Light scattering by red blood cells in
ektacytometry: Fraunhofer versus anomalous

diffraction
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In the present literature on ektacytometry, small angle light scattering by ellipsoidal red bloud cells is
commonly approximated by Fraunhofer diffraction. Calculations on a sphere with the size and relative
refractive index of a red cell, however, show that Fraunhofer diffraction deviates significantly from exact
Mie theory. Anomalous diffraction is found to be a much better approximation. The anomalous
diffraction theory is used to calculate the intensity distribution of the light scattered by an ellipsoidaily
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deformed red blood cell. The derived expression shows that the ellipticity of isointensity curves in
forward scattered light are equal to the ellipticity of the red blood cell. The theoretical expression is

fitted to the intensity patterns measured with an ektacytometer.

For the small observation angles used

in ektacytometry, the experimental results confirm the validity of the anomelous diffraction approach.
Key words: Anomalous diffraction, ektacytometer, ellipsoidal red blood cell, red cell deformation,

isointensity curve.

introduction

Deformability of red blood cells plays an important
role in blood viscosity at shear rates exceeding 100s-!
and in capillary perfusion.! Reduced red cell deform-
ability causes elevation of the shear stresses on the
vessel walls, which may reduce the integrity of the
vessels.

In order to quantify red cell deformability, we use
an ektacytometer.? Inthis apparatus cell deformabil-
ity is calculated from the intensity pattern of the laser
light scattered by a sheared suspension of oriented
ellipsoidally deformed red blood cells. In the inten-
sity pattern, points with equal intensity build up an
elliptical isointensity curve, representing the mean
ellipticity of the cell population.

Red blood cells can be considered as particles with
size parameter o » 1. Here a is defined as « =
2nR /A, where A Is the wavelength of light in the
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suspending medium and R is a characteristic radius
of the particle. The simplest theory to approximate
forward light scattering by small particles with o« > 1
is Fraunhofer diffraction. In this theory the inten-
sity distribution of the scattered light is independent
of the complgx refractive index m of the particle
relative to the surroundings. However, Mullaney
and Dean’ showed that, from a theoretical point of
view, the scattering properties of biological cells {a =
70 and m = 1.05) are strongly dependent on m.
Even at the small scattering angles used in ektacytom-
etry, they found a substantial difference between
Fraunhofer diffraction and the exact Mie theory.
Groner et al.* stressed the importance of optical
and geometrical properties of red cells for the interpre-
tation of scattering signals in ektacytometry. They
applied the anomalous diffraction method (AM II) of
Latimeretal5® Although the anomalous diffraction
approach introduced by van de Hulst" seems appropri-
ate for red blood cells (« > 1 and {m — 1| < 1) there
are some objections to the application of this AM II
method. First, the AM II method is developed for
prolate and oblate ellipsoids only. Inan ektacytome-
ter, however, the three axes of the ellipsoidal red
blocd cell are all different.? Therfore, the anomalous
diffraction theory should be applied in a way that
accounts for this different geometry. Second, the
method of Latimer et al. does not directly relate the



cell shape to the two-dimensional intensity pattern at
a certain distance from the cells.

As is shown below, anomalous diffraction applied to
an oriented ellipsoidal particle gives a good approxima-
tion for small angle light scattering by red blood cells
in ektacytometry ard is a valuable tool for relating
cell shape and size t¢ the observed intensity pattern.

Ektacytometry
Qur measuring system is slightly different from the
device introduced by Bessis and Mohandas® and
Mohandas et al.'® It consists of a Contraves low
shear 30 viscosimeter with an extension for deform-
ability measurements.2!! A very diluted red cell
suspension (0.3 vol. %) of relatively high viscosity is
sheared in a Couette flow between two coaxial trans-
parent cylinders (Fig. 1). At high shear rates, red
cells deform into ellipsoids with the longest axis
aligned along the streamlines.!? A low-power He-Ne
laser bearn (A = 632.8 nm)is sent through the suspen-
gion in a direction perpendicular to the streamlines.
The intensity pattern of the light scattered by the red
cells is projected onto a frosted glass screen and the
resulting image is scanned by a video camera. The
part of the intensity distribution observed by the
video camera lies within a cone with an angle of
approximately 10°. From the image we selected
points of equal, prescribed intensity by using a micro-
computer. These image points build up an elliptical
curve that is related to the ellipsoidal shape of the red
cell. An elliptical fit to such a curve yields a long axis
! and a short axis s of the pattern.

In routine measurements, a deformation index
{DI), defined by

DI =({ -s)/(l + s), (1)

is measured at different angular velocities of the
outer cylinder. The DI is plotted against the calcu-
lated shear stress in the suspension and represents
the deformability of the red cells under consideration.
It varies between 0 for undeformed circular cells to as
much as a maximum value of approximately 0.5 at
the highest shear stresses.

Anomalous Diffraction

The setup of the ektacytometer leads to the following
assumptions concerning light scattering by ellipsoidal
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Fig. 1. Measuring configuration of the ektacytometer.

cells: (i) In diluted cell suspension, single and inde-
pendent scattering predominates. This implicates
that the intensity distribution of light scattered by an
ensemble of randomly spaced particles is the sum of
the distributions of the individual scatterers.” (ii)
The intensity distribution of the incident laser beam
is Gaussian. Therefore an intensity peak is superim-
posed on the scattered light. We assume, however,
that no net phase correlation exists between this
central beam and the waves of the scattered light.
In consequence, the total observed intensity is the
sum of the scattered light and the attenuated laser
beam,

It is shown that, if anomalous diffraction is used in
a form that is adapted to ellipsoids, the shape and size
of the red cells in Couette flow are directly related to
the spatial intensity distribution of the scattered
light. Furthermore, in order to gain more insight
into the applicability of anomalous diffraction to red
blood cells, the influence of relative refractive index m
on the Light scattered by red cells is studied. The
exact Mie theory is applied to a spherical model of the
red cell and compared with anomalous diffraction and
Fraunhofer diffraction.

Anomalous Diffraction and Red Cell Shape

In red cell suspension, the value of size parameter a is
approximately 50. For this large o it is possible to
distinguish between the part of the wave front that
traverses and the part that passes along the particle.”
If the light scattering is described only by the latter
part, the intensity distribution is referred to as
Fraunhofer difffaction. In this approximation the
intensity distribution is independent of the relative
refractive index m of the particle. Particles of identi-
cal cross-sectional areas therefore have identical
Fraunhofer diffraction patterns. For a single ellipsoi-
dal particle, it is possible to solve the Fraunhofer
diffraction integral analytically. Consider the situa-
tion that a plane wave {;; travels in the z direction of a
Cartesian coordinate system (x, y, z). Let the ellipti-
cal cross-sectional area of the particle be perpendicu-
lar to the z axis and situated at the origin of this
system (Fig. 2). The ellipse has a long axisa = A/g
and a short axis & = AJg, where ¢ denotes the
ellipticity a /b and A = Jab.
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Fig. 2. Coordinate system used in the calculations of the light
scattering by red blood cells in 8 Couette flow. The ellipscidal red
cell is situated in origin O with the longest axis directed along the ¢
axis. The intensity pattern is calculated in point P(x, y, z).
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The intensity Iy of the diffraction part of the
pattern in point P(x, y, z) is found to be (see Appendix
A)

I = I(1/R*} S(v) 3, (2)
with
Stv) = o, (av)/av],
r= (x4 y? + 2202

1
v=—[}/g) + o' %,
a = kA = (2wn,/ M)A,

In Eq. (2} I, denotes the intensity of the incident
wave, J, (1) is the first-order Bessel function, A is the
wavelength of laser light in vacuum, and np is the
refractive index of the medium that surrounds the
particle. For ¢ = 1, v = sin{O) and the intensity
distribution is a function of the polar angle 8 only (see
Fig. 2). Consequently, Eq. (2} reduces to the well-

*  known diffraction formula for a circular cross-

sectional area.’

In the Fraunhofer diffraction theory, only the
shape and size of the cross-sectional area determine
the intensity pattern. In order to account for the
light that traverses the ellipsoidal cell, we used
anomatous diffraction.” In this approach the inter-
ference between light that traverses and light that
travels along the cell is considered to build up the
spatial intensity distribution. Analogous to the deri-
vation of the solution for a spherical particle, Appen-
dix B shows that, for an ellipsoidal particle,

I, = I(1/B3P)[S(W)), {3)
with
L]
S(v) = aEJ‘ [1 — exp(—idpy sin 1)}
0
rm X Jo{aw cos 1)sin T cos tdT,

Gmax = 2kcim — 1.

Here J{u) denotes the zeroth-order Bessel function
and c is the length of the third axis of the ellipsoid
parallel to the direction of incident light. Note that,
for the case of an opaque ellipsoid, the imaginary part
of m is infinite and Eq. (3) correctly reduces to Eq. (2).

From Eq. (3} is is clear that all the points on the
screen with a fixed value of v build up curves of equal
intensity. For x, y < z these isointensity curve are
ellipses:

2*/(qz??) + ¥ /(22 /q) = 1. (4)

The ellipticity of the isointensity curves as described

by Eq. (4} is equal to ellipticity g of the particle,
Assuming that Eq. (3) is suited to describe the

forward scattering by oriented ellipsoidal red cells,
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detection of the elliptical isointensity curves immedi-
ately yields the mean ellipticity of the cell population
under consideration. In this sense, by using the
anomalous diffraction approximation, we can obtain
quantitative information about red cell deformability.

Influence of Relative Refractive Index

In order to illustrate the influence of m, we applied
the exact Mie theory to spheres with the mean radius
of a red blood cell. A modified version of the Mie
code!? of Bohren and Huffman'* was used. The
results are compared to Fraunhofer [Eq. (2)] and
anomalous diffraction [Eq. (3)].

Radius R of the sphere was 3.9 um, i.e,, the mean
radius of a red cell population,!® ¢ was set to unity,
andc¢ = RinEqs.(2)and (3). With the wavelength of
the He-Ne laser light and the 1.345 refractive index
of the medium, the resulting value of a is 52. Since
the imaginary part of m, representing the absorption
of light inside the cell, is negligible,'®* m was consid-
ered to be real. In order to obtain the relation
between hemoglobin concentration and the refractive
index inside the cell we isolated the red cell interior.’?
The cell content was diluted with phosphate-buffered
saline in order to obtain samples with different
hemoglobin {Hb) concentrations. The refractive in-
dex of the samples was measured with a refractome-
ter (Bleeker type 55007, data not shown). A second-
order polynomial fit through these data yields

7, = 1.335 + 0.001823 Hb + 8.6526 x 10-°Hb*. (5)

In healthy humans the Hb concentration varies be-
tween 31.4 and 36.3 g/dL, with corresponding rela-
tive refractive indices m between 1.04 and 1.05. In
pathological situations, however, the value of m
might be outside this range. In our calculations m
was therefore varied around the normal value, ie,
between 1,03 and 1.07. The scattering intensities
are plotted as a function of polar angle 6.

Figure 3 compares Franhofer diffraction and anom-
alous diffraction with the exact Mie theory. The
calculations clearly show that the value of m in
particles with the overall size of the red blood cell
appear to be important for intensity distribution.
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Fig. 3. Comparison of anomalous diffraction, Fraunhofer diffrac-
tion, and the Mie theory for a spherical model of the red blood cell
(R = 3.9pm, a=52)



In contradiction to Fraunhofer diffraction, anoma-
lous diffraction agrees well with the exact Mie theory
within the angle of 10° in which we are interested.
The agreement between Mie theory and anomalous
diffraction is the best for the lowest value of m.
When m increases, the maximum intensity at © = 0
decreases as a consequence of destructive interfer-
ence between the light that traverses and travels
along the sphere. The first minimum of the inten-
sity pattern is shifted toward a significantly smaller
angle for m = 1.07. These phenomena are well
described by anomalous diffraction but are totally
absent in Fraunhofer diffraction.

Experiments

In order to investigate the applicability of the anoma-
lous diffraction in practice, we investigated the inten-
sity pattern caused by a suspension of sheared red
blood cells.

Polyvinylpyrrolidone (7 wt. %} was dissolved in a
phosphate-buffered saline solution, {290 mOsm/L,
pH 7.4), in order to obtain a high medium viscosity of
60 mP. Anticoagulated whole blood of a healthy
—~donor was added to the medium that was preheated at
37 °Cjust before measurement. The red cell concen-
tration was 0.3 vol. %.

Two different shear stresses (0.18 and 2.1 N/m?)
were applied to obtain two values of ellipticity q. At
both shear rates, ten images were scanned. The
mean of the images was calculated, representing the
time average of the intensity pattern on the screen.
[sointensity curves as well as the angular dependency
of the normalized intensity pattern are presented in
Fig. 4.

At the lowest shear rate the cells are not signifi-
cantly deformed and will be either directed along the
streamlines or randomly oriented. The correspond-
ing intensity pattern is nearly circular (Fig. 4, left
panel). Two theoretical curves, which were obtained
by using both Fraunhofer diffraction [Eq. (2})] and
anomalous diffraction [Eq. (3)], are calculated and
plotted through the measured intensity distribution.
The polar angle 8 is in the plane ¥ = 0 {see Fig. 2).
In the calculation, parameters of the average spheri-
cal red blood cell'® are substituted directly into Egs.
(2) and (3), i.e., a = 52, m = 1.05,and g = 1. Note
that for angles smaller than approximately 3° the
normalized intensity patterns calculated by Fraun-
hofer diffraction and anomalous diffraction coincide.

Increasing the shear rate to 2.1 N/m? results in a
pattern that corresponds to a value of ¢ > 1 (Fig. 4,
right panel). The polar angle O is in the planesv = 0
and x = 0 for the short and long axes of the pattern,
respectively. Equations (2) and (3) are used to fit the
theoretical curves through the measurements. For
the calculation of these curves we must obtain the
parameters a, ¢, and ¢. From the isointensity curve
g turned out to be 2.34. The values of « that
resulted in a proper fit to the measured data were 47
and 53 for Fraunhofer diffraction and anomalous
diffraction, respectively. The third axis ¢ that corre-
sponds to this a is calculated from ¢ = 3nwV{nq/ Ao )?,
where V is the mean volume of the red blood cell
population (V= 90fL)."* For Fraunhofer diffraction
¢ was 1.72 um and for anomalous diffraction ¢ was
1.36 pum. The relative refractive index m was set at
1.05 again in Eq. (3). At this higher shear stress
Fraunhofer diffraction and anomalous diffraction co-

Normalized Intensity

8 {degrees)

Normalized intensity patterns and the isointensity curves (insets) at shear stresses of 0.18 N,'m? (left panel) and 2.1 N m? ‘righ
panel). The solid curves represent the measurements and the dashed curves represent the theoretical curves {————- , anomalou

Fig. 4.

diffraction; —— . Fraunhofer diffraction}.

The theoretical curves were normalized by setting the scattering intensity at zero degree
tounity. The experimental curves were shifted to obtain optimal agreement with the theoretical curves,
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incide at small angles only for different values of size
parameter a. Although ellipticity q is equal in the
application of both theories (since g is related to the
isointensity curves in the same way) the difference in
« results in different absolute values of a, b, and c.

At angles © smaller than approximately 2°, the
central laser beam significantly elevates the intensity
pattern above the theoretical curves. At large ©, the
measured intensity pattern starts to deviate from
both Fraunhofer and anomalous diffraction just be-
fore the first local minimum in the calculated curves.
The isointensity curves should therefore be scanned
at angles © > 2°, but within the first minimum of the
theoretical curve.

Discussion

In the literature on ektacytometry?10.18.19 the mech-
anism of forward light scattering by red cells is
assumed to be Fraunhofer diffraction. From the
calculations shown in Fig. 3 it is clear that, for the
case of a sphere with radius and relative refractive
" index m of the red cell, Fraunhofer diffraction devi-
ates significantly from the exact Mie theory. The
anomalous diffraction approach, however, eliminates
the main part of this deviation by adding the light
that traverses the particle to the diffracted light.
Figure 3 shows a good agreement of anomalous
diffraction with the exact theory for the spherical
model of the red blood cell.

Although rted cells are not spheres under flow
conditions, Fraunhofer diffraction [Eq. (2)] will also
deviate from the exact solution for ellipsoids. There-
fore a better theory is needed to describe the light
scattering of the ellipsoidal red blood cells. For that
purpose the T-matrix method developed by Barber et
al.?is available. For ellipsoids, however, the advan-
tage of anomalous diffraction compared to this exact
theory is the straightforward interpretation of the
intensity pattern. In the case of a suspension of
equally deformed ellipsoidal red blood cells the elliptic-
ity of the red cells is equal to the ellipticity of the
isointensity curves in the intensity pattern. Further-
more, apart from g, the mean values of « and ¢ are
easily obtained by fitting Eq. (3) to the measure-
ments.

The measurements at the highest shear stress (Fig.
4, right panel) illustrate the discrepancy between
Fraunhofer diffraction and anomalous diffraction for
ellipsoidal cells. Although both Fraunhofer diffrac-
tion and anomalous diffraction fit the measurements
to within the first minimum of the intensity pattern
the values of « and ¢ are different. In anomalous
diffraction, however, the light transmitted by the cell
is taken into account and therefore the results ob-
tained by using this theory are more accurate. The
agreement of anomalous diffraction with the exact
theory in a spherical model of the red bloed cell
supports this thesis.

The direct relationship between red cell shape and
the observed intensity pattern is limited to the cases
in which the cells are aligned parallel to the direction
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of the flow and have uniform deformation. Consider-
ing a normal population of ellipsoidally deformed red
blood cells there wil! always be a distribution in the
parameters « and m, the ellipticity g, and in the third
axis ¢ of the ellipsoid. As a consequence the result-
ing ellipticity of the intensity pattern may deviate
from the statistical average of the ellipticities of the
cells in the population.

From a rheological point of view it is important to
have a method to obtain the three axes of the
ellipsoidal red blood cell. By usng the numerical
values of g, b, and c it is possible to calculate mean
values of the rheological parameters of the red cell
membrane, i.e., the surface shear viscosity (n,,) and
the shear elasticity modulus (p,,).-% These param-
eters are the determining factors for the dynamic
behavior of red blood cells in the circulation and are
therefore better indicators for hematological diseases
than ellipticity ¢ or the deformation index, DI =
(g = 1}/{g + 1). Ancther advantage of the deduc-
tion of membrane parameters from g, b, and ¢ is that
the results can be compared to other techniques such
as the micropipette technique and rheoscopy for
which the resuits are also expressed in terms of
membrane parameters. Although in ektacytometry
it is possible to obtain only mean values of the
membrane parameters, the advantage compared to
rheoscopy and the micropipette technique is its suit-
ability for routine measurements in clinical studies.

The procedure to obtain mean values of a, b, and ¢
as described here is applicable only for the cases that
the cells are steadily tank treading. However, in
hemolytic anemias such as hereditary spherocytosis
and sickle cell disease, patients have a subpopulation
of undeformable red blood cells that are not aligned
along the streamlines of the flow. In an ektacytome-
ter these cells rgtate around an axis perpendicular to
the streamlines of the flow.24*® Consequently, an
additional intensity pattern is superimposed on the
elliptical pattern caused by the normal ellipsoidal red
blood cells. This pattern is circular or elliptical with
the longest axis perpendicular to the longest axis of
the normal pattern. The resulting composite inten-
sity pattern appears to deviate significantly from the
elliptical pattern observed in a normal red cell popula-
tion. In order to account for the additional com-
ponent in the pattern we can apply anomalous dif-
fraction to the rotating and differently shaped
subpopulation of undeformable red blood cells.
Adding this component to the intensity pattern of the
ellipsoidally deformed red blood cells, taking into
account the ratio of deformable and undeformable
red blood cells, we can calculate the total intensity
pattern. The resulting theoretical intensity pattern
can be fit to the measurement with the ratio of
deformable and undeformable cells as a parameter.

In order to check the accuracy of the anomalous
diffraction theory for ellipsoidal red blocd cells, the
next step that must be taken in future research is a
comparison of the results obtained by Eq. (3) to the
existing exact theory.?® Infuture experimental work,
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rheoscopic measurements? will be performed in or-
der to quantify the distributions of @, g, and ¢ in a red
cell population. These data will be used to investi-
gate the effect of these distributions on the shape of
the isointensity curves and the calculation of the
mean values of ¢, b, and c.

Conclusions

The anomalous diffraction, in the way presented in
this paper, gives a good insight into the light scatter-
ing by red blood cells in ektacytometry. In particu-
lar, the relation between cell shape and intensity
pattern is immediately evident in this approximation.
The calculations for spheres show that, in contradic-
tion to Fraunhofer diffraction, anomalous diffraction
gives a correct description of the light scattering by
particles with size parameter (a = 52) and refractive
index (m = 1.05) of the red blood cell. These find-
ings will be useful for the interpretation of the
deformability measurements with an ektacytometer
and for the determination of membrane parameters
of a red cell population.
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i Appendix A: Fraunhofer Diffraction

The theory describing the intensity distribution in
the forward direction of a uniformly illuminated
opaque particle is called Fraunhofer diffraction.
Consider an arbitrary opaque particle situated in the
origin of a Cartesian coordinate system (g, 7, ) illumi-
nated by a plane wave that travels in the z direction
(Fig. 2). Theintensity at point P{x, y, z) at a distance
that is large compared to the dimensions of the
particle is given by’

1=, 2000 Ay

“with
7 r=(x? +y* + 28173, (A2)
B==x/r, y=y/r (A3)

I, denotes the intensity of the incident beam and k is
the value of the wave vector in the medium that
surrounds the particle. The amplitude function
S(PB, v) is obtained by calculating the diffraction inte-

gral:

S(B, y) = (k*/2%) _” expl—ik(eB + my)dedn. (A4)

A

In Eq. (A4) the integral is taken over the cross-
sectional area, A,., of the particle in the plane defined
byz=0.

In the case of an ellipsoid with principal axes a, &,
and ¢ in the €, m, and z directions, respectively, the
cross-sectional area is an ellipse with principal axes a
and b. It is useful to transform the coordinates of
that area (€, m, z) to (p, 5, z} and those of the observer
point P{x, y, z) to (v, ¢, 2):

¢ = (p/Vg)eos 8,

n = (pyg)sin 5,

where ¢ is the ellipticity a/b of the elliptical cross-
sectional area A,..

Substituting Eqs. (A5) into Eq. (A4), the explicit
form of the diffraction integral for an ellipsoidal
particle becomes

B = (wg)cos o,

v =(wglsing,  (A5)

) A por
S{v, @)= (k2/2'rr)J‘ {f exp|—ikpvcos{yp — 8)]dSpdp,
o Lo

where A = \fa_l;. The integral over & is performed by
using the integral form of the zeroth-order Bessel

function:

- 2
Jolpe) = (1/2-,-;)"’ exp[—ip cos(8)|ds, (A7)

0

“witha resulting S(v, ¢} that is not dependent on ¢:

A

S(v) = k"f Jolkvp)pdp.

0

_ By using uJp = d(p;}/dp, we finally found S(v) to be
S(v) = o?J {av)/av], (A9)
kA and J,(u) is the

where the size parameter o =
first-order Bessel function of u.

i Appendix B: Anomalous Diffraction

In the anomalous diffraction approach the light that
traverses the particle is taken into account.” This
light is phase shifted compared to the Fraunhofer
light that travels along the particle. Interference of
the phase-shifted light with the Fraunhofer light
determines the spatial intensity distribution. The
validity of the anomalous diffraction theory is re-
stricted to values of m near 1 {minor deflection and
reflection of the light at the medium-—particle inter-
face) and large values of an overall size parameter a.
Applying the Huygens' principle to a plane just
behind the particle, the integrand in the expression
for the amplitude function [Eq. (A4}] gets an addi-
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.ional term that involves the phase shift &(g, n):

S(B, v) = (k*/27) J‘f {1 ~ exp[—id(e, n)]|
Al‘

x exp(ik(ex + my)]dedn. (A10)
By considering an ellipsoidal particle as described
in Appendix A, we found (g, n) to be

ole, ) = 2keim ~ 1|[1 = (e¥/a?) - (n?/6%)]'/2. (All)

Performing the coordinate transformation Egs. (A5)
and applying Eq. (A7) results in the expressicn for

Slv);
A
Siv) = k'—’f {1 ~ exp{—id{p)]lSolkvplpdp, (A12)
0

where d(p) = 2kec|m — L|[1 ~ (p2/A?)]'“2. By using,
in analogy to the derivation of van de Hulst for
spheres,” the substitutions p = A cos 1 and ¢y =
2kc|m — 1], S(v) is finally given by

/2
S{v) = o f {1 — exp[—idma sin(7)]
0

% oJplav cos T)sin T cos rdr. (Al13)
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