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We simulate elastic light scattering with the coupled dipole method. The kernel of this method
is a large set of linear equations. The nxn system matrix is complex, symmetric, full, and
diagonally dominant. This application is a typical example of problems arising in
computational clectromagnetics. The matrix equations are usually solved with (preconditioned)
conjugate gradient methods. For realistic problems the size of the matrix is very large (n ~
104 to 105). In that case sustained calculation speeds in the Gflop/s range are required to keep
execution times acceptable. We introduce a methodology to parallelize the conjugate gradient
method for this type of problems, with emphasis on coarse grain distributed memory
implementations. We present results for an implementation on a transputer network.

1. Introduction

Elastic Light Scattering (ELS) is a powerful particle detection and recognition technique,
with important applications e.g. in astrophysics or biophysics. Many exact and
approximate theories to calculate ELS from particles are known.! Nevertheless,
important classes of particles fall outside the range of these theories. The coupled dipole
(CD) method, due to Purcell and Pennypacker,? is a method that in principle allows
calculation of ELS from any particle.

In the CD method of ELS a particle is divided into N small (<< the wavelength of
the incident light) subvolumes called dipoles. First the electric field on the dipoles, due to
the incident ficld and the fields radiated by the other dipoles are calculated. Subsequently
the scattered fields are calculated.?

Calculation of the electric field on the dipoles, the computational most demanding
task in the CD method, boils down to solving a system of coupled linear equations

Ax=b, ey

with A a 3Nx3N matrix, x a vector containing the unknown dipole fields and b a vector
containing the known incident fields.2 The matrix A is a large (N ~ 104 to 109),
complex, symmetric, full and diagonally dominant matrix. We solve Eq. (1) with a
Conjugate Gradient (CG) method, suited for our system matrix. This paper shortly
summarizes our implementation of this so-called PCGNR method? on a transputer
network (more details can be found in Hoekstra et al.4).
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2. Implementation of a Parallel CG Method on a Transputer Network

We parallelize the CG method by domain decomposition of matrix A and mapping this
decomposition on an appropriate processor network. A detailed theoretical time
complexity analysis revealed that the CG method with a grid decomposition of the
matrix, implemented on a cylinder network, or with a row wise decomposition of the
matrix, implemented on a ring network, will have comparable execution times for the
number of processors and number of dipoles of interest.4 Because of the more simple
communication structure, we implemented the parallel CG method with a row wise
decomposition of the system matrix, on a ring of transputers. Furthermore, the analysis
showed that for large values of N the efficiency of this implementation is close to one.

We implemented the parallel CG method on a Meiko Computing Surface with 64
T800 transputers, programmed in Occam2. We measured the execution time of the
parallel CG method as a function of the number of processors p (1<p<64) and the
dimension of the matrix n (n = 3N; 60<n<495t ). The agreement between the theoretical
time complexity and the measurements was better than 5%.4 For p = 64, the efficiency of
a relatively small problem (n=495) already was 0.85. For a larger problem (n=3885) the
theoretical efficiency is 0.98. This implies that the implementation exploits the
parallelism almost perfectly.

A more important measure is the total execution time of the implementation. One
iteration of the CGNR method contains two complex matrix vector products. Assuming
a perfect efficiency of one, the execution time t per iteration roughly is
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with tcalc the time for one floating point operation. For double precision arithmetic tcalc
equals 1.57 ps, as was measured on the T800 transputer. For large matrices t is
approximately one hour of more. The number of iterations will be about 100 for particles
with very small refractive indices, and (much) larger for more opaque particles. This
shows that realistic calculation times for realistic problems can be achieved if more
processors are added to the network and if more powerful processors are used.
Furthermore, the total execution time can be decreased by suitable preconditioning. We
have implemented a parallel polynomial preconditioner.4 These adaptions will reduce the
calculation time with a certain factor, but the real solution will be a more efficient
algorithm. We plan to reduce the O(n2) matrix vector products in the CG algorithm to
O(nLog(n)), by using a paraliel version of the hierarchical fast multipole algorithm.
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T Maximum matrix size to fit in memory of one processor.




