of the larger arteries may vary
5–10% (for a discussion see, e.g.[16]). However, in
typical hemodynamic simulations the computational
grid is obtained from Magnetic Resonance Imaging
(MRI) of real arteries. Such images obtained through
MRI typically have errors in the position of the artery
lumen (i.e. the artery wall) of 1–8%[12]. Therefore,
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given this accuracy, the influence of elasticity of the
wall can be considered a secondary effect. However,
simulations do suggest that the movement of the wall
may have influence on the resulting flow fields, and
more important in vascular disease, on the resulting
shear stress distributions on the wall (e.g.[13,17]).
As we are currently working on developing a virtual
operating theatre for vascular reconstruction[5,6]
the issue of wall elasticity may be of importance.
We therefore aim to relax this rigid wall assumption
and include elasticity of the arteries into our LBGK
simulations.

In this paper we set the first steps towards includ-
ing elastic walls into the LBGK model. We will study
the case of two-dimensional harmonic flow in a long
and slender elastic tube. This was previously done
by Fang et al.[8]. They developed a tailored solid
boundary condition to be used for moving walls, and
studied the case of steady flow and of a harmonic
flow. By comparing with theoretical expressions for
steady flow they could demonstrate the validity of
their approach. For the harmonic flow they solely pre-
sented simulation results. In this paper we extend the
results of Fang et al. in two ways. First, we compare
the performance of three different boundary condi-
tions in the case of a steady flow in an elastic tube.
Next, we perform unsteady harmonic flow simula-
tions and compare the results with theory, especially
with a dispersion relation for the complex speed of
sound of the travelling waves in the tube.

2. Theory

The topic of unsteady flow in elastic tubes has a
long history (see, e.g.[4]), with a first complete the-
oretical description for long and slender tubes being
formulated by Womersley[18]. Since then, this the-
ory has been refined and extended in many respects
(for an overview see, e.g.[14]). However, we will use
Womersley’s theory to validate our simulations.

We assume a linear pressure–radius relationship:

R = R0 + 1
2βp, (1)

p is the transmural pressure (i.e. the difference be-
tween the inside and outside pressure),R0 the radius
for zero transmural pressure andβ a compliance con-
stant. This relationship is a good representation for

the large arteries. Fung[4] first consider a steady
flow driven by a pressure gradient. Because of the
pressure drop the radius at the high-pressure end will
be larger than at the low-pressure end. We assume
that the tube is long and slender, that the flow is
laminar and one-dimensional, and that the entry and
exit effects are neglected. In that case the local flow
field can be assumed to be the well-known parabolic
Poiseuille profile. Using this assumption in combi-
nation with Eq. (1) and the fact that the flow rate
Q in every cross-section of the tube must be con-
stant, immediately leads to the following expression:1

[4]

3νβQz= [R(0)]4 − [R(z)]4 (2)

with ν is the viscosity of the fluid andR(z) the ra-
dius of the tube at a distancez from the inlet. By
substituting the tube lengthL in Eq. (2) we get an
expression for 3νβQz in terms of the inlet and outlet
radius. Substituting that expression back intoEq. (2)
yields an explicit expression forR(z) in terms of the
inlet and outlet radius:

R(z) =
{
([R(L)]4 − [R(0)]4)

z

L
+ [R(0)]4

}1/4
. (3)

Finally, by substitutingEq. (3) into Eq. (1)we obtain
an expression for the pressure in the tube. Using the
expression for the Reynolds number for Poiseuille
flow we can now immediately derive

Re= [R(0)]4 − [R(L)]4

2βLν2
. (4)

The analytical solution for time-dependent flow in an
elastic tube was first described by Womersley[18].
Here we just provide an outline of his theory. For all
details we refer to the original paper. The theory as-
sumes that the non-linear terms in the Navier–Stokes
equations may be ignored (i.e. small Reynolds num-
ber flows). The tube is assumed to be a thin-walled
elastic tube with radiusR, wall thicknessh, density of
the tube wallρ. Moreover, the density of the fluid is
ρ0. The equations for the displacement of the wall and
the fluid motion are coupled through a set a boundary
conditions at the inner wall of the tube. Introducing
a speed of soundc and looking at the type of motion

1 Note thatEq. (2)differs from the expression in Ref.[4] because
we consider two-dimensional flows here.
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in which u/c, v/c, andωR/c are small (withu and
v the longitudinal and radial components of the fluid
velocity, andω the angular frequency of the driving
harmonic pressure gradient), we can write

p = p1 exp
[
iω

(
t − z

c

)]
, (5)

u = u1 exp
[
iω

(
t − z

c

)]
, (6)

v = v1 exp
[
iω

(
t − z

c

)]
. (7)

Next, the equations of motion can be solved and
in combination with the boundary conditions four
homogeneous linear equations in four unknowns
are obtained. A non-trivial solution is only possible
by requiring that the determinant of this system of
equations is zero, thus resulting in a dispersion re-
lation which will determine the wave velocityc in
terms of the elastic properties of the tube andα, the
non-dimensional Womersley number (α = R

√
ω/ν).

The final dispersion relation reads

(1 − σ2)(1 − F)x2 − x[2 + k(1 − F) + F(1
2 − 2σ)]

+F + 2k = 0, (8)

where

F = 2
J1(αi3/2)

αi3/2J0(αi3/2)
, (9)

k = hp

Rρ0
, (10)

x = 2

(1 − σ2)

c2
0

c2
(11)

with σ Poisson’s ratio of the elastic material of the
tube,J0 andJ1 the zeroth- and first-order Bessel func-
tions, andc0 the speed of sound in the ‘empty’ tube.
By solvingEq. (8)we find a, in general complex val-
ued expression forx. If we now write

c0

c
=

√
(1 − σ2)

x

2
= X − iY, (12)

and substitute this intoEq. (5)we immediately recog-
nize that the wave velocityc1 of the pressure waves
in the tube becomes

c1 = c0

X
, (13)

and that the wave after travelling over a distance of
one wavelength is attenuated by a factorγ

γ = exp

[
−2π

Y

X

]
. (14)

3. Results

3.1. Description of the simulations

For the fluid flow simulations we apply the D2Q9
Lattice BGK model[15]. For the solid walls we have
tested three different boundary conditions. The Veloc-
ity Boundary Condition (VBC) by Zou and He[19],
the recently proposed boundary condition by Bouzidi
et al.[7] and another recently proposed boundary con-
dition by Fang et al.[8]. The last one was specifically
developed with moving boundaries in mind. At the in-
let and outlet we use pressure boundary conditions.
For steady flows a constant pressure difference is pre-
scribed. For the unsteady flow the density at the inlet
was set to 1+ 0.001 cos(2πt/T) and at the outlet to
1. Here,t denotes time andT the period of oscillation
(both measured in units of�t = 1). As the solid walls
move during the simulation, it may happen that fluid
nodes turn into boundary nodes and boundary nodes
into solid nodes, or the other way around. If a boundary
node turns into a fluid node we need some prescription
to assign values to the yet unknown distribution func-
tion on the new fluid nodes. For this we use the method
described by Fang et al.[8], where the unknown distri-
bution functions are assigned through second-order ex-
trapolation in the directions that pointed towards fluid
nodes in the previous time step. The coupling between
the fluid and the elastic wall is throughEq. (1). We first
start a simulation with a fixed wall and allow the flow
field to reach a steady state. Next, the wall is released.
In every cross-section of the tube the pressure is mea-
sured, and the radius is instantaneously adapted to the
value given byEq. (1). Next, an LBGK iteration is per-
formed, the pressure is again measured, etc. This cycle
is iterated until the tube has settled (in case of steady
flow) or performs steady harmonic oscillations (in case
of the harmonic flow).Fig. 1shows an example of this
settling of the tube wall for both steady and periodic
flows. For harmonic flow in tubes with a smaller inlet
diameter the convergence is faster (data not shown).
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Fig. 1. Settling of the radius (vertical axis) at z = L/2 in the 2000 time steps (horizontal axis) after the walls are released. Left panel:
steady flow on a 20 × 100 lattice (Re = 1); right panel: harmonic flow on a 10 × 100 lattice with T = 100.

The reason for not starting the simulation immediately
with elastic walls is that the stability of the simula-
tions enhances significantly if the flow is first allowed
to settle in the uniform rigid tube (data not shown).

3.2. Steady flow

We have performed a set of simulations where the
length of the tube was 600, the inlet diameter was
set to 30 and the outlet diameter to 21. The Reynolds
number was set to 1 and 10, respectively. First we
show, in Fig. 2, the resulting diameter as a function of
position in the tube for the three boundary conditions.
The theoretical curve (Eq. (3)) is shown as well. For
other choices of diameters the results are comparable.
We calculate an average error defined by

ε = !|RT(z) − RS(z)|
!|RT(z)| , (15)
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Fig. 2. Theoretical shape of the upper wall of an elastic tube due to steady flow compared to the simulated results of the Bouzidi (a), Zou
(b) and Fang boundary (c) at Re = 10.

Table 1
Relative errors in the shape of an elastic tube at several Reynolds
numbers

Boundary condition Re = 1 Re = 10

Fang 0.0006 0.0014
Bouzidi 0.0063 0.0059
Zou 0.0006 0.0013

where the subscript T denotes the theory and S the
simulation. Table 1 shows the resulting errors.

We have also measured the error in the resulting
velocity fields (using the same error definition as in
Eq. (15)), as a function of the grid spacing. The results
are presented in Fig. 3. The error behavior is first order
in the grid spacing (to be precise, for Re = 1 the
error goes as �x1.4 for all three boundary conditions,
and for Re = 10 as �x1.4 for the Bouzidi boundary
condition and as �x1.1 for the other two).
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Fig. 3. Relative errors in velocity profiles as a function of the grid spacing for the Fang (diamond), Bouzidi (box) and Zou (triangle)
boundary conditions at Reynolds numbers 1 (left) and 10 (right). Solid lines are the linear fits.

3.3. Unsteady flow

For the unsteady flow simulations we only applied
the Fang boundary. In Fig. 4 we show the propagat-
ing pressure wave that is induced in the elastic tube.
Comparing the results of the simulations to the dis-
persion relation in Eq. (6) is done by analyzing these
pressure waves. The only parameter that was changed
for different simulations is the radius of the tube
under zero transmural pressure. With the radius, the
Womersley number also changes. This has an effect
on the attenuation of the amplitude of the pressure
wave (through the function F , see Eq. (7)). For large α

the amplitude decreases less per wavelength than for
small α.
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Fig. 4. Propagation of the pressure wave. The pressure distributions
at t = 20T (solid line), 20.25T (dashed line) and 20.5T (dotted
line) are shown for a tube of length 200 and R = 10 (T = 100
and α = 6.14).

If we put the Poisson ratio and the thickness of the
wall to zero in Eq. (6), which is the case for our sim-
ulations, we find for the attenuation constant γ the
following theoretical values: at α = 3.07 an attenua-
tion constant of 0.102; if we then increase the radius
by a factor 2, which increases α to 6.14, we find an
attenuation constant of 0.409. This means the ampli-
tude of the pressure wave drops faster along the length
of the tube for lower Womersley number. The attenu-
ation constant γ is obtained from the simulations by
fitting the simulated pressure waves with the theoreti-
cal expressions. The results, for a range of Womersley
parameters, are shown in Fig. 5 and Table 2.

For larger Womersley numbers the agreement be-
tween simulation and theory is perfect. However, for
the small α-values we observe a large difference.
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Fig. 5. Simulated (box) and theoretical (line) attenuation constants
as a function of the Womersley number. The line represents the
theory (σ = 0, k = 0).
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Table 2
Numerical values of the theoretical and simulated attenuation con-
stants presented in Fig. 5

α Theoretical
attenuation constant

Simulated attenuation
constant

2.46 0.04 0.01
3.07 0.10 0.04
6.14 0.41 0.40

12.28 0.67 0.66

Table 3
Numerical values of the theoretical and simulated attenuation con-
stants presented in Fig. 5

α1 α2 λ(α1)/λ(α2)

Theory Simulated

2.46 3.07 0.94 0.98±0.07
2.46 6.14 0.86 0.95±0.07
2.46 12.28 0.82 0.93±0.07
3.07 6.14 0.92 0.96±0.07
3.07 12.28 0.88 0.95±0.07
6.14 12.28 0.95 0.98±0.07

This discrepancy may be attributed to discretization
errors. For instance, for α = 2.46 the radius of the
inlet was only 5 grid points. We performed another
simulation for the same α but now with a radius of
20 grid points (and a tube length of 3500 and T =
2500, thus dramatically increasing execution times
to 80 h on a 300 MHz Sun workstation). After fitting
we now obtained γ = 0.031. This result is much
closer to the theory, but still the error is relatively
large.

The influence from the compliance constant (i.e. the
elasticity) of the wall on the pressure waves comes
only through c0, the wave velocity for a non-viscous
fluid.2 In other words, we expect that the attenuation
is not influenced by the compliance constant. To check
this we ran a simulation for α = 6.14 with a twice
as large compliance constant. In that case we found
γ = 0.43.

We have also measured the wavelength of the pres-
sure waves λ = c0T/X. Unfortunately, because of our
specific simulation setup a theoretical expression for
c0 was not immediately obvious. Therefore, we have

2 And of course also through the Poisson’s Ratio, but here we
have taken σ = 0.

looked at ratios of measured wavelengths at different
Womersley numbers, which only depend on X(α). The
results are shown in Table 3.

4. Discussion

We presented a first set of results of LBGK simula-
tions with elastic walls. From our steady flow bench-
marks we observe that the Fang and Zou boundary
have comparable error behavior. Notice that in com-
bination with moving walls the error in the velocity
is first order in the grid spacing. The Bouzidi bound-
ary also is first order, but has a much larger value of
the errors. For non-moving walls this boundary con-
dition is very good (see, e.g. [2]). However, in com-
bination with elastic walls our results suggest that the
details of the interpolations result in a wrong density
(and therefore pressure) field close to the wall. This
has an immediate effect on the location of the walls,
see Eq. (1) and the resulting velocity fields. In the
simulations for unsteady flow we have used the Fang
boundary. For a rigid tube we were able to perfectly
reproduce Womersley flow with this boundary condi-
tion (data not shown). For the elastic wall the results
are very promising. We reproduce the attenuated pres-
sure waves as predicted by theory. Moreover, over a
range of Womersley numbers we have demonstrated
a good agreement between the theoretical dispersion
relation for the complex wave velocity and our simu-
lations. The relative large errors for small Womersley
number need further investigation, but the suggested
discretization effect may play an important role. The
elastic wall in our simulations was highly simplified:
it was massless and had a zero thickness. This is not
very realistic, and as a next step we will consider tubes
with a thin wall and non-zero mass. This means that
we will also have to integrate the equations of mo-
tion of the wall. We will consider other constitutive
equations for the wall, such as a linear material de-
scribed by a Young’s modulus and a Poisson ratio.
In this case the c0 is given by the Moens–Korteweg
formula [4]. This will allow a more extensive valida-
tion of our simulations, by comparison with Eq. (6)
over a large range of parameter values. Moreover,
we will also extend the simulations to three dimen-
sions, and consider more realistic non-symmetrical
cases.
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