Proc . 145y Seuml oF Conputet

Crhu 233 @

ISV{(%I%EIIVJILING AND SIMULATION OF AN AUTOMATIC DEBITING

L.O. Hertzberger, A.G. Hoekstra, J. Lagerberg

Department of Computer Science

Facuity of Mathematics, Computer Science, Physics, and Astronomy
University of Amsterdam

Kruislaan 403, 1098 S] Amsterdam

Abstract

This paper describes the modelling and simulation of an Automatic
Debiting System (ADS). A simulation environment (ADSSIM) is
discussed and an example of a fictitious ADS is given which is
implemented within the framework of the simulation environment.

1 INTRODUCTION

We have developed a modelling approach for Automatic Debiting Systems (ADS) on Motor
Highways and realized a generic software environment to implement these models. The tool, called
ADSSIM, is currently used in a project of the Dutch government to assess the technical feasibility of
ADS's proposed by industry. An ADS is modelled by a top-down, hierarchical decomposition,
resulting in a number of (virtual) sub-components. It is assumed that the sub-components have a well-
defined state which changes on pre-computable timestamps. The ADS can then be represented as a
discrete event system. ADSSIM is a discrete event simulation envircnment specifically tailored to
implement high-level ADS models. ADSSIM is a versatile tool which not only is used to assess the
technical feasibility of an ADS, but can also be applied as a computer aided design tool.

The modelling approach and the simulation environment (ADSSIM) will be presented. As a case
study, an example of modelling and simulation of a fictitious ADS will be shown.

2 DESCRIPTION OF AN AUTOMATIC DEBITING SYSTEM

Due to heavy road congestion in the Netheriands, especially in the western part around the major cities
(Amsterdam, Rotterdam, Den Haag) the Dutch Government intends to implement a system of
Electronic Tolt Collection with the goal to reduce these congestion. It is foreseen that these systems
will have to become cperational in the year 2001. The toll collection should not interfere with normal
traffic flow. Therefore, an Automatic Debiting System (ADS) is required.

An ADS will be constructed as follows (see Fig. 1). Vehicles will have an On Board Unit
(OBU) which contains an electronic purse (a smart card) and |l-wave equipment to communicate with
the Road Side System (RSS). The RSS consists of a communication system, a sensor system, a
registration system and a coordination system.

RSS

commu nication

system ooordination

08U \ tem
x & d senser system '—) syste
-
’. system

Fig. | Schematic drawing of an Automatic Debiting System.

S

234

When a vehicle enters the tolling zone the communication system will start an exchange of
messages with the OBU, resulting, under normal operation, in a debiting of the smart card in the OBU.
The communication system keeps record of the debiting of each vehicle. Furthermore, the
communication system will also assess the position of the OBU with which it is communicating. All
this data is sent to the coordination system. At the same time the sensor system will be measuring the
positions of vehicles in the tolling zone. This data is also transferred to the coordination system. The
coordination system will correlate all incoming data, and in that way is able to verify if all passing
vehicles have actually paid the tolling fee. Normally this is the case and the coordination system is
able to correlate all vehicles seen by the sensor system with the data coming from the communication

system.

However, the ADS must also be able to handle violators. If a vehicle does not have an OBU, if
it is turned off or does not contain a smart-card, or if the smart card does not contain enough money,
the vehicle is considered to be a violator. In the first two cases the vehicle will not communicate with
the communication system. However, the sensor system will still detect the car, and the coordination
system is in that case not able to match the sensor data with communication data. In the other two
cases the communication system will communicate with the OBU, but is not able to charge (enough)
money from the smart card. The communication system will send this information to the coordination
system, where it is correlated with data coming from the sensor system. In all four cases the
coordination system concludes that the vehicle is a violator, and triggers the registration system, which
takes a photograph of the license plate of the vehicle. This photograph is sent to a back office system
for further processing.

So far the desired, correct operation of an ADS is described. However, in many situations errors
can occur. For instance, if a vehicle is not a violator, but for some reason an error occurs in the
communication system. In that situation the coordination system can only conclude that the vehicle is
a violator and trigger the registration system. In the most severe case the driver will have no proof that
he or she was willing to pay and the driver is unjustly forced to pay a fine. These so-called Incorrect
Enforcement and Non Charging Event have to be reduced to an absolute minimum.

Another case occurs when the debiting has worked correctly, but through an error in the sensor
system, or through a wrong correlation of data in the coordination system, the coordination system
decides to trigger the registration system. Again, the driver is forced to pay a fine, but now a proof of
toll fee payment is available by presenting the log file which is maintained on the smart card. This
mistake is less severe than the previous example, but should still be very rare to avoid administrative

overhead.

A last example is that of a free ride, where a violator, through an error in the sensor system or
coordination system, is not identified as such and therefore is not registered. Many other possible
errors in the operation of an ADS can be identified.

The requirements of an ADS, as laid down by the Ministry, result in a set of System Quality
Factors (SQF) which describe the chance that a particular error in the system occurs. An example is
the already mentioned Non Charging Event which, in the Dutch setting, is required to be smaller than
one in a million. The key issue is to proof that an. ADS can operate correctly under such strict
requirements. To model and simulate the behaviour of an ADS is a method to study the cause of faulty
operation. In such a way the technical feasibility of every ADS system can be evaluated.

We have developed a modelling approach to set up discrete event models of an ADS, and we
have realized a simulation environment, called ADSSIM, to implement the models and run the
simulations. ADSSIM is used by the Dutch government to assess the technical feasibility of ADS
designs proposed by industry.

In the next chapter the approach will be discussed in more detail.

235

3 MODELLING AND SIMULATION OF AN ADS

The technical requirements for an ADS are of such a stringent nature that highly sophisticated
methods are needed to assess to what extend the proposed solutions can be compliant with those
requirements.

For this we need to model a complete ADS, apply realistic traffic input to the model, and use as
much as possible knowledge which is available on ADS sub-systems. The model should be able to
deal with stochastic parameters such as the probability of a non functioning OBU or dirty iicense
plates. As the response of an ADS depends on detailed microscopic traffic configurations it is natural
to use a discrete traffic mode! as input to the ADS simulator. Finally, the ADS model should be able to
take environmental parameters into account, such as the influence of weather conditions on sensor
behaviour and on traffic, or e.g. rare specular reflections of sunlight directly into a registration camera.

We model an ADS in a top-down approach. This means that we hierarchically decompose an
ADS into a small number of sub-systems. The sub-systems themselves are modelied using (known)
parametrizations. We assume that the state of a sub-system changes on pre-definable time-stamps, due
to external inputs and/or due to changes in other sub-modules. This assumption results in a discrete
event model of an ADS.

The ADS model is set up as follows. First, we apply a small number of hierarchical
decompositions of the ADS and use (known) parametrizations of the remaining modules to describe
their behaviour. The connections between the modules and the response of the modules to the
presence of vehicles are specified, resulting in a discrete event model of an ADS.

As an example we will discuss the development of a model for a fictitious ADS (FADS). The
first step in building the model of an ADS is to specify the sensitive volumes of all sensors. A
sensitive volume is defined as the volume where a specific sensor (be it an antenna, or a camera) is
able to detect a vehicle.

Next we perform the hierarchical decomposition. The rear and front registration system are
modelled as one abstract module. We assume that the OBU wake up always succeeds, and therefore
the wake up system is not included in the model. The communication system is also modelled as one
abstract module, which performs the debiting and measures the position of an OBU. Finally, we
assume that the detection system cannot be modelled as one single module. In real models this
depends to what extend it is possible to define validated models of e.g. a track sensor. In the fADS
case the sensor system is decomposed further into three sensors that measure the front position of the
vehicle, which are used to build a track containing three front measurements.

It should be pointed out here that, especially in modelling of the detection system, it is possible
that after the decomposition of the ADS the resulting sub-modules need no longer be physical sub-
systems, but might as well be logical units which perform a certain measurement. We could say that
the detection system of fADS is modelled as three virtual sensors which measure a position. The
concept of logical sensors was first introduced by Henderson and Silcrat [1] and later Weller, Groen
and Hertzberger refined it to virtual sensors [2]. A discussion of the virtual sensor modelling that we
have developed for ADS simulations is beyond the scope of this document.

Finally we need to find a model for the remaining elements. In the fADS example the models
are very simple, but they do reveal the general ideas. The virtual position sensors are characterized
through a parametrization of the final measurement errors made by the virtual sensors, which are Ax
and Ay respectively. The errors will normally depend on a number of other parameters, but in the
example we assume that the errors are constant. In the simulation we use these errors to generate a

measurement, by:

Xm =X+ RAN,

~

236

where x is the real x-position of the vehicle, x,, is the measured position and RAN is a random number
drawn from a normal distribution with zero mean and with a standard deviation Ax.

The communication module is modelled by a probability p that the communication fails, by a
transaction time ¢ needed for the communication, and by the errors Ax and Ay for the OBU

localization.

Modelling a real ADS will result in more elements in the model and more complicated
parametrizations of the elements. However the models will be comparable to the highly simplified
fADS example.

4 ADSSIM

ADSSIM is a simulation environment for discrete event simulation. This tool is developed using
Modsim, which is a generic discrete event system. ADSSIM executes ADS models. The dynamics of
vehicles in the ADS is governed by the statistics of traffic flow on highways for a number of selected
scenarios. The vehicles, i.e. cars, motor drivers or trucks, are traced through the ADS geometry, and
events are scheduled which represent all activities of the ADS. These events represent e.g. a start-up
of communication, OBU activity, a sensor activity or a registration activity. For each vehicle all ADS
activity is logged. Next, after the vehicle leaves the ADS, it enters an analysis module, which
generates estimates of the desired System Quality Factors. The analysis module carries out the
statistical analysis of the generated data (e.g. variance estimation), and decides upon termination of
the simulation.

ADSSIM, which is a joint development of CMG and the University of Amsterdam, consists of
three main modules (see Fig. 2). A traffic generator, developed by the RWTH Aachen, Germany,
simulates traffic moving over a segment of the road. The traffic is validated against real (Dutch)
traffic. Currently the traffic generator writes trajectories of each vehicle (i.e. position of vehicles as
function of time) to a file, which is read by the Framework. The Framework is based on the evaluator
tool developed by CMG [3]. It contains the man-machine interface of ADSSIM, and takes care of
analysis and logging of the simulation results. The Kernel is used to implement the actual ADS model
and to run the simulation. The Kernel contains a number of predefined events which are used to map
the discrete event model of an ADS to ADSSIM.

man-machine interface Framework
Traffic scenario specification
Generator SQF's
Kernel analysis
event generation uiilities logging
event handling maodel interface
K

event harxling routines
configuration file

Fig. 2 ADSSIM design.

In the evaluation project it is necessary to be able to evaluate different ADS designs and
consequently to implement several, different ADS models. We provided a mechanism for this. The
user of ADSSIM provides a configuration file, containing the geometry of the ADS (number of lanes,
positions and sensitive volumes of all the sensor systems). When a vehicle enters one of the sensitive
volumes, a corresponding in_zone event is generated automatically by ADSSIM.
(InDetectionzZone for entering the detection zone, InCommunicationZone for entering the
communication zone and InRegistrationZone for entering the registration zone). When it leaves a
zone a corresponding out_zone event is generated by ADSSIM (outDetectionzone,

237

OutCommunicationZone and OutRegistrationZone resp.). The user has to specify in C-code
what activities should follow up as result of a vehicle entering or leaving a sensitive zone, i.e. the user
has to write the event handling routines. These routines are linked with the Kernel through the model
interface. They contain the parametrizations of the sub-systems and all the logic to connect sub-
systems, mapped to events, with each other.

time t1 time t2

detection zone detection zone

ey —
—-— T —_— m
m

InDetectionzone JutDetectionZone
|]
| 1 —»
1 Q ume
Fig. 3 Vehicle events generated when a vehicle enters and leaves the detection zone.

The simulation proceeds as follows. The framework reads trajectories of each vehicle and
passes them to the kernel. At the correct time the kernel Jaunches the vehicles in the simulator. Next,
the kernel calculates at which time the vehicle enters and leaves all sensitive zones which are defined
in the configuration file, and on each of these times schedules an in_zone or out_zone event (see
Fig. 3). These events, which are automatically scheduled by ADSSIM, form the basis to implement
the ADS model. The event handling routines for the in_ and out_zone events, which have to be
provided by the user of ADSSIM, will typically schedule other events, available in ADSSIM, which
are used to implement the ADS model. This could for example be a scheduling of a
VehicleMeasured event when the front of the vehicle is measured at a curtain in the middle of the
detection zone at time ¢, In the example of Fig. 3, if an InDetectionZone event is scheduled on
time ¢/, and the user has scheduled a VehicleMeasured event at time ', ADSSIM will execute the
event handling function of VehicleMeasured at the right time.

5 DETAILED DESCRIPTION OF FICTITIOUS ADS

Here we go further to illustrate the concept based on the case of a fictitious ADS (fADS) and show
how this hypothetical system can be modelled. The first step in building the model of fADS is to
specify the geometry and the sensitive volumes of all subsystems. Then we give the relation between
the subsystems in a diagram. Finally we discuss the scheduling of the events.

5.1 Geometry of fADS

The geometry of fADS is given in Fig. 4 and specified in the configuration file. It consists of a 3-lane
road with each lane 3.5 m. It contains 4 gantries at which the sensor subsystems are mounted and has
a length of 15.5m. The rear registration cameras are mounted at the first gantry, the three detection
curtains at the second, the communication antennas at the third and the front registration cameras at
the fourth. The communication system is based on the European standard, but for the time being only
a number of OBU localizations is generated during the passage of the vehicle through the
communication zone. The OBU localizations are stored in an OBU track. The detection system
measures at three positions (2m apart) the lateral position of the middle front of the vehicle when it
passes one of the detection curtains. The front positions are used to build a detection track of the
vehicle. The front registration camera is triggered when the front of the vehicle is detected by the fist
curtain, the rear registration camera when the rear of the vehicle is detected by the third curtain. For
all vehicles a front and a rear picture are stored. The coordination decision is taken when the vehicle
jeaves the detection zone, where the detection track of the vehicle is matched to an OBU track. If no

238

OBU track is found for the vehicle, it is registered and the pictures are stored permanently for further
usage. Otherwise the pictures are removed.

rear registration detection communication front registration
camera curtains antenna camera

- <

I8.5 220 430

Fig. 4 Side view of fictitious ADS.

5.2 Relation of subsystems

In Fig. 5 an example of the relationship between the events of fADS is given in which the basic events
InDetectionZone and CutDetectionZone are caused by the presence of vehicles. This relationship of
the events doesn't give an indication of the time at which the events take place, but only by which
events they are caused, When a vehicle enters the detection zone three type of events are scheduled,
the events VehicleMeasured (TRACK) and VehicleMeasured (FRONT) immediately at the next
clock tick of the detection system. The event VehicleMeasured {REAR} is scheduled when the rear
of the vehicle is detected at the third curtain. In vehicleMeasured (TRACK) a detection track is built
consisting of three front measurements at the three detection curtains. In
VehicleMeasured (FRONT) and VehicleMeasured (REAR) the right registration camera is
selected and the event TakePicture is scheduled. The pictures are temporarily stored in the
detection track.

For the moment the communication is modeled by generating OBUMeasured events every (.2
seconds during which the vehicle is in the communication zone (when it has an OBU). These
measurements are used to build an QBU track. The event TransactionCompleted is scheduled in
the beginning of the communication zone (when the vehicle has an OBU}. This means that we assume
for the moment that communication always succeeds when the vehicle has an OBU.

In the outDetectionZone event handler the CoordinationDecision event is scheduled,
which means that all the information of the vehicle is available: i.e. a detection track, front and rear
picture, and an OBU track. In the CoordinationDecision the detection track of the vehicle is
fitted to an OBU track present in the OBU track pool. If no OBU track is found, the vehicle is
registered: i.e. the registration pictures of the vehicle are stored permanently. If an OBU track is
found, the vehicle can be forgotten.

239

Yehicle
Measured
/ TRACK
In Vehicle Store
ak
Detection —" Measured — Iictzre — picture
Zone \ FRONT Temporarily
Vehicle Tak Store
Measured —- Py € — Picture
REAR iCiure Temporarily
Forget - Remove
Qut Vehicle Picture

Detection ___p» goo.rd.ination / Store Picture
Zone ecision \
Register Permanently

Vehicle
\ Remove

OBU Picture
In Communication ——™ Measured
Zone

Transaction

Completed

Fig. 5 Relation between subsystems mapped to events.

If a vehicle (with an OBU) enters the ADS, the following sequence of events is scheduled (see
Fig. 6). First, the vehicle enters the communication zone (see Fig. 4). This means that an
InCommunicationZone event is scheduled. Within the event handling code of the
InCommunicatienZone event a number of communication events is scheduled. The first one is the
InitRequest event which initializes the transactions for the vehicle. The DebitConfirm event is
scheduled when the debit cart is received by the road side system (RSS). The transaction is at that
moment ended for the RSS, which is reported to the coordination with a TransactionCompleted
event. This could be at the beginning of the communication zone when a vehicle is driving not to fast.
If a vehicle is driving faster or if a dedicated smart card is exchanged by the much slower chipknip,
this event is scheduled closer to the end of the communication zone. During the passage of the vehicle
through the communication zone a number of CBUMeasured events is scheduled at irregular time
intervals, Here the localizations of the OBU are measured and stored in an OBU track. Somewhere in
the middle of the communication zone the InDetectionzone event is scheduled, in which at the
three curtains a VehicleMeasured (TRACK) event is scheduled where the measurement of the front
of the vehicle is added to a track. The VvehicleMeasured {FRONT) event is scheduled at the first
curtain which is used to trigger the front registration camera. The VehicleMeasured{REAR) event is
scheduled when the rear of the vehicle is measured at the third curtain, which will result in a trigger of
the rear registration camera. The OutCommunicationZone and OutDetectionZone event are
scheduled at the end of the ADS zone. Within the event handler of the OutDetectionZone event a
CoordinationDecision event is scheduled with a delay of 0.3 seconds. Within the event handler of
the CoordinaticonDecisiocn the information of the vehicle obtained during its passage through the
ADS is evaluated. First of all the track of the vehicle is used to find a matching OBU track. If a track
is found and the right fee is deducted from the smart card, all information concerning this vehicle {also
the registration pictures) is deleted. When no OBU track is found or when no fee is deducted, the
vehicle is registered. Le. the front and the rear picture of the vehicle are stored permanently for further
usage.

240

Out Coondinul
InsloA
Detection Deition
Zone
Vehicle
Mensimed|
TRACK
Vchl ke Vchick: Vehicie Vehicle
DEtu tion ‘ Measured Memuwd Measured
ZOM FRONT TRACK REAR
In Iml B oBU OBy hme
Communication Reqwes [Veasured Mewrured Meusured
Debit
Zone woufirm
Frunsacsion
Counpledes]
Out
Communication
Zone

Fig. 6 Scheduling of events in course of time for one vehicle with an OBU.

6 CONCLUSION

We have developed a discrete event simulation environment for ADS simulations. This tool, called
ADSSIM, is developed using Modsim, which is a generic discrete event system. ADSSIM executes
ADS models. It is a generic discrete event simulation tool specifically tailored to handle ADS models.
We modelled and implemented a fictitious ADS to show how an ADS model can be linked to
ADSSIM. As long as fADS does not contain validated models, the simulation is not a representation
of the real system. If the ADS simulation has to resemble the real ADS, validated models have to be
included in the simulation and the range of validity of the models has to be known exactly [4].
Another important aspect of ADSSIM is that it can be used to design and optimize an ADS, which
makes ADSSIM a computer aided design tool.

References

[1] T.C. Henderson, E.Silcrat, Logical sensor systems, Journal of Robotics Systems, 1, 1984, 169-
193.

[2] G.A. Weller, F.C.A. Groen, L.O. Hertzberger, A sensor processing model Incorporating error
detection and recovery, in Traditional and Non-traditional Robotic Sensors, T.C. Henderson ed.,
NATO ASI series Vol.63, 1990, Springer Verlag, 351-364.

[3] G-I. van Dijk, R. Poestkoke, G.R. Meijer, A methodology for performance evaluation of
electronic toll collection systems, in Proceedings of the Third Annual World Congress on Intelligent
Transport Systems, Orlando, USA, 1996, 14-18.

[4] P.L. Knepell and D.C. Arangno, Simulation Validation, A Confidence Assessment Methodology
(IEEE Computer Society Press, 1993).

