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ner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force on each dipole. These ex-
pressions are reformulated into discrete convolutions, allowing for an efficient, O(N log N) evaluation of the
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1. INTRODUCTION
Light carries momentum and may therefore exert a force
on a particle on which it impinges. The notion of radia-
tion force, that is, the force exerted by an electromagnetic
field on matter with which it interacts, is already very old
and was originally analyzed by Maxwell. Debye, in 1909,
was probably the first to calculate the radiation force on a
small particle, in his case on a sphere.1 By integrating
the electromagnetic stress tensor over the surface of the
sphere, he demonstrated that

Cpr 5 Cext 2 gCsca , (1)

where Cpr is the radiation pressure cross section, Cext the
extinction cross section, Csca the scattering cross section,
and g the asymmetry parameter. This expression holds
for any small particle illuminated by a beam of light.2

With the introduction of lasers, radiation force became
a powerful tool in the laboratory. Ashkin and Dziedzic,
in a spectacular experiment, showed for the first time
that it is possible to levitate a small micrometer-sized
particle with a laser beam.3,4 Besides small spheres they
also levitated nonspherical particles5 and biological cells.6

This pioneering work was extended by Steven Chu, who
trapped and cooled single molecules and atoms, thus
opening up a complete new field in physics (which won
him, together with C. Cohen-Tannoudji and W. D. Philips,
the Nobel Prize in physics in 1997).7 It also led to the
development of optical tweezers; see, e.g., Refs. 8 and 9.
These optical tweezers allow the micromanipulation of
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small objects and are used specifically in (molecular) bio-
logical experiments.9 The applications range from cell
biology (e.g., Ref. 10) to the study of single DNA mol-
ecules. For instance, the elasticity of a single DNA mol-
ecule can be measured by attaching both ends of a DNA
molecule to small spheres and trapping the spheres in op-
tical tweezers.9,11 Optical levitation and optical tweezers
also allow very detailed light-scattering experiments,
where a single micrometer-sized particle is held in a trap,
thus allowing the measurement of scattered light by a
single particle. In this way, scattering of a single evapo-
rating water droplet was measured, experimentally dem-
onstrating very sharp resonances in Mie scattering.12

Furthermore, the differential scattering cross sections of
single spheres (e.g., Ref. 13) and of single biological cells14

were measured.
The radiation force also plays an important role in as-

trophysics. For instance, Draine and Weingartner pro-
pose that radiation forces may be responsible for super
thermal spin-up of small particles, thus allowing their
alignment in the galactic magnetic field.15,16 This align-
ment of interstellar dust grains then explains the polar-
ization of starlight. Radiation forces play an important
role in the dynamics of cometary and asteroidal dust, of
dust in the solar dust ring, and of circumstellar dust; see,
e.g., Refs. 17–19.

Dust particles play an important role in the evolution
of protoplanetary disks that probably surround all newly
born stars. In these disks, dust particles from interstel-
lar space collect and coalesce to form larger aggregates.
2001 Optical Society of America
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These eventually can grow into kilometer-sized bodies
(cometary nuclei) or even into planets. The interplay be-
tween radiation and dust can strongly influence the
growth of dust aggregates, since radiation pressure acts
differently on dust of different size, shape, and chemical
composition. Also, radiation pressure may result in non-
radially directed forces on aggregates, which could have
important consequences for dust growth.

The total radiation pressure on the dust particles is not
the only important effect. It is suspected that in the
detailed process of formation of dust particles in a circum-
stellar disk, i.e., coagulation of small grains into
aggregates,20 radiation forces could play an important
role.21 For studying the importance of radiation forces
on the formation of dust particles, knowledge of the total
radiation pressure on the particle is therefore not enough.
It is also necessary to know the radiation forces acting on
each constituent grain in the dust particle. This notion
motivated us to extend a method for calculating radiation
forces in the discrete-dipole approximation (DDA) of light
scattering, such that it allows efficient calculation of the
forces on each individual dipole of the DDA. That is the
main topic of this paper.

Today, many theories for calculating light scattering
from small particles exist; see, e.g., Ref. 22 for a recent
overview. Our main interest is in radiation forces on the
grains that build up highly irregular dust particles. We
choose to use the DDA method to calculate scattering
from, and radiation forces on, these particles: first, be-
cause the DDA has proven to be a suitable method for cal-
culating scattering from aggregates23–26 and second, be-
cause DDA provides a straightforward way to calculate
radiation forces, as will be demonstrated below.

Methods for calculating the radiation pressure in the
DDA by applying Eq. (1) were given by Draine.27 Draine
and Weingartner15 and Kimura and Mann18 incorporated
into the DDA the possibility of calculating radiation pres-
sure by integrating the momentum carried by the scat-
tered radiation over the total space angle. Draine and
Weingartner were interested in radiative torques,
whereas Kimura and Mann looked at radiation forces
that are parallel as well as perpendicular to the direction
of incident light. These perpendicular forces may arise
for particles that have no highly symmetrical shape.
Kimura and Mann immediately applied Eq. (1) and calcu-
lated gCsca by an integration of the scattered fields as ob-
tained from the DDA calculations. However, by provid-
ing a vector character to g and interpreting it as the mean
direction of the scattered light, they could also calculate
the perpendicular components of the radiation force. In
contrast, Draine and Weingartner started with the DDA
equations and a general expression for the force on a di-
pole in an electromagnetic field. Next they derived a for-
mal expression for the force on each dipole in the DDA.
They did not further elaborate these formal expressions,
but by invoking a straightforward argument they recov-
ered Eq. (1). They subsequently obtained the radiation
forces by calculating gCsca by an integration of the scat-
tered fields.

In this paper we take the work of Draine and
Weingartner15 as a starting point and derive expressions
for the radiation force on each dipole in the DDA. We
test our procedure by calculating the radiation force on a
sphere and compare DDA results with exact Mie calcula-
tions.

2. THEORY OF RADIATION FORCES IN
THE DISCRETE-DIPOLE APPROXIMATION
A. Radiation Force on a Single Dipole in the
Discrete-Dipole Approximation
The DDA28,29 models a particle as an array of N point di-
poles at position ri with polarizability a i . The force on a
point dipole i in an electromagnetic field is30

Fi 5 Re~pi • ¹ i!Re~Ei! 1
1

c
ReS dpi

dt D 3 Re~Bi!, (2)

where Ei and Bi are the electric and the magnetic field on
dipole i, pi is the dipole moment on dipole i, c is the speed
of light in vacuum, and t denotes time. For harmonic
fields, time averaging of Eq. (2) results in

^Fi& 5
1

2
Re@~pi* • ¹ i!Ei 1 ikpi* 3 Bi#, (3)

where the asterisk denotes complex conjugation, k
5 uku, and k is the wave vector. We will now derive an
expression for ^Fi& in the context of the DDA model.

Following Draine and Weingartner,15 the time-
averaged force on a dipole is split into two components,
one due to the incident field and the other due to the fields
radiated by all other dipoles:

^Fi& 5 ^Finc,i& 1 ^Fsca,i&. (4)

Note that the averaged total radiation force on the par-
ticle, modeled by the collection of N dipoles, can be ex-
pressed as

^Frad& 5 ^Finc& 1 ^Fsca& 5 (
i51

N

^Finc,i& 1 (
i51

N

^Fsca,i&.

(5)

Draine and Weingartner15 show that

^Finc,i& 5
1

2
Re$~pi,0* • ¹ i!@Einc,0 exp~ik • ri!# 1 ikpi,0*

3 @k̂ 3 Einc,0 exp~ik • ri!#%, (6)

^Fsca,i& 5 (
jÞi

1

2
Re@~pi,0* • ¹ i!Eij 1 ikpi,0* 3 Bij#, (7)

where Einc,0 is the amplitude of the incoming plane wave,
pi,0 is the amplitude of the dipole moment on dipole i, and

Eij 5
exp~ikrij!

rij
3 H k2rij 3 ~pj,0 3 rij!

1
~1 2 ikrij!

rij
2 @3rij~rij • pj,0! 2 rij

2 pj,0#J , (8)

Bij 5 k2
exp~ikrij!

rij
2 ~rij 3 pj,0!S 1 2

1

ikrij
D , (9)
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with rij 5 uriju, rij 5 ri 2 rj . Evaluating Eq. (6) results
in

^Finc,i& 5
1

2
Re@ik~pi,0* • Einc,0!exp~ik • ri!#. (10)

When the expression for the extinction coefficient in the
DDA as obtained from the optical theorem is applied,27

the final expression for ^Finc& becomes

^Finc& 5
1

8p
CextuEinc,0u2k̂. (11)

^Finc& can be interpreted as the average rate by which mo-
mentum is removed from the incident beam. This force
is in the direction of the incident beam. The next step is
to calculate ^Fsca,i& from Eq. (7). This was not done, how-
ever, by Draine and Weingartner, because it would lead to
summations involving N(N 2 1) terms, which could be
computationally prohibitive.15 They did suggest, how-
ever, that this operation count could be reduced to
O(N log N) by using fast Fourier-transform techniques.
Below we will explicitly calculate ^Fsca,i& and demonstrate
how the operation count can indeed be reduced, but first
we will show how Draine and Weingartner proceeded.

By invoking momentum conservation we can easily
show that the net rate of momentum transported to infin-
ity by the scattered field, denoted by ^Fout&, must be equal
to 2^Fsca&. Draine and Weingartner15 show that

^Fout& 5
k4

8p
E dVn̂U(

i51

N

@pi,0 2 n̂~n̂ • pi,0!#

3 exp~2ikn̂ • ri!U2

, (12)

with n̂ the direction vector on the unit sphere. Compare
Eq. (12) with the expression for the asymmetry parameter
g, in vector form, as defined by Kimura and Mann,18

gj 5
k4

CscauEinc,0u2 E dVn̂ • êj

3 U(
i51

N

@pi,0 2 n̂~n̂ • pi,0!#exp~2ikn̂ • ri!U2

,

(13)

where g 5 g1ê1 1 g2ê2 1 g3ê3 and (ê1 , ê2 , ê3) form Car-
tesian basis vectors with ê1 5 k̂, i.e., in the direction of
the incident wave. This results in

^Fout& 5
1

8p
CscauEinc,0u2g. (14)

By defining the radiation pressure cross-section vector
through

^Frad& 5
1

8p
uEinc,0u2Cpr (15)

and combining Eqs. (5), (11), (14), and (15), we find that

Cpr 5 Cextk̂ 2 Cscag. (16)
In the direction of the incident beam, Eq. (16) reduces to
Eq. (1). Both Kimura and Mann18 and Draine and
Weingartner15 numerically evaluated the integral in Eq.
(12) or Eq. (13) to arrive at the total radiation force on the
particle. Note that evaluation of these integrals requires
O(Ns N) operations, with Ns the number of scattering di-
rections required for accurate evaluation of the integrals.

We will now demonstrate how to calculate ^Fsca,i& di-
rectly from the dipole polarizabilities. Furthermore, we
will demonstrate the correspondence between this direct
method and the integration in Eqs. (12) and (13).

First, it is convenient to reformulate Eq. (8) into

Eij 5 exp~ikrij!F S k2

rij
1

ik

rij
2 2

1

rij
3 Dpj,0

1 S 2
k2

rij
2

3ik

rij
2 1

3

rij
3 D n̂ij~n̂ij • pj,0!G , (17)

where n̂ij 5 rij /rij . To calculate ^Fsca,i& from Eq. (7) we
need to evaluate (pi* • ¹ i)Eij . From Eq. (17) it is clear
that this boils down to four nontrivial differentiations.
These calculations are performed in Appendix A. The
magnetic term in Eq. (7) is straightforward:

ikpi,0* 3 Bij 5 ik3
exp~ikrij!

rij
pi,0*

3 ~n̂ij 3 pj,0!S 1 2
1

ikrij
D

5 S ik3

rij
2

k2

rij
2 D @~pi,0* • pj,0!n̂ij

2 ~pi,0* • n̂ij!pj,0#exp~ikrij!. (18)

Combining all terms results in

^Fsca,i& 5 (
jÞi

1

2
Re~Fij!, (19)

with

Fij 5 exp~ikrij!H @~pi,0* • pj,0!n̂ij 1 pi,0* ~n̂ij • pj,0!

1 ~pi,0* • n̂ij!pj,0 2 5~pi,0* • n̂ij!n̂ij~n̂ij • pj,0!#

3 S 2
k2

rij
2 2

3ik

rij
3 1

3

rij
4 D 1 @~pi,0* • pj,0!n̂ij

2 ~pi,0* • n̂ij!n̂ij~n̂ij • pj,0!#S ik3

rij
2

k2

rij
2 D J . (20)

Equations (19) and (20) provide the force on each dipole
that is due to the field radiated from all other dipoles.
Taking Eqs. (19) and (20) together with Eq. (10), we ob-
tain the total radiation force ^Fi& on each dipole. In Ap-
pendix B we show, by analytically solving the integral in
Eq. (12), that the resulting expressions for ^Fsca& are in-
deed equal to 2^Fout&. We will continue to show how the
calculation of the forces can be formulated as a discrete
convolution, thus allowing an O(N log N) calculation of
the forces.
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B. O(N log N) Algorithm for the Forces
The computational burden in evaluating the radiation
force directly from the dipole moments comes from the
summation in Eq. (19) in combination with the summa-
tion in Eq. (5). This leads to an O(N2) operation count,
which is prohibitive if N becomes large. Therefore, if one
wants to calculate the total radiation force on a particle, it
is obviously more efficient to numerically evaluate the in-
tegrals of Eqs. (12) and (13). However, if one wants to
calculate the forces on each single dipole (as in our in-
tended application of radiation forces on the constituent
grains of an aggregate dust particle), we must use Eq.
(19) for all N dipoles.

Fortunately, just as the matrix vector products in the
conjugate-gradient iteration that is used to solve the DDA
field equations are nothing but discrete convolutions,31

the expression for ^Fsca& can be written as a discrete con-
volution. With the dipoles located on a rectangular grid,
fast Fourier transforms can be used to reduce the opera-
tion count to O(N log N). This is obviously a very impor-
tant computational improvement for the calculation of the
radiation forces on each single dipole. Furthermore, if
the number Ns of evaluation points of the numerical inte-
gration of Eqs. (12) and (13) is large, the O(N log N) op-
eration count of the direct method is also a computational
improvement over the integration method.

A close look at Eq. (20) already makes it obvious that
the calculation of ^Fsca,i& involves a convolution. In order
to make this more clear, the complex 3-vector Fij in Eq.
(20) is expressed in terms of complex 3 3 3 matrices:

Fij 5 ~pi,0* • Mij,gpj,0!êg . (21)

The index g is over Cartesian coordinates, g 5 $x,y,z%,
the vectors êg are basis vectors, and the Einstein summa-
tion convention over Greek indices is assumed. The com-
plex 3 3 3 matrices Mij,g depend only on k and rij .
They are defined as follows:

Mij,g 5 exp~ikrij!F ~Uij,g 1 Vij,g 1 Wij,g 2 5Tij,g!

3 S 2
k2

rij
2 2

3ik

rij
3 1

3

rij
4 D

1 ~Uij,g 2 Tij,g!S ik3

rij
2

k2

rij
2 D G , (22)

Tij,g 5 n̂ij,g~n̂ijn̂ij!, Uij,g 5 n̂ij,g1,

Vij,g 5 n̂ijDg , Wij,g 5 Dgn̂ij , (23)

where the matrix element Dg,h is the kronecker delta dgh .
The gth column of matrix Vij,g is n̂ij ; its other columns
contain zeros. Similarly, the gth row of matrix Wij,g is
n̂ij and its other rows contain zeros. The matrices Tij,g
and Uij,g are both symmetrical. Although Vij,g and Wij,g
are not symmetrical on their own, their sum Vij,g
1 Wij,g is symmetrical. Therefore the matrices Mij,g are
symmetrical. The matrices are antisymmetrical in the
pair of indices i and j, since the unit vector n̂ij appears in
odd powers. When we introduce
Mg 5 F 0 M12,g ¯ M1N,g

M21,g � ]

] � MN21,N,g

MN1,g ¯ MN,N21,g 0
G (24)

and

P 5 S p1,0

]

pN,0

D , (25)

^Fsca& can be written as

^Fsca& 5 ~P* • MgP!êg . (26)

As an intermediate step the scattering force on dipole i
can be calculated by

^Fsca,i& 5 Pi,h* ~MgP!3i1hêg , (27)

where again the summation convention over greek indices
is assumed.

Because the dipoles are arranged in a rectangular grid
and their coordinates merely appear in the form rij 5 ri
2 rj , the matrix vector product MgP in Eq. (26) is a dis-

crete convolution, and this product can be evaluated with
O(N log N) complexity by using fast Fourier transforms.

3. TESTS ON SPHERES
As a test case we study the radiation force on a sphere.
Using Mie theory and the DDA, we calculate the total ra-
diation force on the sphere. In the case of DDA simula-
tions we calculate ^Fsca& directly from the dipole polariz-
abilities, i.e., from Eq. (26), and also by integration of the
scattered field, i.e., by applying Eq. (12). In the latter
case a two-dimensional version of the Romberg integra-
tion method is applied.32 For the DDA simulations we
apply the previously developed parallel fast DDA
method.33,34 We have carried out a very large number of
tests. Here we show a representative subset; details can
be found elsewhere.35

We performed tests on spheres with three size param-
eters, x 5 2pr/l 5 2.5, 5, 10. Furthermore, we consid-
ered a large range of refractive indices, inspired by the
typical materials that we wish to study. Table 1 shows
the refractive indices that we used, in combination with
the size of the dipoles that were used in the DDA simula-
tions. This very important parameter determines the ac-

Table 1. Range of Refractive Indices Used in the
Tests, Together with the Number of Dipoles per

Wavelength in the DDA Simulations

m Material
Dipoles per
Wavelength

1.05 Biological cells 15
1.14 1 0.38i H2O at 10 K for l 5 0.1 mm
1.33 1 0.01i Dirty ice
1.68 1 0.03i Amorphous silicate for l 5 1 mm 20
1.7 1 0.156i
1.81 1 0.48i H2O at 10 K for l 5 0.15 mm
2.5 1 1.4i Graphite 30
3.05 1 0.33i Amorphous silicate for l 5 90 mm 40
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curacy of the DDA to a large extent. We always take it
such that l/@d Re(m)# ; 10 to 15.33,34,36 Here, m is the
relative refractive index and d the diameter of the dipoles
(i.e., the grid spacing). The resulting DDA models con-
tain 912 dipoles in the smallest sphere with m 5 1.05 up
to 436,400 for the x 5 10, m 5 2.5 1 1.4i sphere.

Figures 1–3 show the forces on each dipole for the
x 5 2.5 sphere with m 5 1.05, 1.33 1 0.01i, and 1.14
1 0.38i, respectively. In these figures half of the sphere
is removed. The incident light travels from right to left
and was polarized in the y direction. The first two
spheres (Figs. 1 and 2) seem to be pulled in the positive z
direction by forces that are largest in the back (left side)
of the sphere. In the case of large absorption, as in Fig.
3, the largest forces are in front of the sphere, and it
seems to be pushed in the positive z direction. Clearly
there is a close connection between the forces on the di-
poles and the internal field in the particle. In a previous
paper we investigated the internal fields in volume inte-
gral equation formalism, a method closely related to the
DDA.36 In that paper we noticed a clear distinction be-
tween the internal fields for particles with and without
large absorption.

In Tables 2 and 3 we present results of calculations of
gCsca and of Cpr , which are related to the forces as de-
fined in Subsection 2.A. In Table 2 the results of the z
component of gCsca and Cpr are presented. The results
from Mie theory, from direct calculations of the forces per
dipole and from integration of the scattered field are
shown. The incident light was in the positive z direction
and polarized in the y direction. In the integration of the
scattered fields the Romberg method was always iterated
until a precision of at least six digits was obtained.35

Table 3 shows the results for the x and y components of

Fig. 1. Total radiation force on each dipole for a sphere with
x 5 2.5 and m 5 1.05. The incident light travels from right to
left. The maximum force is scaled to 1. Only one half of the
sphere is shown.
gCsca , which for a sphere must be equal to zero. Finally,
in Table 4 we show the relative error between Mie theory
and the DDA for Cext and Cpr,z with the latter being ob-
tained by direct calculation of the forces on each dipole.

The first thing to notice from Table 2 is that in all cases
that we considered, the direct calculation of the force and
subsequent summation leads to the same numerical re-
sults as integration of the scattered fields. This was ex-
pected on theoretical grounds as presented in Subsection

Fig. 2. As Fig. 1 but for m 5 1.33 1 0.01i.

Fig. 3. As Fig. 1 but for m 5 1.14 1 038i.
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2.A, but the results in Table 2 show that our numerical
procedures do not induce extra errors.

For a sphere with incident radiation in the z direction,
the x and y components of the radiation force are exactly
zero. Table 3 shows that the direct calculation of the
forces indeed results in very small x and y components.
The direct method results in almost all cases in x and y
components on the order of 1026 to 1028 times the z com-
ponent. This very small remaining fraction is attributed
to round-off errors in the numerical calculations. The in-
tegration of the scattered fields show somewhat different
results. The y component is also very small, comparable
with that of the direct method. However, for the x com-
ponent (i.e., perpendicular to the polarization of the inci-
dent field) the integration results in small (as compared
with the z component) but finite values of gxCsca . In-
Table 2. Results of Calculations of gzCsca and Cpr,z for Spheres As a Function of the Size Parameter x and
Relative Refractive Index ma

x m

gzCsca Cpr,z

Mie Direct Integration Mie Direct Integration

2.51994 1.05 0.371524 0.371659 0.371666 0.122651 0.122112 0.122112
2.51994 1.14 1 0.38i 8.24625 8.27892 8.27892 26.9337 26.9879 26.9879
2.51994 1.33 1 0.01i 16.7049 16.6745 16.6745 8.64969 8.53591 8.53591
2.52546 1.68 1 0.03i 52.2132 53.1363 53.1363 30.6572 30.0432 30.0432
2.52546 1.70 1 0.156i 33.7644 35.0417 35.0417 35.8229 35.8576 35.8576
2.52546 1.81 1 0.48i 20.9415 21.8652 21.8652 38.6260 39.3070 39.3070
2.50977 2.50 1 1.40i 18.9673 20.1332 20.1332 38.4895 39.8698 39.8698
2.51808 3.05 1 0.33i 21.3637 23.0295 23.0296 37.6059 38.3417 38.3417
5.01954 1.05 8.57554 8.57815 8.57815 0.859150 0.863781 0.863790
5.01954 1.14 1 0.38i 63.8590 63.7802 63.7802 105.156 105.065 105.065
5.01954 1.33 1 0.01i 222.436 223.542 223.542 53.823 53.4137 53.4137
5.03617 1.68 1 0.03i 60.2681 62.5525 62.5525 112.658 111.251 111.251
5.03617 1.70 1 0.156i 73.1439 73.6662 73.6662 127.300 127.694 127.694
5.03617 1.81 1 0.48i 83.2464 84.2083 84.2083 123.102 124.179 124.179
5.02511 2.50 1 1.40i 87.541 88.8857 88.8856 121.662 123.694 123.694

10.0502 1.05 150.276 150.258 150.258 4.65605 4.66638 4.66626
10.0502 1.14 1 0.38i 315.490 315.302 315.302 384.379 384.237 384.236
10.0502 1.33 1 0.01i 438.904 441.835 441.835 262.641 263.107 263.106

a Calculations were performed with Mie theory and the DDA. In the latter the forces on the dipoles were calculated, and subsequently gzCsca and Cpr,z

were obtained (column ‘‘Direct’’). Also from the DDA the scattered field was calculated, and gzCsca and Cpr,z were obtained by an integration of the scattered
field (column ‘‘Integration’’).

Table 3. As in Table 2, but with the x and y Component of gCsca
a

x m

gxCsca gyCsca

Direct Integration Direct Integration

2.51994 1.05 3.1 3 1029 0.0018 1.7 3 1029 1.6 3 1029

2.51994 1.14 1 0.38i 22.1 3 1029 0.036 8.6 3 1028 2.9 3 1028

2.51994 1.33 1 0.01i 6.3 3 1027 0.071 21.9 3 1027 2.7 3 1027

2.52546 1.68 1 0.03i 1.8 3 1026 0.18 1.4 3 1026 2.4 3 1026

2.52546 1.70 1 0.156i 9.3 3 1027 0.12 22.6 3 1027 1.8 3 1026

2.52546 1.81 1 0.48i 1.0 3 1026 0.079 1.9 3 1026 8.3 3 1027

2.50977 2.50 1 1.40i 21.3 3 1026 0.092 2.4 3 1026 8.6 3 1027

2.51808 3.05 1 0.33i 3.9 3 1026 0.095 23.5 3 1026 3.1 3 1027

5.01954 1.05 6.5 3 1028 0.017 3.7 3 1028 2.0 3 1028

5.01954 1.14 1 0.38i 3.2 3 1028 0.14 1.6 3 1026 1.2 3 1026

5.01954 1.33 1 0.01i 1.6 3 1025 0.45 9.8 3 1026 1.0 3 1025

5.03617 1.68 1 0.03i 4.9 3 1026 0.30 8.0 3 1026 1.1 3 1025

5.03617 1.70 1 0.156i 3.7 3 1027 0.17 2.7 3 1026 1.4 3 1026

5.03617 1.81 1 0.48i 6.1 3 1027 0.20 6.7 3 1027 21.8 3 1027

5.02511 2.50 1 1.40i 24.7 3 1026 0.29 21.1 3 1025 21.9 3 107

10.0502 1.05 1.2 3 1026 0.15 6.1 3 1027 7.1 3 1027

10.0502 1.14 1 0.38i 24.6 3 1026 0.43 3.5 3 1026 23.4 3 1026

10.0502 1.33 1 0.01i 1.0 3 1024 1.1 9.1 3 1025 7.8 3 1025

a Only the DDA results are shown. The exact result is zero in all cases.



1950 J. Opt. Soc. Am. A/Vol. 18, No. 8 /August 2001 Hoekstra et al.
creasing the accuracy of the Romberg integration did not
remove these finite values. This is probably due to very
small errors in the scattered field as calculated by the
DDA.

Finally, from Table 4 we can conclude that in all cases
considered, the relative error in the radiation pressure co-
efficient as obtained with the DDA is comparable (i.e., of
the same order) with the relative error in the extinction
coefficient. Note from Tables 2–4 that we get accurate
results, even for very large refractive indices. This is
made possible by carefully reducing the size of the dipoles
in the DDA model as the refractive index increases (see
Table 1). However, as was already noted by other
authors,27–29 it is also clear that even when the dipoles
are reduced in size, the accuracy of the DDA results de-
creases with larger refractive indices.

4. DISCUSSION AND CONCLUSIONS
We presented theoretical expressions to calculate effi-
ciently the radiation force on each dipole in the DDA.
This allows us not only to calculate radiation pressure on
arbitrarily shaped particles, such as biological particles or
dust particles, but also to calculate the radiation forces in-
side arbitrarily shaped particles. We introduced expres-
sions that allow the calculation of these forces in an
O(N log N) operation count. Finally, we showed theoreti-
cally that integrating the scattered fields and summating
the forces on each dipole are equivalent. We presented
numerical tests on spheres and showed that direct calcu-
lation of the dipole forces and integration of the scattered
field indeed yield the same results for the radiation-
pressure coefficients. Furthermore, we showed that the
resulting relative errors in the radiation-pressure coeffi-
cients as obtained by the DDA have the same order of

Table 4. Relative Error in Cext and Cpr,z in DDA
Simulations of Spheresa

Error in Cext Error in Cpr,z

x m ( percent) ( percent)

2.51994 1.05 0.08 0.44
2.51994 1.14 1 0.38i 0.25 0.20
2.51994 1.33 1 0.01i 0.57 1.32
2.52546 1.68 1 0.03i 0.37 2.00
2.52546 1.70 1 0.156i 1.89 0.10
2.52546 1.81 1 0.48i 2.69 1.76
2.50977 2.50 1 1.40i 4.43 3.59
2.51808 3.05 1 0.33i 4.07 1.96
5.01954 1.05 0.08 0.54
5.01954 1.14 1 0.38i 0.10 0.09
5.01954 1.33 1 0.01i 0.25 0.76
5.03617 1.68 1 0.03i 0.51 1.25
5.03617 1.70 1 0.156i 0.46 0.31
5.03617 1.81 1 0.48i 0.99 0.87
5.02511 2.50 1 1.40i 1.61 1.67

10.0502 1.05 0.00 0.22
10.0502 1.14 1 0.38i 0.05 0.04
10.0502 1.33 1 0.01i 0.48 0.18

a Cpr,z was obtained from a direct calculation of the forces on the di-
poles.
magnitude, i.e., on the order of 1%, as the relative error in
the extinction coefficient. We did not test the accuracy of
the individual force vector on each dipole. However, be-
cause the forces are closely connected to the internal
fields, we expect behavior comparable with that for the er-
rors in the internal fields.36 This is still a topic of re-
search.

In principle, the DDA method is also capable of han-
dling other incident beams (e.g., focused laser beams).37

Therefore it should also be possible to calculate radiation
forces on particles in optical traps or optical tweezers.
The theory as presented in this paper is still valid for
such more complicated incident beams. The expressions
for ^Fsca,i& [Eqs. (19) and (20)] remain valid. Only the ex-
pressions for ^Finc,i& need to be adapted for a more com-
plicated incident beam.

We will apply our method to calculate radiation forces
on grains that make up circumstellar dust particles. We
start with aggregates that are generated by using the
methods of Dominik and Tielens.20 We plan to assess the
accuracy of the obtained radiation pressure by comparing
the results with other methods (e.g., by using the theory
of scattering from aggregates of spheres). Next the ra-
diation forces on each grain in the aggregate will be cal-
culated and compared with the other (i.e., the mechani-
cal) forces that play a role in the coagulation. In this way
we hope to find out to what extent the radiation forces can
influence coagulation of circumstellar dust particles.

APPENDIX A
Calculating (pi* • ¹ i)Eij means performing differentia-
tions of the form

~pi,0* • ¹ i!f~rij! 5 ~pi,0* • ¹ irij!f8~rij! 5 ~pi,0* • n̂ij!f8~rij!,

(A1)

where the functions f are combinations of 1/ra, with a an
integer, or the complex exponential. The differentiation
of the vector function can be rewritten as

~pi,0* • ¹ i!n̂ij~n̂ij • pj,0!

5
1

rij
@~pi,0* • pj,0!n̂ij 1 pi,0* ~n̂ij • pj,0!

2 2~pi,0* • n̂ij!n̂ij~n̂ij • pj,0!]. ~A2 !

Carrying out all the algebra and using Eqs. (A1) and (A2)
finally results in



Hoekstra et al. Vol. 18, No. 8 /August 2001 /J. Opt. Soc. Am. A 1951
~pi,0* • ¹ i!Eij 5 exp~ikrij!H ~pi,0* • pj,0!n̂ij

3 S 2
k2

rij
2 2

3ik

rij
3 1

3

rij
4 D

2 ~pi,0* • n̂ij!n̂ij~n̂ij • pj,0!

3 F5S 2
k2

rij
2 2

3ik

rij
3 1

3

rij
4 D 1

ik3

rij
2

k2

rij
2 G

1 ~pi,0* • n̂ij!pj,0

3 S ik3

rij
2

2k2

rij
2 2

3ik

rij
3 1

3

rij
4 D 1 pi,0* ~n̂ij

• pj,0!S 2
k2

rij
2 2

3ik

rij
3 1

3

rij
4 D J . (A3)

APPENDIX B
In this section the integral in Eq. (12) will be solved ana-
lytically. The final expression, as expected, is equal to
2^Fsca&. First, Eq. (12) is cast into a different form,

^Fout& 5
k4

8p (
i, j

N E dVn̂Iij~n̂! 5 (
i, j

N

^FI,ij&, (B1)

with

Iij~n̂! 5 exp~ikn̂ • rij!@pi,0* • pj,0 2 ~pi,0* • n̂!~n̂ • pj,0!#.

(B2)

The reversal of summation and integration is of no con-
cern, since the number of dipoles N is large but finite.
The relation

U(
i51

N

@pi,0 2 n̂~n̂ • pi,0!#exp~2ikn̂ • ri!U2

5 (
i, j

N

Iij~n̂!

follows easily from working out the left-hand side. Fur-
thermore, one should notice that Iij(n̂) 5 Iji* (n̂), which
causes the imaginary parts of each integral term ij and ji
in the double summation to cancel. The actual evalua-
tion of the integration in Eq. (B1) is complicated by the
exponential factor

exp~2ikn̂ • rij! 5 exp@ik~rij,x sin u cos f

1 rij,y sin u sin f 1 rij,z cos u!#,

which arises for factors i Þ j; u and f are the usual polar
angles. Considering each integral term separately and
aligning the z axis for the spherical coordinates parallel to
rij can reduce the complexity of the integrals consider-
ably. In this case the complex exponent is ikrij cos u.
Working out in Eq. (B1) full detail will show that it is pos-
sible to separate each term into a u- and a f-dependent
part. The integration of the f-dependent parts is
straightforward; the u-dependent parts need some more
attention. All u-dependent integrals are of the form

U 5 E
0

p

sin~u!f~cos u!exp~ikrij cos u!du, (B3)
where f is a polynomial function of cos u. This is justi-
fied, because working out Eq. (B1) will show that only
those f-dependent parts that do not vanish have corre-
sponding u-dependent parts with only even powers of
sin u. So there is no case where f contains odd powers of
(1 2 cos2 u)1/2 but only even powers. Therefore f will
merely be a polynomial in cos u. Substituting t 5 cos u
reduces Eq. (B3) to

U 5 E
21

1

f~t !exp~ikrijt !dt.

The integral

Iu~a! 5 E
21

1

tu exp~ikat !dt (B4)

will be solved in Appendix C. With all expressions at
hand, writing down the solutions to Eq. (B1) is a matter of
accurate administration. For the details we refer to Ap-
pendix D. Introducing the variables

aij 5 exp~ikrij!, b1,ij 5 2
k2

rij
2 2

3ik

rij
3 1

3

rij
4 ,

b2,ij 5
ik3

rij
2

k2

rij
2

,

c1,ij 5 S pi,0,x* pj,0,z 1 pi,0,z* pj,0,x

pi,0, y* pj,0,z 1 pi,0,z* pj,0, y

pi,0,x* pj,0,x 1 pi,0, y* pj,0, y 2 2pi,0,z* pj,0,z

D ,

c2,ij 5 ~pi,0,x* pj,0,x 1 pi,0, y* pj,0, y!êz ,

the integrated scattering force becomes

2^FI,ij& 5
1

2
@Im~aijb1,ij!Im~c1,ij! 1 Im~aijb2,ij!Im~c2,ij!#.

(B5)

Let us now investigate how this compares with the ex-
pressions for ^Fsca& as derived in Section 2. After insert-
ing n̂ij 5 êz into Fij in Eq. (20) and using the same
dummy variables, we find that

1
2 Re~Fij! 5

1
2 Re~aijb1,ijc1,ij 1 aijb2,ijc2,ij!

5
1
2 Re@Re~aijb1,ij!Re~c1,ij!

2 Im~aijb1,ij!Im~c1,ij! 1 Re~aijb2,ij!

3 Re~c2,ij! 2 Im~aijb2,ij!Im~c2,ij!#. (B6)

Clearly,

2^FI,ij& Þ 1
2 Re~Fij!,

but

2^FI,ij& 2 ^FI, ji& 5
1
2 Re~Fij! 1

1
2 Re~Fji!. (B7)

This is true because c1,ij 5 2c1, ji* and c2,ij 5 2c2, ji* .
Therefore the scattering force ^Fsca& as obtained from
summation of forces on each dipole, i.e., Eqs. (5), (19), and
(20), is exactly equal to 2^Fout&. The result of numerical
integration will therefore converge to that of direct calcu-
lation of the forces from the dipole polarizabilities.
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Note that the same reasoning can be applied to the
scattering cross section Csca . In the DDA it can be di-
rectly calculated from the difference between the extinc-
tion cross section and the absorption cross section, for
which exact formulas are available.27 It can also be cal-
culated by integrating the far-field scattered intensity,
i.e., by removing the factor n̂ in the integrand of Eq. (12).
This integral can be solved analytically in the same way
as we did for the scattering force and is equal to the exact
result obtained from the extinction cross section and the
absorption cross section.

APPENDIX C
The evalution of Iu(a) comes down to multiple partial in-
tegration. We use the following recursion relation be-
tween Iu(a) and Iu21(a),

Iu~a! 5 E
21

1

tu exp~iat !dt

5
exp~ia! 1 exp~2ia!~21 !u11

ia
2

uIu21~a!

ia
,

(C1)

valid for u > 1 and a Þ 0. We explicitly expand Iu(a)
for u < 3:

I0~a! 5 @exp~ia! 2 exp~2ia!#
1

ia
,

I1~a! 5 @exp~ia! 1 exp~2ia!#
1

ia

2 @exp~ia! 2 exp~2ia!#
1

~ia!2 ,

I2~a! 5 @exp~ia! 2 exp~2ia!#F 1

ia
1

2

~ia!3G
2 @exp~ia! 1 exp~2ia!#

2

~ia!2 ,

I3~a! 5 @exp~ia! 1 exp~2ia!#F 1

ia
1

6

~ia!3G
2 @exp~ia! 2 exp~2ia!#

3 F 3

~ia!2 1
6

~ia!4G . (C2)

For further use some combinations are calculated and
cast into a different form:

I1~a! 5 2i ImFexp~ia!H 2
i

a
1

1

a2J G ,

I3~a! 2 I1~a! 5 4i ImFexp~ia!H 1

a2 1
3i

a3 2
3

a4J G .

(C3)
APPENDIX D
Before the integral is solved, we introduce the dyadic

N~t, f!

5 n̂n̂

5 F cos2~ f!s2~t ! cos~ f!sin~ f!s2~t ! cos~ f!ts~t !

cos~ f!sin~ f!s2~t ! sin2~ f!s2~t ! sin~ f!ts~t !

cos~ f!ts~t ! sin~ f!ts~t ! t2
G ,

(D1)

with s(t) 5 A1 2 t2. The integral terms in Eq. (B1) be-
come

^FI,ij& 5
k4

8p
E

0

2p

dfE
21

1

dt exp~ikrijt !

3 S s~t !cos~ f!

s~t !sin~ f!

t
D @~pi,0* • pj,0!

2 pi,0* • N~t, f!pj,0#. (D2)

In the first term of the integrand only the z component
does not vanish. The second term consists of 27 inte-
grals, a sum of 9 for each spatial direction. Piecewise
evaluation of the f-dependent parts shows that only 7 of
those integrals do not vanish. These integrals are as fol-
lows: in the x direction the terms corresponding to N13
and N31 , in the y direction the terms corresponding to N23
and N32 , and in the z direction the terms corresponding
to the diagonal elements of N. This reduces Eq. (D2) to

^FI,ij&

5
k4@I3~krij! 2 I1~krij!#

8

3 S pi,0,x* • pj,0,z 1 pi,0,z* • pj,0,x

pi,0, y* • pj,0,z 1 pi,0,z* • pj,0, y

pi,0,x* • pj,0,x 1 pi,0, y* • pj,0, y 2 2pi,0,z* • pj,0,z

D
1

k4I1~krij!

4 S 0
0

pi,0,x* • pj,0,x 1 pi,0, y* • pj,0, y

D . (D3)

For i 5 j the argument a in Eq. (C1) is zero. In that case
Iu(0) 5 0 if u is an odd number. From Eq. (D3) we im-
mediately see that in that case the integral is zero.
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