T AR

&

A PARALLEL FAST DISCRETE DIPOLE APPROXIMATION FOR LARGE SCALE
SIMULATIONS OF ELASTIC LIGHT SCATTERING

ALFONS HOEKSTRA AND PETER SLOOT
Parallel Scientific Computing and Simulation group, Department of Computer Science, Faculty of Mathematics, Computer Science,
Physics, and Astronomy, University of Amsterdam, Kruislaan 403, 1098 51 Amsterdam, the Netherlands, tel 31205257463, fax
31205257490, email alfons@wins.uva.nl, hnp:/Avww.wins.uve nlhvinsiresearch/pscs/

Simulation of Elastic Light Scattering from arbitrary shaped particles in the resonance region (i.e. with a dimepsion of several
wavelengths of the incident light) is a long standing challenge. By employing the combination of a simulation kemnel with low
computational complexity, implemented on powerful High Performance Computing systems, we are now able to push the limits
of simulation of scattering of visible light towards particles with dimensions up to 10 micrometer. This allows for the first time
the simulation of realistic and highly relevant light scattering experiments, such as scattering from human red - or white blood
cells, or scattering from large soot - or dust particles. We use the Discrete Dipole Approximation to simulate the light scattering
process. In this paper we report on a parallel Fast Discrete Dipole Approximation, and we will show the performance of the
resulting code, running under PVM on a 32-node Parsytec CC. Furthermore, as an example we present results of a simulation of
scattering from human white blood sells. We investigate the influence of the position of the inner sphere, modeling the nucleus

of a Lymphocyte, on the light scattering signals.

Keywords: Computational Science, modelling and simulation of Elastic Light Scattering, parallel computing

1. Introduction

Simulation of Elastic Light Scattering (ELS) from
arbitrary shaped particles with dimensions in the
order of a few wavelengths, i.e. in the resonance
region, is a challenging problem, with many
important applications."? A method which is very
well suited for such simulations is the Discrete
Dipole Approximation (DDA).? The DDA discretises
a particle into small subvolumes which arc
approximated as dipoles. The electromagnetic field
on each dipole, due to an incident field and due to the
radiation of all other dipoles, is calculated. Next, the
scattered field is calculated.

As with all numerical simulations of wave
phenomena, the maximum size of the discretisation
is bounded by the wavelength (Ax < A/10). In a
previous paper we showed that this bound results, for
particles in the resonance region, in DDA models
containing up to 107 or even 10* dipoles." The
calculation of the internal field, i.e. the fields on the
dipoles, requires the solution of a dense system of
3N equations with 3N unknowns, where N is the
number of dipoles. This is achieved using iterative,
conjugate gradient methods, which have an O(N)
complexity.*® It is obvicus that DDA simulations of
particles in the resonance region require very
powerful computers,

We have parallelised the DDA and showed that 1t
runs very efficiently on distributed memory
computers, provided that the number of dipoles per
processor is large enough.® The parallel DDA is fully
scalable and can benefit from the computational
power offered by massively parallel systems.
However, this parallel DDA still suffers from the
O(N%) complexity which should be reduced in order
to accomplish the required simulations with 10° or
more dipoles. A way to do that, as was shown by
Goodman et al.,’ is to use fast Fourier techniques in

- page 1 -

the matrix vector products of the conjugate gradient
iterations, resulting in a DDA method with
O(NlogN) complexity. We call this the Fast DDA
(FDDA).

We report on a parallel implementation of the
FDDA method, and we investigate the performance
of this parallel FDDA on the Parsytec CC.

Qur major interest is ELS from human white
blood cells.”®*'® We will present results of
simulations of a model of a Lymphocyte, a small
Human White Blood Cell. The model consists of a
sphere with a spherical inclusion. The inner sphere
mimics the nucleus of the cell. The influence of the
position of the nucleus on the light scattering is
investigated.

2. The Discrete Dipole Approximation

The DDA is extensively described in previous papers
and major developments of the method were recently
reviewed on several occasions.*!' Here we will only
mention those aspects of the method that are relevant
for this paper. Consider an arbitrary particle
illuminated by a monochromatic electromagnetic
field E%r) with wavelength A. Our task is to
calculate the scattered electric field E'(r) in the full
solid angle around the particle.

The Discrete Dipole Approximation (DDA)
discretises the particle into N, usually equal sub-
volumes. The size of a sub-volume, d, must be
small enough to ensure that its response to an
electromagnetic field is the response of an ideal
induced dipole. The size should be in the range A/20
< d < A/10, with A the wavelength of the incident
light (see e.g. the discussions in Ref, 12),

The electric field on each dipole, due to an
external field and the fields radiated by ailt other
dipoles, must be calculated. Once the electric fiekd on

the dipoles is known, the scattered field is calculated
by summing the contributions of all dipoles in the
far field region. The electric field on dipole i (1 < i <
N), due to the external field E(r) and the field
radiated by all other dipoles, is

N

E() =E()+ Y (o) E(ry). (1)
J#i
The 3x3 matrix F(r,r;} describes the radiation from
dipole j on dipole ¢ (see e.g. Ref. 4 for an exact
definition). Eq. (2.1) defines a set of 3N equations for
the 3N unknowns (E(r), (E/(r), (E(r)). After
solving the matrix equation, the scattered electric
field E* is calculated by summing the fields, radiated
by the dipoles, at the observation point r_,, (which is
usually taken at infinity):
N

E’ (tps) = 2, FlTops 1) E(x;). (2.2)

i=1

Calculation of the electric field on the dipoles,
Eq. (2.1}, is the most expensive computational part
of the DDA method. From a numerical point of
view, this calculation boils down to solving a very
large system of linear equations Ax = b, with A a
nxn complex symmetric matrix, b a known complex
vector and x the unknown complex vector. This
system of equations is solved using a Conjugate
Gradient method. We apply the so-called CGNR
method.*® In previous work we have parallelised the
CGNR method for distributed memory computers, in
the Single Program Multiple Data paradigm,’ and
used it to develop a parallel DDA simulation.
Recently Rahola et al. have shown that other Krylov
space methods, especially QMR, result in better
convergence.” Qur parallelisation technigues for the
CGNR are applicable without change in DDA
calculations using e.g. QMR.

In Fig. 1 we indicate the number of floating
point operations needed for 1 iteration of the
conjugate gradient method in the DDA (the line
direct DDA), as a function of the number of dipoles
N. In order to simulate ELS from human white
blood cells, which have diameters up to 16 pum,*"
the number of dipoles needs to be in the range 10° to
10* In Ref. 4 we described a parallel version of the
direct DDA, and based on this work we are able to
indicate the range of operations which can be
performed in less than 10 minutes, when executed on
a typical workstation (a Sun Sparcstation 20 at 50
MHz) or on a parallel computer containing 32
PowerPC-604 processors (a Parsytec CC) (see Fig.
1). The demand that the maximum execution time of
one iteration is limited to 10 minutes is not
completely arbitrary. Typical large DDA models
which we currently employ normally need in the
order of 100 iterations (unpublished results), The 10
minutes limit would then result in maximum

- page 2 -

execution times in the order of 17 hours, or
approximately an overnight calculation per particle.

It is obvious from Fig. 1 that the direct DDA is
too demanding if we wish to simulate ELS from
realistic, micron sized particles. Goodman et al.
pointed out that due to the property F(r,r) = F(r-
r;), the matrix vector products which appear in the
conjugate gradient iterations can be reformulated as
discrete convolutions of electric fields on the
dipoles.® These convolutions can be calculated in an
O(MNogN) complexity (using fast Fourier
transformations), which is an enormous reduction in
operations as compared to the direct (O(N?)
calculation. The operation count for one iteration of
the conjugate gradient method in this Fast DDA
(FDDA, i.e. DDA using the fast Fourier transforms)
is also indicated in Fig. 1. Under the assumption that
FDDA can run at approximately the same speed as
DDA, this suggests that Goodman’s FDDA, when
executed on a 32 node CC (i.e. a low complexity
kernel executed on a powerful HPC system) allows
to cover a significant range of numbers of dipoles N
needed to model realistic, micron-sized particles. We
therefore developed a parallel FDDA, using the
previously developed parallel version of the direct
DDA.

Fiop / ileralion

LOET
4 —8— dicabba
LOB+iS o ==-@pus MsIDDA
LOE+13 of
- T < {0 min/
iteration
loEs = __ " 2 _ | __._
LOEs0S =~ %
1 - - B
LOE+0T o - Range nocded 10 model 3 E
human white bleod cell: -g
< NERI
o
1.0B+0¥ T T o

¥ T T
1B+02 1BE+03 1E+04 (E+05 1B+06 1E+07 IMEN

Fig. 1: The required number of floating point operations
per iteration of the conjugate gradient method in the
DDA, as a function of the number of dipoles N used to
discretise the particle. Lines for the direct DDA, and the
Fast DDA (i.e. accelerated using FFT) are shown. The
range of N, needed to model Human White Bloed cells is
indicated, and, by demanding that the maximum time for
an iteration is smaller than 10 minutes, the range of
workstations and a 32 node Parsytec CC are also
indicated.

3. A Parallel Fast DDA

The FDDA differs from standard DDA only in how
the matrix-vector products are calculated. This means
that existing DDA code is easily adapted to FDDA
by inserting a new matrix-vector product which is
based on the discrete convolution. The same is true

for our parallel DDA code. The parallel three
dimensional convolution was designed in such a way
to fit exactly into the existing parallel DDA code.

The FDDA embeds the particle in a rectangular
box which should have twice the original size in all
dimensions, as demanded by the reformulation into
discrete convolutions. However, as will become clear
below, it is not necessary to actualy keep this full
data box in memory, thus altowing a more efficient
implementation of the discrete convolutions. Before
the matrix vector products are executed, we first
calculate the three dimensional FFT of the
interaction terms F(r,r;), and store it for later use.
Next, for each matrix vector product, the FFT of a
vector is calculated, multiplied with the Fourier
transform of F(rr,), and next the result is inversely
Fourier transformed.

The parallel three dimensional FFI’s now
proceed as follows. In Fig. 2 the original data box,
containing the particle, is drawn in gray. The white
regions contain either zere’s or garbage data, that
need not be stored. The FFT’s result in a fill in of
the large data box, as is drawn in the consecutive
steps in the left column of Fig. 2. We have
organised the ({parallel version of the) three
dimensional FFT in such a way to minimise the
memory usage. This is drawn in the right column of
Fig. 2.

First, for parallelisation, the box is decomposed
in the z-direction, and the slices (i.e. x-y planes) are
allocated to processors. A fast Fourier transformation
is first performed in the x-direction (step 1 in Fig. 2,
completely in parallel). Next, the data box is
transposed (see Fig. 3), giving rise to an (expensive)
global communication operation. The result of the
transpose operation is that the data box is now
decomposed in the X-direction, i.e. each processor
contains y-z planes. Next, single y-z planes are (in
parallel) 2D convoluted using fast Fourier
transformations and inverse fast Fourier
transformations (steps 2 - 6 in Fig. 2). Obviously,
by handling only single planes at a time, a
substantial reduction in memery usage is achieved.
The data volume is transposed back again to the
original z-decomposition and finally the total 3D
convolution is completed by inverse fast Fourier
transforms in the x-direction.

It should be noted that the description of the
parallel three dimensional convolution applies to the
vectors containing the electric fields. In the overall
parallel FDDA we first calculate the three
dimensional FFT of the interaction terms F(r-r),
and store it for later use in the matrix vector products
(i.e. in step 4 of Fig. 2), For the FFT of this
interaction term we need the full data box as in the
left column of Fig. 2. This means that the procedure
as described above leads to an overall memory

- page 3 -

reduction of 5/8 as compared to also using the full
data box for the FFT’s of the field vectors.

The parallel FDDA was implemented using a
message passing library (PVM). All calculations are
performed in double precision (i.e. 64 bits). We have
executed a number of performance measurements on
a 32 node Parsytec CC, which has an 130 MHz
PowerPC-604 processor with 96 Mbytes RAM as
compute node. In Fig. 4 we show the execution time
of 1 iteration of the conjugate gradient method of the
FDDA as a function of p, the number of processors
and N, the number of dipoles. Even for the largest
model we have timed (N = 4.0 105 executed on 32
processors), the execution time for 1 iteration is only
100 s. If we compare this execution time of FDDA
to an execution time of 30 minutes per iteration for a
much smaller number of dipotes (N = 3.3 10% for
the direct DDA (see Ref. 4), the enormous gain is
obvious,

X

1: FFTin x-diedion

't

2:FFTinz-drection foreachplneinthe
x-diredion dostefs 2- 6

N
EdS

3:FFTin y-di¥eaion

”

4: Muliply with F

5:iFFT in y -drecton

NE
®t

4 444 444

6:1FFT in z-direaion

w1

7:1FFT in x -drection

=

¥ H

Fig. 2: The three dimensional FFT and iFFT operations.
The left column shows the full data box, the right
column shows how the full data box is reduced in size in
our implementation. The data decomposition is not
drawn in this figure. The gray means useful data, the
white means either zero’s or garbage data that need not
to be stored.

>

Transpose
operation

=1

Fig. 3: The transpose operation, which is carried out
between step 2 and 3 in the three dimensional FFT (see
Fig. 2). The decomposition of the data box is drawn as
solid lines (in this case for three processors). The dotted
line corresponds to the dotted line in Figure 2. Between
step 6 and 7 in the three dimensional iFFT (see Fig. 2)
the inverse of this transpose operation is carried out.
The P, to P, denote the three processors.

1000 ~
T (s)

100 - b\b’t:

0.1

0.0

1
1
1 10 p 00

Fig. 4: The executicn time (in seconds) of one iteration
of the conjugate gradient method in the paraliel FDDA,
as a function of the number of processors, for a range of
the number of dipoles N. The squares are for ¥ = 512; the
circles for N = 3.3x10* the triangles for N = 2.1x10°
and the stars for N = 4.1x10°. The program was executed
on a 32 node Parsytec CC.

Since only the smallest problems which we
analysed fit in memory of 1 processor, we have not
measured parallel efficiencies of the FDDA code.
However, the data suggest that after an initial good
scaling of the execution time, the efficiency levels
off. This behavior is due to the relative expensive
transpose operations needed for the parallel three
dimensional FFT operations. For the largest problem
size (N = 4.1 10% the execution time on 16
processors was 139 seconds, and on 32 processors it
was 78 seconds, indicating a good scalability for
large problem instances.

In order to assess to what extent the parallel
execution is communication bounded, we measured
the total communication time per iteration. In Fig.
5, the percentage of communication overhead per
iteration is plotted. We can conclude that as p

- page 4 -

increases, the parallel FDDA rapidly becomes
communication bound. However, if the problem size
is increased the communication overhead decreases
again.

100 =

€

[

E 75

s
50 o
25 4 ﬁ
0 4 v

'
10 P 100

Fig. 5: The percentage of communication overhead in
one iteration of the conjugate gradient method in the
parallel FDDA, as a function of the nomber of
processors, for a range of the number of dipoles ¥. The
squares are for N = 512; the circles for N = 3.3x10%; the
triangles for N = 2.1x10° and the stars for N = 4.1x10°.
The program was executed on a 32 node Parsytec CC.

4. An FDDA Simulation of human
white blood cells

An important type of a small Human White Blood
Cell (HWBC) is the Lymphocyte, which normally is
nearly spherical, and has a large spherical nucleus.”
However, subtle morphological differences between
Lymphocyte sub-classes have been reported, and
pathological stages of Lymphocytes usually show
clear morphological signatures (such as a
displacement or roughening of the nucleus; for a
discussion of these issues, see Ref. 8, chapter 1.3.3).
It is our purpose to detect such biologically
important morphological differences through the
non-invasive technique of Elastic Light Scattering.

To demonstrate the potential of the FDDA we
have carried out the following experiment (in all
three cases the wavelength of the incident light is 4
= 0.6328 um):

As an example of a possible pathological state of
a small Lymphocyte we assume that the nucleus can
shift over the z-axis (i.e. parallel to the direction of
the incident light, see Fig. 6). We want to design a
light scattering experiment that allows to measure
this nuclear shift. In this case we assume a
Lymphocyte with an outer diameter of 4.1 pm, and
with an inner sphere with a diameter of 2.9 pum, The
refractive indices are 1.02 and 1.05 respectively. The
Lymphocyte is discretised into 2.7x10° dipoles with
a size of A/12.3.

The experiment is performed by placing the
nucleus on a number of positions on the z-axes and
running a FDDA simulation. Here we must be

careful. Although we are in principle free to pick any
position on the z-axes, this may result in different
discrete representations of the nucleus in the DDA
grid. This can result in unwanted artifacts in the
simulation. Therefore, the nucleus is placed on the z-
axes in such a way that all cases it results in
identical discrete representations.

Finally, in a real experiment the scattered light is
measured using a detector with a certain finite
opening-angle. In principle we are looking for an
optimal position of the detector, and an optimal
opening-angle of the detector (and possibly also
optimizing for the polarization state of the incident
and scattered light). However, here we take a more
modest approach and assume a detector with an
opening-angle of 10 degrees, and only investigate the
total intensity of scattered light. To find the signal
received by the detector we integrate scattered
intensity over the detector surface with steps of 0.25

degree.

Fig. 6: The nuclear shift experiment; the nucleus of the
modeled Lymphocyte is moved over the z-axis, from the
front of the cell to its back, and the influence of these
morphological changes on the light scattering is
calculated.

In Fig. 7 the scattered intensities are presented for
8 positions of the nucleus. The center of the nucleus
was shifted from z = 0.6 um (nucleus touching the
front of the cell} to z = -0.3 um (nucleus halfway the
back of the cell) in steps from 0.15 pm. It is clear
that the position of the nucleus has a profound effect
on the light scattering. A close inspection of Fig. 7
reveals that only the region around a scattering angle
of 40° has a good correlation between the scattered
intensity and the position of the nucleus. This is
shown in Fig. 8, where the scattered intensity is
shown as a function of the position of the nucleus,
with the detector centered at a scattering angle of 40°.

- page 5 -

Logl

Fig. 7: The scattered intensities as function of the
position of the nucleus in the lymphocyte and as a
function of the scattering angle. The scattered
intensities are shown for 8 positions of the nucleus.

Logl
26

24

22

1.8

z
=03 -015 0 0.15 0.3 0.45 0.6

Fig. 8: The scattered intensity as a function of the
position of the nucleus in the cell, when the detector is
positicned on a scattering angle of 40°.

5. Discussion
5.1 The Parallel FDDA

Examination of Fig. 4 shows that for each problem
size one can find 2 minimum in the execution time
as a function of the number of processors p. This
minimum shifts to larger p if the problem size
increases. We have performed more measurements for
other values of the number of dipoles, which also
show this behavior (data not shown). For small N
and large p the program is communication bound, as
can be concluded from Fig. 5. However, as the
problem size increases the percentage of
communication decreases, resulting in increasingly
better performance on larger problem instances.

A simplified time complexity analysis can
reproduce these effects. Define a parameter T,
which represents the total amount of computational
time needed for 1 dipole. In that case the total
computing time per iteration for N dipoles is

N
Teomp(N. p) = ;(log NYtoale (5.1

The total communication time is represented by T,,,,
and T,,,, which respectively represent the time to
initialise a point-to-point communication and the
time to actually send all the data for 1 dipole. In that
case the total communication time is

N
Teomm(N. p)=(p— 1)(Tsetup + '; Tsend]v(s-z)

where we assume that each processor performs p-1
blocking synchronous point-to-point
communications routines. This is obviously not the
case on the Parsytec CC and the real behavior of the
communication time is more complex, depending on
the exact network topology and low-level routing
strategics. Nevertheless, this model assumption
helps to understand the main features of the measured
data.

The total execution time per iteration is the
summation of T, and T, Next we derive an
expression for the number of processors that results
in a minimum execution time. First, take the
derivative to p of the total execution time.

aT N N (p-DN
= =g (log N)Tegpe + Toeppp + [_ —=—3 |Tsend
ap p2 up p2

P

N
== p_2 (og N)Teate + Tserup

In the second step we assume the guotient (p-1)/p =
1, which is valid for large p. By putting the final
equation equal to zero we find p,, the number of
processors for which the execution time will be
minimal,

P = FCL‘CN]ogN. (5.3)
Tsetup

According to Eq. 5.3, p,, will shift to larger values as
N increases. This is indeed observed Fig 4.

According to the model, the fraction of
communication time in 1 iteration is

(P = DTgerup + NTgend

Jraction =
; (log N)Tegie +(p—~Dgoup + NTsend

where we again assumed that (p-1)fp = 1.
Furthermore, assuming that ¥ is large, which allows
us to neglect the terms of the setup time, we arrive
at

P Tsend
The simple model reproduces the effects as presented
in Fig. 5. As N is increased, the fraction decreases,
resulting in a better efficiency of the code.

-1
fraction = (1 + logV hl_c_] . 5.4

- page 6 -

Furthermore, if p is increased, the fraction increases
as well.

Good scalability of this production code is
however not the most important item. We are
interested to run as large as possible models in a
reasonable amount of time. Because of the large
amount of memory in the Parytec CC, we are now
able to run models with as much as 7.1 x 10¢
dipoles. The execution time for 1 iteration of the
largest possible model in the Parsytec CC is 157
seconds. In other words, the resulting execution
times and the maximum size of the models which we
can simulate now are much more important then the
efficiency of the parallel code. The parallelisation not
only allowed us to use the computational power
which is present in the Parsytec CC, it also allowed
us to use the full three Gbyte memory of the parallel
system, which is much larger than what we have
available on our local workstations. Therefore, the
parallelisation not only results in small execution
times per iteration, but more important, it allows to
alleviate the memory bottleneck which was
encountered when FDDA was executed on a single
workstation. Moreover, because the parallel FDDA
is implemented in PVM, it can also be executed in
parallel on a network of workstations. Experiments
showed that parallel execution on such networks does
not result in large speedups, because of the relative
slow communication between the workstations (data
not shown). However, we are in a position to use the
combined memory present in the network of
workstations, again allowing to execute larger
models than on a single workstation.

5.2 Simulations of lymphocytes

The simulation of light scattering from
Lymphocytes, modeled as spheres with a spherical
inclusion, show the potency of the Fast Discrete
Dipole Approximation, executed on a powerful High
Performance Computing system, The largest particle
that we simulated up to now was a homogeneous
sphere, modeled with 7x10° dipoles and dipole
diameters of A/11.5, resulting in a size parameter of
43.7. The results of this test are in very good
agreement with analytical Mie theory (data not
shown),

As an example of the type of simulations we
plan to carry out, we postulated a pathological state
of a lymphocyte, with a nucleus which is shifted
over the z-axes. Off-course, this is a highly academic
example. In reality the nucleus will be shifted in any
direction, the cells will have a certain distribution in
size and refractive index, and the shape of both the
cell and the nucleus is not perfectly spherical. This
simulation was however not meant to model real
lymphocytes. The goal was to demonstrate how
DDA simulations can be used to test the sensitivity

of a light scattering experiment on certain
morphological parameters.

We first plotted the intensity as a function of the
scattering angle, without taking a detector into
account (data not shown). This was not very
conclusive. Due to the complicated interference
structure we could not find any scattering angle that
showed a nice correlation between the scatiered
intensity and the position of the nucleus. However,
after taking a detector with an opening angle of 10°
into account, which effectively averages out the
interference structure, we obtained the result of Fig.
7. To our surprise we where now able to locate one
region, around a scattering angle of 407, where a
good correlation exists between the position of the
nucleus and the scattered intensity, as can be seen in
Fig. 8.

Our next step will be to turn to realistic particle
models and try to reproduce known experimental
results, such as the distinction between two types of
HWBC (so-called Eosinophyls and Neutrophyls)
using depolarisation of the scattered light, which was
discovered by de Grooth. et al."*

4. Conclusions

In this paper we have presented a final step towards
simulation of Elastic Light Scattering from realistic,
micron sized particles using the DDA method. The
combination of a low complexity kernel, i.e. the
Fast DDA method, implemented on a powerful HPC
system, allows us to run DDA simulation
containing up to seven millien dipoles, only limited
by the available amount of memory. Although, even
for the largest models, the parallel simulation spends
a significant percentage on communication overhead,
the execution time of the parallel FDDA is very
small. Furthermore, the parallelisation allowed us to
run much larger models, because we are now able to
exploit g/l memory available in the (distributed
memory) parallel system. This conclusion, together
with the small execution times is much more
relevant than a good efficiency of the parallel code.
Therefore, the relative high communication overhead
is not of a great concern. The parallel FDDA is also
suited to be executed on clusters of workstations,
allowing to expleit the combined memory present in
the workstations of the cluster.

The large scale simulations which we can now
execute allow, for the first time, to model small
Human White Blood Cells. We have presented an
example of a simulation of scattering from a
Lymphocyte. In the future we plan to perform
simutations on more realistic morphologies (i.e. a
non spherical or rough nucleus, etc.). Finally, with
the availability of more powerful HPC systems we
expect to be able to cover also the domain of larger

-page 7 -

Human White Blood Cells (such as Granulocytes or
Monocytes), be able to include biological variability
into the particle models, and be able to average over
the orientation of the particles.

References

1 D.W. Shuerman, Light Scattering by Irregularly
Shaped Particles (Plenum Press, 1980).

2 see e.g. the Proceedings of the Workshop on Light
Scattering by Non-Spherical Particles, Eds. K.
Lumme, J.W. Hovenier, K. Muinonen, J. Rahola,
and H. Laitinen (Observatory, University of
Helsinki, Finland, 1997).

3 B.T. Draine and PJ. Flatau, J. Opt. Soc. Am. A
11, 1491 (1994).

4 A.G. Hoekstra and PM.A. Sloot, Int. J. Mod.
Phys. C 6, 663 (1995).

5 K.Lumme andJ. Rahola, Astrophys. J. 425, 653
(1994).

6 J.J. Goodman, B.T. Draine, and P.J. Flatau, Optics
Letters 16, 1198 (1951).

7 P.M.A. Sloot, A.G. Hoekstra, H. van der Liet, and
C.G. Figdor, Applied Optics 28, 1752 (1989).

8 A.G. Hoekstra, Computer Simulations of Elastic
Light Scattering, Implementation and
Applications, Ph.D. dissertation, University of
Amsterdam, 1994,

9 P.M.A. Sloot, A.G. Hoekstra, and C.G. Figdor,
Cytometry 9, 636 (1988).

10 A.G. Hoekstra, J.A. Aten, and PM.A. Sloot,
Biophysical Journal 59, 765 (1991).

11 A.G Hoekstra and P.M.A. Sloot, in Proceedings of
the 1st Workshop on Electromagnetic and Light
Scattering, Theory and Applications, eds. T.
Wriedt, M. Quinten, and K. Bauckhage (University
of Bremen, ISBN 3-88722-359-4, 1996).

12 A.G. Hoekstra and PM.A. Sloot, Optics Letters
18, 1211 (1993).

13 H. Begemann and J. Rastetter, Atlas of clinical
hematology (Springer Verlag 1979).

14 B.G. de Grooth, LWMM. Terstappen, G.J.
Puppels, and J. Greve, Cytometry 8, 539 (1987).

