Anomalous diffraction by arbitrarily oriented
ellipsoids: applications in ektacytometry

Geen. J. Streekstra, Alfons G. Hoekstra, and Robert M. Heethaar

Anomalous diffraction by an arbitrarily oriented ellipsoid with three different axes is derived. From the
resulting expression the relationship between the shape of the ellipsoid and the intensity pattern is
immediately evident: The axial ratio of the elliptical isointensity curve equals the axial ratio of the
elliptical projected area of the ellipsoid. A comparison of anomalous diffraction with calculations
performed with the T-matrix method reveals that the anomalous diffraction approximation is highly
accurate for single ellipsoidal red blood cells. Application of the expression for anomalous diffraction by
ellipsoids to a population of red blood cells shows that, even in a red-cell suspension as examined in an b
ektacytometer, the axial ratio of the isointensity curves is equal to the mean axial ratio of the red blood
cells in the population. In ektacytometry this relationship between cell shape and intensity pattern is
commonly assumed to hold true without reference to the light-scattering properties of the cells. The
results presented here show that this assumption is valid, and we offer a profound theoretical basis for it
by considering in detail the light scattering by the red blood cells.
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1. Introduction

A technique for quantifying the deformability of red
blood cells is ektacytometry.! Inan ektacytometer a
diluted suspension of red blood cells is sheared in a
Couette flow between two coaxial transparent cylin-
ders (Fig. 1). As a result of the forces exerted by the
flow, the red cells take on ellipsoidal shapes with the
longest axis oriented at an angle ¥ relative to the
streamlines of the flow.2 He-Ne laser light is sent
through the sheared suspension and scattered by the

= ellipsoidal red blood cells. The resulting intensity
~ pattern is projected on a screen, scanned by a video

camera, and analyzed by an image-analyzing system.>4
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oriented with an arbitrary angle { relative to the
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In the intensity pattern, points of equal intensity
build up elliptical curves, the isointensity curves.
The axial ratio of the isointensity curves reflect the
mean deformation of the red-cell population.

Although in ektacytometry the measuring system
is well described and tested, 135 little attention is paid
to the light scattering by the ellipsoidal red blood
cells. Since the aim of the technique is to obtain the
mean deformation of a cell population, insight into
the relationship between the cell deformation and
intensity pattern on the screen is of major impor-
tance.

For the calculation of the intensity pattern ca!-]Bed E
by a cell population, a correct description of the light

scattering by a single ellipsoidal cell is required. In8

previously published paper on this subject® the valid- ‘3
ity of the anomalous diffraction theory of van de !

Hulst’” was shown for spheres with the size amn

refractive index of a red blood cell. an

accurate for spheres with size parameter a > lhi ch

with relative refractive index m in the range in W
m—-1] « 1.

in this paper, anomalous diffraction correctly g:
scribes the light scattering by ellipsoidal cetls that

Both conditions apply to the ellips":;'
dal red blood cells as well, and therefore, as 15 show? 3

N

This theory i§
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Fig. 1. Measuring configuration of the ektacytometer.

Thr—alidity of anomalous diffraction for the oriented
elh, .oids is demonstrated by comparison with the
T-matrix method. 89

Finally, to gain insight into the relationship be-
tween the deformation of the cells in a sheared
suspension and the measured intensity pattern, the
angular scattering of a realistic red-cell population as
present in an ektacytometer is calculated by use of
the anomalous diffraction theory.

2. Angular Scattering by an Arbitrarily Oriented
Ellipsoid

The anomalous diffraction of an ellipsoid with its
semiaxis oriented along the coordinate axes of a
coordinate system [x,y,z] is treated in an earlier
paper on this subject.® The resulting equations that
describe the anomalous diffraction for these ellipsoids
are repeated here, and the theory is extended for the
case_of an arbitrarily oriented ellipsoid. Suhse-
que  y the anomalous diffraction by an ellipsoidal
red Bood cell is discussed.

Consider a plane wave with intensity I, traveling in
the positive z direction of a Cartesian coordinate
system [x, y, z]. Let the projected area of an ellipsoi-

particle with thea > & > ¢ axes be perpendicular
to the z axis and situated at the origin of the system.
The two longest axes a and b of the ellipsoid coincide
with the axes of the elliptical projected area. The
shortest axis of the ellipsoid ¢ is oriented along the z
axis parallel to the direction of the incident light.
In the anomalous diffraction approximation the inten.
zi::g' I, of the pattern in a point P(x, y, z) was found to

Iy = Io(l/k2r2)f8(")]2: (1)
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In Eq. (1) Jo(u) is the zeroth-order Bessel function
of u, Ay is the wavelength of the light in vacuum, and
Nmed 15 the refractive index of the medium surround-
ing the ellipsoidal particle.

An important implication of Eq. (1) is that a
constant value of v represents a collection of points in
space with equal intensity. From the definition of
the parameter v we can conclude that these points
build up elliptical isointensity curves with axial ratio
q of the elliptical projected area. The elliptical isoin-
tensity curves are rotated 90 deg compared with the
orientation of the ellipsoid: With the ellipsoid di-
rected along the x axis the elliptical isointensity curve
is oriented along the y axis.

In Appendix A the extension to the case of an
arbitrarily oriented ellipsoid is derived. The result-
ing equations show that the projected area remains
eiliptical. The difference from the case in which the
semiaxes are oriented along the coordinate axes is
that the elliptical projected area is oriented with an
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angle & + @ relative to the x axis (for the definitions of
8 and @, see Appendix A and Fig. 7). In the anoma-
lous diffraction approximation the angular scattering
by an arbitrarily oriented ellipsoid with semiaxes a, b,
and ¢ turns out to be equal to the scattering by an
equivalent ellipsoid with semiaxes a', &', and ¢’
oriented along the x", ", and 2 axes, respectively.
Consequently, we can calculate the scattered inten-
sity using Eq. (1) with x, y, 2, a, b, and ¢ replaced by x”,
Y.z a',b',and ¢’. An important implication of the
latter conclusion is that, even in the case in which the
ellipsoid is arbitrarily oriented, the isointensity curves
remain elliptical. Furthermore the axial ratio of
these isointensity curves are equal to the axial ratio of
the projected area, and the isointensity curves are
rotated by an angle 3 + ¢ in the x~y plane.

A. Anomalous Diffraction of an Oriented Ellipsoidal Red
Blood Cell

In an ektacytometer the red blood cells are oriented at
angles of 0-20 deg relative to the applied Couette
flow.21%11  With the flow parallel to the x axis the
semiaxes a and ¢ of the ellipsoid are in the x—z plane
and oriented with an angle | relative to the x and z
axes, respectively (Fig. 2}, Because of the stable
orientation of the ellipsoidal red bleod cells in the
flow, the direction of the b axis is along the y axis. 210
One consequence of the orientation of the ellipsoid
is that the projected area deviates from the elliptical
area when ¢y = 0. Asshown in Appendix A the shape
of the projected area is still elliptical. The only
difference with the orientation angle ¢ = 0 is that the
longest axis of the elliptical projected area a is re-

z
~,

projected \\\
area
\

PITTrTTe

Fig.2. Ellipsoidal particle with semiaxes a, b, and ¢ illuminated by
a plane wave of intensity /y. The longest axis a is oriented with an
angle § relative to the flow. The b axis is oriented along the y axis
of the coordinate system, perpendicular to the x and z axes.
Traversing the ellipsoid, the light is phase shifted with magni-
tude k|m — 1|l(e, n} compared with the light traveling along the
particle. The border of the projected area is defined by the
coordinates (x,, ys).
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duced to a’ by a factor of f where

a’ = fa,

c 2 1/2
- 2 21 sin2
f cos? § + (a) sin nb} ) (2)
The semiaxes of the elliptical projected area are along
the x and y axes in these circumstances.

A second difference with the previous situation (Eq.
(1)] is the magnitude of the phase shift of the light
traversing the particle. Not only the maximal phage
shift ¢ is changed but also the local phase shift
dle, m) at any point (e, m, 0) on the projected ares.
In the anomalous diffraction theory, &(e, n) is given
by”.12.13 ‘

b =k|m - 1|l(¢, m), (3)
where [(e, m) is the distance a ray of light travels when
traversing the particle at position (¢, 1) on the pro-
jected area. Within the projected area of an oriented
ellipsoidal red blood cell, {{¢, n} can be shown to be
(see Appendix A)

woneo- (-1

where ¢’ = ¢c/f.

Summarizing the expressions in this section and
using the results in a former paper,® we can state that
in the anomalous diffraction approximation the angu-
lar scattering by an oriented ellipsoidal red blood cell
with semiaxes a, b, and ¢ is equal to the scattering by
an ellipsoid with a zero orientation angle with semi-
axes a', b, and ¢’. Consequently the only modifica-
tion in the calculation of the scattered intensity Iy
[Eq. (1)] is that ¢ is replaced by ¢’ and @ by a’. With
the latter conclusion in mind the relationship be-
tween the shape of the isointensity curves in the
intensity pattern and the shape and orientation of the
ellipsoid is immediately apparent. The axial ratio of
the projected area g’ = a'/b is equal to the axial ratio
of the elliptical isointensity curves in the intensity
pattern,

(4)

B. 7T-Matrix Method

The validity of the anomalous diffraction by oriented .
ellipsoids was checked with the T-matrix method. i
The T-matrix calculations were performed with the
computer programs supplied by Barber and Hill? &
Since the desired size parameters and volumes of the 4
ellipsoids are relatively large, double precision was 3
required and the arrays used in the programs weré fg
extended in the way recommended by the autho‘?;;_ -

Additionally the convergence tolerance in the com o

puter program, T1.for, was set to 5% for angles 5’-‘ g
large as 80 deg in the calculation of the largees4
particle (size parameter, a = 19; axial ratio, ¢ G5
0.6).



3. Angular Scattering by a Population of Ellipsoidal of the red blood cells is distributed normally,® we can
Red Blood Cells obtain the mean of the scattered intensities of the

In a blood sample a distribution of geometrical and  cells within the population I, ..,(8) from

mechanical properties of the cells exists, which deter-

mines their shapes in flow. In general at a certain _

shear rate the size of the semiaxes of each ellipsoidal Tnean(®) = J; wH{V)I(V, 8)dV, (8)

red blood cell is a function of its volume V, surface

area A, membrane mechanical properties, viscosity of  where

the cell interior, and the viscosity of the medium

surrounding the cells.!0.14 1 1V — Vyeanl?
To be able to calculate the light scattering of a we(V) = o (272 exp[ ( oy ) } '

realistic cell population as present in an ektacytom- )

eter, one considers the cells to be maximally deformed ~ [(V, 8) is the scattered intensity of a single spheroid

and oriented along the streamlines of the flow (¢ = 0). with volume V, and o, is the standard deviation of the

When maximally deformed the cells are prolate ellip-  volume distribution.

soids and the sizes of the semiaxes are independent of

the mechanical properties of the cells.2 For this 4 Resufts

particular situation the calculation of the distribution

of the semiaxes is straightforward. Since in physi-

ological circumstances A is proportional to V.15 the

size of the semiaxes can be obtained from V only.

With ¢ being the axial ratio a/b of the spheroid, the

set of equations necessary for the calculation of the

2

Before application of anomalous diffraction to a red-
cell population it is necessary to investigate the
accuracy of the anomalous diffraction for ellipsoids.
For this purpose anomalous diffraction was compared
with T-matrix calculations. In the calculations no
normalizing factors were used. Figure 3 shows the

semiaxes at a certain volume V'is given by results of anomalous diffraction and T-matrix calcula-
3y \2/3 g tions for oblate and prolate spheroids with the rela-

A= 211-(«-—) 1+ T arctan{g? — 1)1/2 tive refractive index of a red blood cell [m = 1.05 (Ref.
g (g* — 1)!/2 ’ 6) and ¢ = 0]. The results show good agreement

between anomalous diffraction and 7-matrix caleula-

Ve 4 ﬂ_f tions and a negligible effect on the polarization of the

-37 @ incident light on the intensity pattern to a scattering
angle as large as ~ 15 deg.

A =V, {5) In the case of an oblate ellipsoid oriented at an

angle ¥ = 45° (Fig. 4) the agreement is still good but

where x is the empirically derived proportional con-  somewhat less pronounced. Especially for the small-
stant relating A and V. est ellipsoid [Fig. 4(a)] a significant difference between
Besides the influence of V on the shape of the cells,  anomalous diffraction and ZT-matrix results is ob-
the relative refractive index m is also a function of V.  gerved. Although in both cases the anomalous dif-
The value of m is a second-order polynomial function  fraction curve that is related to the b axis (8 in the y—z
of the hemoglobin concentration Hb in the cells.t plane) agrees well with T-matrix calculations, the
The hemoglobin content of a red blood cell is essen-  curves related to the g axis (8 in the x—z plane) have a
tially constant, independent of the volume of the  first minimum that is shifted compared with the

i cell.’® Asaresult the Hb concentration of a cell with  T-matrix calculations. This shift is less pronounced
i or the largest particle [Fig. 4(b)], confirming the
expectation that anomalous diffraction becomes more

| 14 valid for larger particles.
\ Hb(V) = Hb”‘”"(vmm) ' (6) A phenomenon that is not incorporated in the
anomalous diffraction approximation is a possible
where V..., is the mean volume of the cell population asymmetry in the intensity pattern because of the
and Hb,.,,, is the corresponding hemoglobin concen-  orientation of the particle. Figure 4(a) clearly dem-
tration. When Eq. (6) is applied, m turnsout tobea  onstrates that for both positive and negative 0, com-
function of V- pared with the symmetrical anomalous diffraction
curve, the first minimum is shifted toward the left in

|4 the T-matrix calculations.

m(V} = gp Hbrean Vet | (7) Note that even for the largest ellipsoid the volume
of the particle is only approximately one third of the
where g, is the second-order polynomial equation  volume of the red blood cell. Consequently the

relating Hb and m 6 anomalous diffraction describes even better the light
Application of Egs. (5)«7) means that the proper-  scattering by single elliptical red blood cells.

ties that determine the scattering by a spheroidalred .. With the results of the scattering by a single

blood cell (i.e., m and the semiaxes of the spheroid)  ellipsoid in mind, it is legitimate to use anomalous

are a function of Vonly. Assuming that the volume  diffraction for the calculation of the light scattering of
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Fig. 3. Anomalous diffraction (curves) and T-matrix calculations (markers) of oblate spheroids oriented with the symmetry axis parallel to

the incident light (left) and a prolate spheroid (right) oriented
incident light; +, perpendicular polarized incident light). Right
y-z and x—z planes, respectively.

a red-cell population. In Fig. 5 the angular scatte
ing of both a single cell with volume V_,(I;) and t
mean intensity of a cell population as described
Section 3 (I can) is plotted in one graph. The me
volume and the standard deviation of the populati
have the physiological values of 95 and 15 un
respectively, 215 The constant « relating V and A
1.42 pm~'. In the graph the scattering angle 6 is
the x—z and y—z plane for the short and long axes
the pattern, respectively.

It is striking in Fig. 5 that, along the short axis
the pattern, the difference between I, and I,
much larger than the corresponding difference alo
the long axis. Whereas along the short axis t
deviation of I .., from I, is highly significant ev
within the first minimum in I, along the long axis
and I, are nearly indistinguishable. The latt
observation can be understood by looking in som
what more detail at the influence of the volun
distribution on the semiaxes ¢ and & = ¢. When y
apply Egs. (5) to the cell population, the longe
semiaxis a varies between 3.69 and 11.94 pm with
Viean — 304 < V < Voan + 304, For the short axis
the corresponding variation is relatively much small
{i.e., between 1.67 and 1.80 um). Since in the anom
lous diffraction approximation the short axis of t
intensity pattern is related mainly to the long axis
the ellipsoidal cells, it is understandable that alo)
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Discussion

the literature results obtained by ektacytometry
e commonly interpreted without reference to the
rht-scattering properties of the red blood
1l5.1.3-517-12 The axial ratio of the isointensity
Irves in the intensity pattern is considered to reflect
e deformation of the red-cell population®
though it is generally acknowledged that scattered
rht can act as a source of information about the

ip between the observed intensity pattern an

irticle morphology is far from trivial. In a s!ngle
rticle system, we can illustrate this relationship l?}',
nsidering the scattering of a spheroid with a certail
ial ratio g oriented perpendicular to the incident §
rht. In the limit where the volume of the spherpld,;
small compared with the wavelength, the r_‘esultlng"
bintensity curves are circular and no shape informa-
on is obtained from the intensity pattern. For 8

56 spheroid with a large-size parameter and 2 relative
er  refractive index near 1; however, the shape mfo‘
a-  tion is obtained directly from the isointensity cur"=g
he inthe intensity pattern. In intermediate cases 80F
of of] the shape information is lost. This pbenom‘;ﬁt
ng  ofllost shape information is reflected in Fig. 3 (ngl%g
1994

lape of asymmetrical particles, the exact relation- E -
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Fig. 4. Anomalous diffraction {curves} and T-matrix calculations
(dots) for oblate spheroids (g = 1) with orientation angle ¢ = 45°
and parallel polarized incident light (top, a = 20, ¢/a = 0.4, bot-
tom, ¢ = 31.7,¢/a = 0.6).

where in the T-matrix calculations the first minimum
of the longest axis of the intensity pattern is shifted
toward a smaller angle compared with anomalous
diffraction.

The results in Section 4 show that within a scatter-
ing angle of ~15 deg the anomalous diffraction
approximation for oriented ellipsoids is highly accu-
rate in the calculation of the light scattering by
ellipsoidal particles with the size and relative refrac-
tive index of a red blood cell. Although the T-matrix
method would at first sight be the best theory for the
calculation of the light scattering of ellipsoidal par-
ticles, limitations in this method make it less useful
for red blood cells. First, the T-matrix method is in
the implementation used here? limited in aspect ratio
and size of the ellipsoidal particle. Only particles
with volumes less than approximately one third of the
volume of a red blood cell can be handled with this
method. A second objective against the present
Implementation of the T-matrix method is that it is
not possible to calculate the light scattering by an
ellipsoid with three independent axes as present in

10’
10%
10
Z
&
g o
T
g o
o
2
10!
10"
10° -+ -
o 5 10 15
B (degrees)

Fig. 5. Angular scattering of a cell population (solid curve,
Vinean = 95 pm?; standard deviation, 15 pm?) and a single red blood
cell (dashed curve, V = 95 pm?3) caleulated by use of anomalous
diffraction. The long axis and the short axis denote the angular
scattering with 8 in the y-z and x-z plane, respectively.
The horizontal dashed line is drawn at intensity I{8) = I(0)/10.

ektacytometry. These limitations on the size and
shape of the ellipsoid are not present in the anoma-
lous diffraction approximation,

Another important advantage of anomalous diffrac-
tion compared with the T-matrix method is the small
computer time necessary to calculate an intensity
pattern. The intensity at any point can be calculated
by the one-dimensional integral of Eq. (1). However,
most important is that, using the anomalous diffrac-
tion approximation, we gained direct physical insight
into the relationship between the intensity pattern
and the shape of the cells. Even for a population
with a considerable spread in the volume of the
ellipsoidal cells it is possible to relate the shape of the
mean cell of the population to the intensity pattern.
Figure 5 shows that when the isointensity curves are
scanned at a level above 10% of the intensity at a zero
scattering angle (dashed horizontal line), the aspect
ratio of the isointensity curves belonging to the mean
cell in the population equals the corresponding aspect
ratio in the intensity pattern produced by the whole
cell population.

At moderate and low shear rates the orientation
angle | deviates from zero.! For an ellipsoidal red
blood cell, ¢ < 20deg. With {(a/c) < 0.29,2 the axial
ratio g’ that is measured by the ektacytometer is
maximally 5% underestimated compared with the
axial ratio g of the cell [Eq. (2)]. Only at the lowest
shear rates will this underestimation be large com-
pared with the experimental error of ~2% ing’.

With the latter conclusion in mind, even for cases of
moderate shear rate (where ¢ = 0), the anomalous
diffraction can be used to obtain the sizes of the axes
of the mean cell in the population. The axes of the
ellipsoids are quantities that are necessary in obtain-
ing the mechanical parameters of the cell membrane
and therefore of importance in the rheology of red
blood cells. 014
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6. Conclusions

In the anomalous diffraction approximation the angu-
lar scattering of an arbitrarily oriented ellipsoid is
developed. A comparison with the T-matrix method
reveals that the approximation describes the light
scattering of ellipsoidal particles with size and the
relative refractive index of a red blood cell correctly
within scattering angles of ~ 15 deg.

The axial ratio of the elliptical projected area of the
ellipsoidal red blood cell is equal to the axial ratio of
the isointensity curves in the observed pattern.
This conclusion holds true for both a single cell and
an in vitro cell population.

In its range of validity the anomalous diffraction
theory as presented here is a powerful tool in obtain-
ing the shape and size information of ellipsoidal
particles from the observed intensity pattern.

Appendix A

Consider a particle situated at the origin of a Carte-
sian coordinate system [x, y, z]. The particle is illu-
minated by a plane wave traveling in the z direction
with intensity I, and wave vector k.

In the anomalous diffraction approximation the
scattered intensity {4 at any point {x, y, z) in space is
given by

S(B, v)

IA=I0 k2r2

: (A1)

where

k?
S(B,y) = 5,;”‘ {1 — exp[~id(e, n)]}
Au‘
X exp|ik(eB + my)ldedn,
r=(x*+y? 4+ 2212
B=ux/r,

A, is the area obtained by the projection of the
particle onto the x—y plane, and d(e, m) is the phase
shift of the light traversing the particle at position
(e,7,0) on this projected area. The phase shift
d{e, m) is a function of both the relative refractive
index of the particle and the distance l(e,n) a ray
travels when traversing the particle at (e, 7, 0):

dle, n) = k[m ~ 1}i(e, n).

For a particle of any configuration the problem that
remains is finding the shape of the projected area A,,
and an expression for /e, v).

Let the particle be an ellipsoid with semiaxes q, b,
and ¢ oriented along the coordinate axes of a particle
frame [x’,y’, 2. The orientation of this particle
frame relative to the laboratory frame is defined by
two rotation angles | and ¢ (Fig. 6). Starting with
the laboratory frame, we obtain the particle frame by
arotation & of the x axis and the 2 axis in the x—z plane

Y=y/r

(A2)
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Fig. 6. Orientation of the particle frame |lx’, ¥', 2’} relative to the
laboratory frame |x,y,z. The orientation of the particle is de-
fined by a rotation ¢ in the x—z plane followed by a rotation £
around the x" axis. .

followed by a rotation £ of the y and the z axes around
the x" axis. The coordinates in the particle frame
[x', ¥, z'] are related to the laboratory frame [x, y, z]

by

x' cos | )] sin x
Y|=| singsing cos& —cos $sinéflyl.
z' —sinycosf siné cos ¢ cos £ /\z

(A3}

Since in the particle frame the semiaxes a,b,and c are
oriented along the coordinate axes x', y', and 2,
respectively, the ellipsoid that borders the particle
satisfies the equation

(x'/af + (y'/b) + (2’ fe}? = 1. (Ad)

Substitution of Eq. {A3) into Eq. (Ad4) gives the
second-order polynomial equation

Az2+ Bz + C =0, {AB)
where
sin? sin?¢ cos?&
A=[ o +cosztb(—b—2—+ 2 ,
B = blx + be!

) 1 sin?§ cos?¢
bl=2cos¢sm¢[gé—( 57 +_c2 )J,

_ TR
by = 2cosnl;cos§sm§(;§ —I;
C=cx® +c3y* + ey — 1,

cos’y sin?{ cos’g
¢ = [ = + sm2¢(—52—+ o )J’

cos’f{ sin?t
=T+ =)

1 1
c; = —2 sin W cos £ sin g(; _55)




The border of the projected area of the ellipsoid is
built up by the coordinates (x;, ;) for which Eq. (A5)
yields only one root; hence

B? — 4AC = 0. (A6)

By substitution of x, and ¥, in the expression for A, B,
and C the equation that defines the border of the
projected area is found to be

Dxbz + Eyb2 + Fxbyb = 1, (A7)
where
b, by? bib,
D=(Cl—a)’ E—(Cg_ﬂ’ F= C3"ﬂ'

The projected area that is defined by Eq. (A7) is
elliptical. The semiaxes ¢’ and &’ of this ellipse are
oriented with an angle 5 relative to the x and y axes,
respectively. Fora’, &', and & it is found that

5= ol
—2arctanD_E ’

4 1 - tan? |2
@ = D—Etan28) ’

1-tan®5 |72
b =(E—Dtan28) ‘

Inside the borders of the projected area there are
always two roots of Eq. {A5). The expression for
I(e, m) is found by subtraction of the two roots:

| B -440)2 2
- - -

(A8)

(1 — Dx? ~ Ey? — Fxy)V2.

Bl

(A9)

With the coordinates € and  in the directions of the
a’ and b' axes for {(e, ) we can finally write

Ue, n) = 2c'[1 - (i,)2 - (gi,)z]ws (A10)

ﬁ a

)
wherec’ = 1//A.

A complete arbitrary orientation of the ellipsoid in
the laboratory frame can be achieved by an additional
rotation ¢ of the projected area in the x—y plane (Fig.
7). This rotation angle ® should be added to the
angle 3 that is introduced by the rotation £ of the &
axis {Eqgs. (A7) and (A8)].

The interpretation of the expressions for the bor-
ders of the projected area [Eqs. (A7) and (A8)] and for
the phase shift [Eqs. (A2) and (A10)] is straightfor-
ward: In the anomalous diffraction approximation
the light scattering of an ellipsoid with three indepen-
dent axes a, b, and ¢ and orientation angles s, £, and ¢
1s equal to the light scattering by an ellipsoid with
semiaxes a’, b', and ¢’. The semiaxes a', &', and ¢’
are oriented along the x”, ¥, and z axes, respectively

e

\\ '/'
"
A{ S
X
- \ area

Fig. 7. Projected area of an ellipsoidal particle with semiaxes a, b,
and ¢ and orientation angles ¥, £, and ®.  The projected area is an
ellipse with semiaxes e’ and b’ along the x” and y" axes. Thex" and
y" axes are rotated by an angle 3 + & relative to the laboratory
frame.

(Fig. 7). An important implication of the latter
conclusion is that the scattered intensity can be
caleulated with the original formula [Eq. {1)] for an
ellipsoid with its semiaxes along the coordinate axes.
Furthermore it can be shown that the volume of the
original ellipsoid is equal to the volume of the ellip-
soid with semiaxesa’, b’, and ¢’

From the theory that is developed in this Appendix
it is apparent that we can obtain the scattered
intensity resulting from the presence of an arbitrarily
oriented ellipsoid by carrying out the following steps:

(1) Calculation of the corresponding point (x”, y", z)
in the [x", y", z] frame, taking into account the rota-
tion of the projected area:

(x") [ cos(d + D)

d —sin(3 + @)

sin(d + CD)J(I
¥

cos(d + &) ) - (ALY

¥

{2} Calculation of the scattered intensity with Eq.
(1), in which x, y, a, b, and ¢ are replaced by x", ", &',
b’, and c’, respectively.

If the b axis of the ellipsoid remains oriented along
the y axig (& = 0 and 3 = 0}, the semiaxes of the
elliptical projected area a’ and b’ are oriented along
the x and y axes. In this case the resulting expres-
sions for a’ and ¢’ as calculated from Eqs. (A8) and
(A10) are

¢ =cff,

c\2 1/2
f=|cos?y + E) sin?| {A12)
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