> i

Ne L]

f
767 /U

.

Memory Efficiency of Parallel Programs and
Memory Bounded Speedup

M.A. Kartawidjaja' and A G. Hoekstra®

Faculty of Computer Science, University of Indonesia, Kampus Ul, Depok, Depok
Indonesia, email: mawiran@ibm net

2 Paraliel Scientific Computing and Simulation group, Faculty of Mathematics and
Computer Science, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, the
Netherlands, email: alfons@ wins.uva.nl

Abstract. We introduce the concept of memory efficiency of a parallel
program. Memoery efficiency is a measure of the amount of data replication
in a parallel program. It describes how well a paralle! program is equipped
to exploit the available memory in (distribvted memory) paralle!
computers, and whether 2 parallel program is scalable in its memory usage.
We apply memory efficiency in the memory bounded speedup model as
introduced by Sun and Ni. We show how the memory efficiency concept
simplifics the analysis of the memory bounded speedup model.

1 Introduction

The concept of scalability of parallel computers and parallel programs has
played - and still plays - a key role in the advances of paralle! computing. Although a
stnct and formal definition of scalability is hard to produce {1, 2] it is generally agreed
upon that scalability expresses if and how a paralicl system is able to preserve its
performance, measured in some metric, if ifts size is increased. A large number of
scalability metrics have been proposed and studied in the context of many applications
and paraliel systems. This work has been reviewed by Kumar and Gupta [2].

The best-known and most-used scalability metric is speedup. In its original
definition speedup 5, measures the quotient of the execution time T, of a parailel
program running on p provessors and T, the execution time of the fastest sequential
program which solves the same problem. Usually one measures the relative speedup,
where T is replaced by T, the execution time of the parallel program running on 1
Processor.

Ware [3] has formulated a speedup law, based on earlier work by Amdahl [4],
which we now know as Amdahi’s Law:

P

ryypsyTe o
where @ is the inherently sequennal fraction of a program. In Amdahi's law all
communication fatencies are ignored. If we take the limit of p > o we hind $.= 1/a,
1£. the speedup is bounded by the sequential part of the program. Amdahl’s law raised
much skepticisim about the potential of massively parallel computing, since a relative
small a of say 0.01 would limit the speedup to 100

In Amdahl’s law the amount of computational work is kept constant as the
number of processors is increased. This fixed-load leads to Amdahl’s sequential bottle-
neck and prevents to reach very high speedups. Although the fixed-load constraint is
essential in some application areas (e.g. real time control applications) the situation
in many engineering and rescarch applications is very different.

Gustafson [5] has solved Amdahl's sequential bouleneck by formulating a
fixed-time concept, which resuits in scaled speedup models. If the available
computational power is increased, cne usually increases the computational load too.
This is done for instance by performing simulations on finer and/or larger grids, with
more particles, or in more dimensions. Instead of trying to solve the same problem
faster, one tries to solve a larger problem in approximately the same amount of time.
Under the assumption of 2 constant sequential workload Gustafson's fixed time
speedup model results in i

.m._nl_ulnCulc. 2)
Proportional scaling of the parallel workioad with the number of processors facilitates
large speedups. Gustafson {5] reported measurements of scaled speedups of 1016 1o
1021 on three applications actually running on a 1024 node hypercube architecture.

Gustafson has introduced a very important principle which has been applied in
all subsequent scalability studies. Scalability is a property which investigates how a
performance metric of a paraliel system behaves if both the system size and the
workload of the program running on the sysiem are allowed 10 increase. The exact
formulations of many scalability studies are very different, but in all cases varying the
workload is an essentiai feature of the analysis.

Scaling workloads raises the question if one is allowed to increase the
workload indefinitely. Under the constraint of finite memory resources {per processor)
this is certainly aot possible. Furthermore, especially on distributed memory parallel
computers data is frequently replicated in memory of each processor to prevent
communication between processors. In this paper we introduce the concept of
memory efficiency and apply it to a generalized scaled speedup model, the memory-
bounded speedup of Sun and Ni [6]. We will show that memory efficiency allows for
a siraightforward inclusion of the effect of daia replication into the model.

2 Memory Efficiency

Define m{p) as the memory requirement per processor of a parallel program
running on p processors.’ Equivalent to the definition of the efficiency of a parailel
program we can define the memory efficiency ¢, of a parallel program as

m(1) . 3
pmi(p)
The memory elficiency is a measure of the scalability of a parallel program in terms
of usage of the memory of a paraltet computer. In shared memory computers £, = 1.
However, in distributed memory computers the memory efficiency can take any value
hetween 1/p and 1, due o data replication In the sequel of the paper we will assume
that we are deahng with distributed memory systems.

Let M be the total memory requirement of a (parallel) program on 1 processor,
and m , the size of the memory per node. We assumc homogenous nodes, ie. ail
nodes have equal amounts of memory. If this program is to be executed on p
processors, the following expressions must hold:

g =

1 We assume that m is the memory requirement for the data segment of the parallel
program. The code segment and the memory needed by the run time kemnel ts assumed Lo
be neglegible

768

R. =EmpP)

mr
If ¢, < 1 the parallel program in not able to fully use the available distributeg
memory, and it effectively needs moere memery than the sequential program. In the
most extreme case &, is inversely proportional with p. In that case we find M/m, <
k, with & a constant number. In this situation an increase in the number of
processors, and thus the amount of available memory, will not allow us to increage
M beyond k mg. This means that the total workload can also not be increased further,
and scaling of the workload with the number of processors is no longer possible. thus
putting us back to the fixed-load situation of Amdahl.

We will examine two example programs, a parallel matrix-matrix product and
a paraliel matrix-vector product. In order to find expressions for the memory
efficiency, we have to specify how the parallel workload is carried out. Fig (1) shows
how the example problems can be executed in paraliel.

A x B = C A x X = b
11 o 1 .
[[- - -
<l 2 3=}t 2, 3 2 x =2
[P - .
k)
| 1 3

1
Figure 1: The paralle]l matrix-matrix product shown left, and the paralle! matrix-vector
product shown right.

In the matrix-matrix product we assume square, nxn malrices. Matrix A in the
matrix-matrix product is replicated in every processor, matrix B and C are column-
block decomposed, such that each processor has n/p columns of B and C in memory.
Obvigusly this is not an optimal way 10 perform a matrix-matrix product in paratlel
(for this see e.g. [7]) but it results in a good illustration of the memory efficiency
concept.

The paralilel matrix-vector product can be camried out by a row-block
decomposition of the matrix. The argument vector x has to be replicated in memory
of each processor. We will investigale two variants of this parallel matnix-vector
product. In one case the matrix is kept in main memory, and in the other case the
matrix elements are not kept in memory, but are calculated as they are needed. In
many applications the matrix A is o large to store in memory. In this case the
matrix has to be stored on disk, and the elements are retneved when needed.
Cbviously, this disk /O is a very time consuming operation, especially on carrent
parallel systems. Therefore, it is usually preferabie to recalcwlate the matrix elements
(assuming that this is possible). As will become clear in the sequel, this approach
will result in an enormous degradation of the memory-bounded speedup.

From Fig. (1) we can derive that for the paratlel matrix-matrix product the
memory requirement per node is?

m{py=n®+2n/p. 5)
and therefore the memory efficiency equals

2 Actually, we should write m(p) = n* + 2n[n/p], with { | the ceiling function. For reasons
of clarity of the discussion. we will not include this level of detail into the equations.

769

3

2+p

For large p, the memory efficiency of the matrix-matrix product approaches 3/p. This
means that on a distributed memory parallel system with an infinite number of
processors and therefore infinite memory resources, we can only story & matrix-matrix
product with 3 times as much memory requircments as the Jargest product fitting on
one node. Qbviously, this is caused by the replication of matrix A in memory of each
processor. Usually, the reason for such data replication is to avoid the need for much
(time consuming} communication during execution, which will result in a better
efficiency of the program. A better efficiency means a better utilization of processor
resources, however at the expense of a very poor utilization of the (much more
£APEnSive} MEMOTY resources,

The memory requirement of the matrix-vector product, with the matrix stored
in memory, is

%

Em

mpy=n’ip+n+nip. 4]
The resulting memory efficiency is
-1
e = T .2 H_ . ®
n+2

If we assume that n >> p, we find £, = 1, i.e. the parallel matrix-vector product can
fully utilize the available distributed memory.

Finally consider the matrix-vector product without storing the matrix. In this
case the memory requizement per node is

m(py=n+nip, [¢))]
and the memory efficiency is
2
= —— - (10)
l+p

Again, due to the replication of data, in this case the argument vector x, the memory
efficiency will be inversely proportional to p for large p, resulting in a bad utilization
of the available distributed memory,

3 Memory Bounded Speedup

3.1 The Model of Sun and Ni

Recently Sun and Ni generalized the scaled speedup laws, by introducing the
memory-bounded speedup model [6]. Both Amdahl’s lixed-load speedup, Eq. (1), and
Gustafson's fixed-time speedup, Eg. (2), are contained as a special case in the
memory-bounded speedup model. First we will introduce the memory-bounded
speedup model of Sun and Ni, and show their approach to include data replication into
the model. Next we will apply the idea of memory efficiency in the model, and
reproduce some results of Sun and Ni for the paralle]l matrix-matrix product. Finally,
we apply the model to the matrix-vector product.

Define A as the computing capacity of a processor (expressed in e.g. Mflop/s),
and W, the amount of work in a parallel program with a degree of parallelism i. The
wital amount of work in the paralle] program is

770

n
Wa M W . (11)
f=]
with m the maximum degree of parallelism in the program. If the workload W, is
cxecuted on p processors, the execution time of the workload W, is
LAE
Lpy=—21—] - (12)
;(P) A .ﬁl‘
with [x] the ceiting function of x. The workloads with i < p model the load
imbalance in the parallel program.
The execution time of the total workload W on p processors equals

- Wi 3

T(p) = M:.@TM.LT . a3
i=l 1P

We can now formulate the generalization of Amdahl's law, the fixed-load speedup
factor, as

m
W
O N~ T (14
fd m .
T S W[
I
Here we have ignored communication tatencies and other overheads. If Q,(W) is the

total elapsed time which is due to overheads, and put O\(W} = 0, the fixed-ioad
speedup becomes

m
L
5,10 ___& : (1s)
T(p)+ | i
RS A hfn&é
[b
Here it is assumed that the degree of paratlelism is not affected by communication
latencies.

We will now generalize the speedup models, by considering the only constraint
in scaling the workload: available memory. The memory of each node of a real
paraltel computer is limited. Therefore, scaled specdup models have te consider
memory limitations. Sun and Ni [6] proposed a memory-bounded speedup model.
Their idea is to scale the problem to its maximum amount, thus fully ulilizing both
memory capacities and computational power of a parallel computer. We will first
assume that the available memeory is fully utilized.

If W is the workload of the unscaled problem and M the memaory requirement
connected to this workload, when define a function g such that

W=pg(M). (16
If M = m, (the memory per node) we can formally write for the maximum scaled
workload W',

W = glpmg) = g(pg (W), an
Sun and Ni's general speedup formula for memory-bounded speedup is

E—.ﬂ
.M . (18)

3. ._-.
Ms|._I +$£J
=t TP .

In the sequel we will restrict ourselves 1o the situation where W, = o ifi=1
and i » p. Furthermore, we assume Q,(W) = 0. This means that the mw..,éﬂuuo._.. of a
full utilization of the available memory is correct, since data .qov.__nmzo: is not
necessary if the communication latencies are zero. If we insert this in Bq. (15) we
reproduce Amdahl's law, Eq. (1):

5 - W+ :_._v)
P oW +W,/p
if we realize that a = Wy / (W + Wp).

The computational work of the problem on a single node is W, + W, and for
the scaled problem i_. + S.M . The memory bounded speedup now becomes

* =
s AW (19
* *

s W o+ ..._u \ P .
The workload of the sequential part is assumed to be independent of both problem size
and system size:

W= W

The scaled parzllel workload needs some more consideration. The workload W
and the memory requirernent m for this workload are related by W = g(m). If we
assume that g(x) is a semihomomorphism® and that the total memory capacity M of
one processor is available for the workload W, we find

W, = glpmg) = E(p)gimg) = F(PIWp
The function g{p) describes the increase in parallet workload after increasing the total
amount of memory in the system with a factor p. The resulting memory-bounded
scaled speedupis

s e, @n
"W Wy p
which is Eq. (16) of Sun and Ni [6].

Lel us investigate three special cases. ,)
1 #{p} = 1. This correspands 1o the fixed-problem size and equation 21 reduces

to Amdahi’s law. . .
2 £(p) = p. The workload increases linearly with the available memory, keeping

the total execution time fixed. This corresponds 1o Gustafson’s law.
3 z(p) > p. Here, the workload increases [aster than the memory requirements

of the parallel program, and the resulting speedup is larger than the fixed-tirme

scaled speedup.

-
Sp=

(20)

3 A function glx) is a semihomomorphism if glcx) = mﬂnuwc&. For instance, the

function g(x) = ax" is a semihomomarphism with gl =x"

772

In order to find expressions for g(p) we usually have to perform an order of
magnitude analysis, where we only keep the highest order terms. We will investigate
the example programs of the previous section.

The matrix-matrix product Tequires to store three nxn matrices, therefore the
memory requirement is M = 3n*. The total work (assuming that it can be done in
parallel) is S..u.nammna - 1) ~ 2n* for large n. Therefore W, = 39 5 2 M, and we
immediately find g(p) = p* and

W, = pW, . 22)

This result can also be derived by putting M” = pM. From this we find for n’, which
is the size of the scaled matrix, #° = p'?n. Therefore,

S.__“ - m?nuu - Nhu\unu = hu\us\v)

This is an example where g(p) > p, and the memory-bounded speedup is even betler
than for fixed-time speedup.

Secondly consider the parallel matrix-vector product with the nxn matrix stored
in main memory. The memory requirement is M = n* + 2n. The first term is the
memory of the matrix, the second term is for the argument and result vector. The
work is W, = n(2n - 1). If we assume that n is very large, W, = 2M, and z2(p) =p.
Therefore

s_ﬂ -pW, s (23)
memory bounded speedup and fixed time speedup are equivalent in this case. Again,
this result is easily derived by putting M~ = pM.

Finally, consider the case of the parallel matrix-vector product, where the
matrix is not kepl in memory. Assume that we can calculate the matrix elements, and
thai the amount of work 1o calculate one element equals e. In that case, the tota
amount of parallel work in the matrix vector product equals W, = n(2n - 1} + en’.
Now we only have 10 store the argument and result vector, and therefore M = 2n
Assuming large n we find

2+ 2

W, - n M~ .
and g(p) = p*. In this special case the memory bounded work increases as the square
of the number of processors,

Wy =p"Wp
We will postpone numerical calculations of the resulting scaled speedups until
the next section.

3.2 Data Replication and Application of Memory Efficiency

We will now again focus our attention to Distnbuted Memory architectures.
Here, as was pointed out by Sun and Ni [6], dalta in parallel programs usually has to
be replicated. This is due 10 the fact that in many paralle! calculations some data
items are needed in all processors. Replication of this data in memory of all
processors is more efficient than to keep it stored in memory of one processor and
communicate it to olher processors. However, due to this replication of data, the
relation between the scaled and original workload in the memory bounded speedup
model . as expressed in Eq. (20), no longer holds.

e

Sun and Ni circumvented this problem by defining the function

*

W
-t . (25)
G(p) W,

With this definition the memory bounded speedup becomes
.w... Ss— +G(p vﬂ..h 26)

PW o+ GpYW, [p+ Qp(W)
where we also included the overhead function Q.

We will derive an expression for G(p) using the memory efficiency. From Eq.
(4) and Eq. (16) we find that the total wotkload of a parallel program is limited by

W < (M) = E(£,,P) Wrna: @n
with w,_, the maximum attainable workload of a program running on 1 processor.
This limit on the workload of a program gives an upper bound to the scaling of
workloads in scaled speedup models. In fact, we will show that the function G{p), as
defined by Eq. (25), equals g(z,, p}-

The memory requirement per node of the scaled workload in the memory
bounded speedup mode! equals the memory requirement of the original workload:

m(py=M.
Furthermore, the total memory requirement of the scaled workload equals the memory
requirement per node of the scaled workload forp=1:

m(h=M,
If we substitute these two relations in the definition of the memory efficiency, Eq.
(3), we find

M =, pM (28)
Using Fq. {25) and Eq. (28) we can now derive an expression for G(p):
%A._:«w - AMOg
G(p) = - RtEmp) -
p h:xv m
and a final resulting expression for the memory bounded speedup
L
. W, + Z(E)W,
.m._a - 1 m P 30)

Ll L] -

Wi + e mpIWp [p+Qp(W)

Note that this memory bounded speedup is not necessarily the optimal scaled speedup,
because the overhead function @ depends strongly on the details of the paraliel
program and the underlying parallel hardware. However, if we neglect the overhead Q.
but still include the effects of data replication via ¢,,, Eq. (30) results in a realistic
upper bound of speedup. As will become clear, in many situations this upper bound
is between the fixed-load upper bound of Amdahl and the fixed-time upper bound of
Gustafson.

Let us now consider once more the examples of the matrix-matrix product and
the matrix-vector product. As was shown in the previous section, for the matrix-
matrix product we have g(p) = p™. Using Eq. (29) and Eq. (6) we immediately find
the expression for G(p):

32

w
G(p) ..TwL _ a:

.

774

which is equal to the result of Sun and Ni [6]. For large p, G(p) = 3*2, which is jarger
than the fixed-load speedup (G = 1), but much smaller than the fixed-time speedup (G
=p). Due to data replication the memory capacity requirements increase much faster
than the computational requirements.

For the matrix-vector product, with the matrix stored in memory, we have

gp) =pandem=1, resulting in

Gip)=p, (32y
which is exactly the fixed time case.)

Finally consider the matrix-vector product without storing the matrix.
Remembering that in this case g(p) = p*, and using Eq. (10), the memory bounded

scaling function for the out-of-core matrix-vector product is
2

G(p) .A 2p v . (33)
1+p

Again, due to the replication of data, the memory capacity requirements grow faster

than the computational requirements, and G(p) ~ 4 for large p. Memory bounded

specdup will be slightly better than fixed-load speedup, but will not come close to the

mw&%an speedup of Gustafson.

0.020.040.060.08 O.HQ " 7100 200 300 400 mocﬂ
Figure 2: Scaled speedup S of the out-of-core Figure 3: Scaled speedup S of the aut-of-
matrix vector product as a function of the core matrix vector product as a function of
sequential portion of the program «, for 512 the number of pracessors, for a = 0.01; the
processors; the solid linc is the Fixed-load solid line is the fixed-toad case (Amdahl),
case (Amdahl), the dotted line is the fixed- the dotted line is the fixed-time case
time case (Gustafson), the dashed linc is the (G afon). and the dashed dotted Tine 1s
memory bounded speedup without data the memory bounded speedup with data
replication, and the dashed dotied ::n 1s the replication. The memory bounded speedup
memory bounded speedup with daw e T replication s indistin-
replication. guishable from the fixed time case. and
therefore now drawn

Fig. (2) and (3) show the resulting scaled speedup for the out-of-core matrix-
vector product as a function of « (the sequential fraction of the program) for p = 512,
and as a function of p for @ = 0.01 respectively. The speedup was calculated for the
fixed-load case, the fixed-time case and the memory-bounded case, with - and without
data replication. Note that in Fig. (3) the memory bounded speedup without data
replication is indistinguishable from the fixed time case, and therefore not drawn.

775

4 Discussion and Conclusions

We introduced Lhe concept of memory efficiency, which is a measure of the
amount of daia replication in a parallel program, Memory efficiency expresses how
well distributed memory is utilized if the number of nodes is increased in a parallel
computer. If one realizes that memory usually is the most expensive part of a parallel
compuler, we can assume that memory efficiency of a paralie]l program should play a
major role to assess the cost-effectiveness of parallel computing.

The fraction of replicated data plays the same role as the fraction of sequential
work. However, in contrast with the sequential workload, increasing the toral
workioad can Jead to an increase in the amount of replicated data. This results in
increasingly bad utilization of available memory, and a degradation of the scalability
of the parallel program.

From Fig. (2) and (3) we can draw two important conclusions. Scaled speedup
models are the solution to Amdahl's Sequential bottle-neck, and memory bounded
speedup models with €, = 1 will give almost ideal upper bounds to speedup.
However, if the implementation of the paralle]l program is such that the memory
efficiency is inversely proportional to P, e.g. due to the large global data buffers in
the out-of-core matrix vector product, memory bounded speedup will only result in a
modest improvement compared to Amdahl's law.

We have to be cautious if we interpret our theoretical results of memory-
bounded speedup in terms of the daily practice of parallel computing. First, in the
computation of the memory-bounded speedup in Fig. (2} and (3) it is assumed that the
original, unscaled problem is the largest problem fitting in memory of one node. If
we would start with a2 much smatler unscaled workload, we can increase the workload
beyond the bounds given by the fenction G(p), resulting in larger speedups. Memory-
bounded speedup and memory efficiency become important when at some point the
total available memory is full, and ane wants to anatyze how the parailel program
behaves il the number of nodes is increased.

In conclusion, memory efficiency is a theoretical construction which is useful
to assess the utilization of a parallel program of the avaitable memory in disiributed
memory computers. Furthermore, it can be integraied with scalability theories, as was
shown in the case of (he memory-bounded speedup model, to account for the fact that
data replication can resuli in bounds in the scaling of workloads.

5 References

1} XH. Sun and DT. Rover, "Scalability of Paralicl Algorithm-Machine
Combinations.” IEEE Trans. Paralle] Distrib. Systems. 5. 599-613 (1994),

2} V. Kumar and A. Gupla, "Analyzing Scalabitity of Parallcl Algornitms and
Architectures.” 1. Parallel Distrib, Computing 22, 379-391 {1994).

3] W. Ware, "The ultimate computer.” IEEE Spectrum 9, 84-91 (1972).

4] G. Amdahl, "Validity of the single processor approach to achieving large scale
computing capabilities.” in Proc. AFIPS Conference, 1967, pp. 483 - 485,

5} L. Gustafson, "Reevaluating Amdahl's Law " Communications of the ACM 31 .
532 - 533 (1988).

6] XH. Sun and L.M. Ni, "Scalable Problems and Memory-Bounded Speedup.”]
Parailel Distrib. Comput. 19, 27.37 (1993

71 G.C. Fox. S.W. Quo, and A J.G._ Hey, "Marrix algorithms on a hypercube 1. Matrix
multiplication.” Parallel Computing 4, 17 - 31 (1987).

