
Commission of the European Communities

ESPRIT III

PROJECT NB 6756

CAMAS

COMPUTER AIDED MIGRATION OF
APPLICATIONS SYSTEM

CAMAS-TR-2.2.4.6

F2SAD - prediction capabilities

Date: March 1995 — Review 5.0

ACE - Univ. of Amsterdam - ESI SA - ESI GmbH - FEGS - PARSYTEC -
Univ. of Southampton

Authors: Berry A.W. van Halderen
Jan de Ronde

March, 1995

University of Amsterdam,

Faculty of Mathematics and Computer Science

Parallel Scientific Computing and Simulation group

Netherlands

Chapter 1

Introduction

This report describes an evaluation of the F2SAD tool with several well known basic algo-
rithms. In this report we consider some sorting algorithms. With this report we respond
to the specific request of the review commission to make a more detailed validition of the
prediction capabilities of the UvA workbench tools.

The intention of this document is to provide confidence in the ability of the tools (that
implement the models developed in SAD and PARASOL) to estimate the execution time of
some well known algorithms. The algorithms described here have a performance behaviour
that is common knowledge. Despite this fact, we are still able to come up with some points
that are interesting and not plain textbook knowledge.

In this report, various figures depicting measured and predicted execution times of Fortran
programs will pass. The main part of the annotated algorithms has been included in
appendix A.

At the time of the CAMAS review 5 we will present additional results on numerical
relaxation algorithms.

2

Chapter 2

Sorting algorithms

Sorting algorithms are symbolic algorithms. Rather than performing heavy computations
they compare and manipulate (swap or reorder) data. Sorting algorithms are quite well
understood in their complexity behaviour. Despite this fact, few textbooks do actually
compare the execution time of the algorithms. Two algorithms can be of the same order of
complexity and still differ in their performance because a different number of instructions
is executed.

0

5

10

15

20

25

30

35

40

0 200000 400000 600000 800000 1e+06 1.2e+06

to
ta

l e
xe

cu
tio

n
tim

e
(s

ec
s)

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort
bucketsort-16

bucketsort-256
bucketsort-1024

bucketsort-16384

Figure 2.1: This figure shows pure times of the sorting algorithms. The algorithms are applied to
an array of uniform random numbers. It has been included here only to give an indication of the real
execution time, since it is clearly not very informative when comparing the algorithms. All other
figures therefore include either a logarithmic vertical axis and/or the execution time divided by the
number of elements. This last type of figure works well to view the scalability of an algorithm and the
crossover points for selecting between algorithms, but the overhead introduced by any algorithm is
rather obscured. The logarithmic vertical axis plots still show the overhead, but the crossover points
and behaviour is less visible. When viewing the other figures one has to keep in mind this figure,
which tells you that the execution time of the sorting algorithms of the same complexity are actually
very similar.

If we classify the sorting algorithms by their average-case time complexity, we can distin-
guish three classes. The exponential order

���������
, the logarithmic based sorting algorithms�
	���
������

and the linear time sorting algorithms
�������

. The exponential order algorithms
are sometimes still (unjustifiably) used if a programmer is lazy and works on small arrays
or under the disguise of a parallel computer. Shell-sort is such a variant used on parallel
computers because of its parallel nature.

The most common sorting algorithms are the
�����
	���
����

order sorting algorithms like
quick-, heap- and mergesort. Although all three have the same average-case order of

3

2.1. RANDOMLY DISTRIBUTED INPUT DATACHAPTER 2. SORTING ALGORITHMS

algorithm average worst-case implementation
bubblesort

��� � � � � � � � �
array (list also possible)

selectsort
����� � � � � � � �

array (list also possible)
quicksort

����� 	 �
 ��� � � � � �
array

heapsort
�����
	���
 ��� � ��� 	 �
 ���

array
mergesort

����� 	 �
 ��� � � �
	 �
����
list

bucketsort
������� � � � � �

list

Table 2.1: Sorting algorithms; their time complexity as average case
time complexity ��������� 	 and worst-case time complexity
�������� 	 . The
implementation can either be in linear array or a linked list form.

performance, they are inherently different. Quicksort has very bad worst-case performance,
namely

� ��� � �
. It is almost impossible to implement mergesort on arrays and the natural

way to implement heapsort is on arrays. It is controversial whether quicksort is the fastest
(on average), mergesort or heapsort. Comparing these algorithms is an interesting test case
for our tool, F2SAD.

The theoretical complexity limit to sorting is
��� �
	���
 ���

, but also in this case the practical
knowledge of contraints to the input of the sorting algorithms can be exploited. To this
albeit linear order sorting algorithms have been developed. These include radix, counting
and bucketsort, in which the latter is sometimes used as a classifier or find-algorithm. These
sortings algorithms do not base their algorithm on comparisons, like the sorting algorithms
earlier mentioned, but rather on classification or decision trees.

The predicted times in these sections were produced using F2SAD which will now also
incorporate the Parasol II tool in the same program. The tool produces a time-complexity
formula in which the machine constants and the algorithmic parameters are still abstract.
When not specified, we have used a Sun Classic LX model as test machine.

Memory : 32 MB
Model : SPARCstation LX
At frequency : 50 MHz
CPU : Texas Instruments TMS390S10 (MicroSparc)
Data cache : 2 Kb blocksize=16 1-way associative
Intruction cache : 4 Kb blocksize=32 1-way associative

2.1 Randomly distributed input data

Figure 2.2 shows the measured execution timings of the exponential and
��� �
	 �
����

per-
formance as well as the predicted execution timing. The input to the sorting algorithms is
uniformly randomly distributed. Also the parameters in the time complexity formula have
been set in such a way that they reflect this condition.

The reason for taking random input data is obviously that sorting algorithms will than
expose an almost average-case behaviour. Some algorithms have a worst-case behaviour
which is of a different complexity order or, less dramatic, have different minor terms in the
complexity formula.

How the parameters are set we will come to later, but first we have a look at the measured and
estimated execution time and compare them. Figure 2.3 shows the expected and estimated
execution time for the bucketsort algorithm, compared to a mergesort implementation,
while figure 2.2 gives the same data for the other sorting algorithms.

Figure 2.4 shows the error of the predicted versus the expected value.

4

CHAPTER 2. SORTING ALGORITHMS2.1. RANDOMLY DISTRIBUTED INPUT DATA

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

to
ta

l e
xe

cu
tio

n
tim

e

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

to
ta

l e
xe

cu
tio

n
tim

e

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort

1e-05

0.0001

0.001

0.01

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

ex
ec

ut
io

n
tim

e
pe

r
el

em
en

t (
se

cs
)

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort

1e-05

0.0001

0.001

0.01

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

ex
ec

ut
io

n
tim

e
pe

r
el

em
en

t (
se

cs
)

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort

Figure 2.2: Measured and predicted execution times for the select-, bubble-, quick-, heap- and
mergesort under the constraint that the input data to the sorting program is randomly distributed. The
actual numbers are in given in table ??.
The figures on the left show the measured execution time, on the right is the predicted execution time.

5

2.1. RANDOMLY DISTRIBUTED INPUT DATACHAPTER 2. SORTING ALGORITHMS

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

to
ta

l e
xe

cu
tio

n
tim

e

number of elements

sorting algorithms

mergesort
bucketsort-16

bucketsort-256
bucketsort-1024

bucketsort-16384

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

to
ta

l e
xe

cu
tio

n
tim

e

number of elements

sorting algorithms

mergesort
bucketsort-16

bucketsort-256
bucketsort-1024

bucketsort-16384

1e-05

0.0001

0.001

0.01

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

ex
ec

ut
io

n
tim

e
pe

r
el

em
en

t (
se

cs
)

number of elements

sorting algorithms

mergesort
bucketsort-16

bucketsort-256
bucketsort-1024

bucketsort-16384

1e-05

0.0001

0.001

0.01

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

ex
ec

ut
io

n
tim

e
pe

r
el

em
en

t (
se

cs
)

number of elements

sorting algorithms

mergesort
bucketsort-16

bucketsort-256
bucketsort-1024

bucketsort-16384

Figure 2.3: Measured and predicted execution times for the bucketsort algorithm with different
numbers of buckets (16, 256, 1024 and 16384) compared against the underlying mergesort algorithm.
The input data to the sorting programs is assumed to be uniform randomly distributed. The actual
numbers are in table ??. The figures on the left show the measured execution time, on the right is the
predicted execution time. The upper two graphs plot the time against a logarithmic axis, the lower
graphs show the execution time spend (on average) per element in the array.

-60

-40

-20

0

20

40

60

80

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

er
ro

r
ra

te
 (

%
)

number of elements

error rate

bubblesort
selectsort
quicksort
heapsort

mergesort

-30

-20

-10

0

10

20

30

40

50

60

70

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

er
ro

r
ra

te
 (

%
)

number of elements

error rate

mergesort
bucketsort-16

bucketsort-256
bucketsort-1024

bucketsort-16384

Figure 2.4: The error as a percentage of the expected value for the data shown in figures 2.2 and 2.3.

6

CHAPTER 2. SORTING ALGORITHMS 2.2. SETTING THE PARAMETERS

2.2 Setting the parameters

For the algorithmic parameters —the number of times loops and conditions are taken— the
F2SAD/ Parasol II toolset has basically two ways actualizing. One is by using a profile files
to determine the parameters and the other is by defining them by hand. The programs which
have been analyzed in this report have been deliberately analyzed by hand. Below we give
an example of theoretical complexity parameters for the selection sorting algorithm.

2.2.1 Selection Sort

In appendix A, the algorithm considered here, can be found. The number of times the outer
most loop at line 9 is executed is clearly

�����
, the size of the array to be sorted. The

inner loop at line 12 has different properties. In the first iteration of the outermost loop it
is executed

�����
times, the second time

�����
times continuing until it is executed only

once. This leads to the summation:

	�
 ��
 �������
�� � ������� � ��������������� �

�� ��������� � ����� �

Since the outer loop iterates
�����

times, the inner loop will iterate
�
�
������� �

times on
average.
The conditional on line 13 is true whenever an element �

in the list �� "!#� �%$&$'$ � 	 is smaller

than all its predecessors (�

 � !#�

 � $&$'$ �) For �(�*) the conditional is always true, for

�+� � with a uniform random list this will be
�
� , for �+� � it will be

�, . We will not go into
any detail, but the the idea between this logic is that each predecessor has a probability of�
� to be smaller and in this way each predecessor will half the chance that the element �

is

smaller than all its predecessors.
Each element �

will be subject to the conditional � times, which leads to the following

formula for the chance that the condition evaluates to true:�
 � �

 � � $&$'$#-/. ��0 �"�
��� �

The nominator approaches 2 thus we get:

	1
 ��
 �
�

��� � �
� 	32������4��5

In which we can ignore
5

, and since there are
�

elements we have to divide this by
�

To recapulate we are left with the following parameters:

N.1 n-1 (the outer loop)
N.2 0.5*(n-2) (the inner loop)
P.1 2*ln(n)/n (the constant)

7

2.3. A NOTE ON LINEAR SORTING CHAPTER 2. SORTING ALGORITHMS

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

to
ta

l e
xe

cu
tio

n
tim

e

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort

1e-05

0.0001

0.001

0.01

16 64 256 1024 4096 16384 65536 262144 1.04858e+06

ex
ec

ut
io

n
tim

e
pe

r
el

em
en

t (
se

cs
)

number of elements

sorting algorithms

bubblesort
selectsort
quicksort
heapsort

mergesort

Figure 2.5: For already sorted input data.

We have used here the notation N. � and P. � , for the control flow parameters, which is also
used by F2SAD. The numbers after the N. and P. have no real meaning, but are distributed
according to the flow of the program. They are the same each time the program is run
through F2SAD.

For sorted data the conditional P.2 will be nearly 0 (actually it will be
	���� 	�
 ��� � 	1
 � � , all

other parameters remain the same.

Figure 2.5 gives results in the hypothetical case that all input data is sorted. In that case
obviously for example the bubblesort algorithm displays a very friendly execution time
behaviour.

2.3 A note on linear sorting

As was mentioned above the linear order sorting algorithms use some other sorting algorithm
to sort the classes they have build. As we have seen, the overhead and the usage of an
other algorithm do not make it attractive for sorting purposes, since it is only very slightly
better than the underlying sort. But, the linear order sorting algorithms have also a very
different purpose. If it is necessary to classify the input in ranges, resulting in a list of only
roughly sorted lists, there is no need for the underlying comparison sort mechanism. And
therefor these algorithms have their separate usefulness, especially in parallel computers in
which data has be redistributed. The bucket method can be used to classify the data, and to
distribute each class to a processor.

8

Appendix A

Source code

This appendix includes all the source code of the algorithms studied in this report. The
main program is not included since it is generated in order to provice multiple input data
sets.

A.1 Bubblesort

1 SUBROUTINE bubblesort(asize, a)
2 IMPLICIT NONE
3 INTEGER asize
4 DOUBLE PRECISION a
5 DIMENSION a(*)
6 DOUBLE PRECISION swap
7 INTEGER i, size
8 LOGICAL flag
9

10 size = asize
11 10 flag = .FALSE.
12 DO 20, i=1, size-1
13 IF(a(i) .GT. a(i+1)) THEN
14 PRINT *, i, a(i), a(i+1)
15 swap = a(i)
16 a(i) = a(i+1)
17 a(i+1) = swap
18 flag = .TRUE.
19 END IF
20 20 CONTINUE
21 size = size - 1
22 IF(flag) GOTO 10
23 END

9

A.2. SELECTSORT APPENDIX A. SOURCE CODE

A.2 Selectsort

1 SUBROUTINE selectsort(size, a)
2 IMPLICIT NONE
3 INTEGER size
4 DOUBLE PRECISION a
5 DIMENSION a(*)
6 DOUBLE PRECISION smallest
7 INTEGER i, j, index
8

9 DO 20, i=1, size-1
10 index = i
11 smallest = a(index)
12 DO 10, j=i+1, size
13 if(smallest .GT. a(j)) THEN
14 index = j
15 smallest = a(index)
16 END IF
17 10 CONTINUE
18 a(index) = a(i)
19 a(i) = smallest
20 20 CONTINUE
21 END

10

APPENDIX A. SOURCE CODE A.3. HEAPSORT

A.3 Heapsort

The heapify routine is the key to the heapsort algorithm. The parameters
to the heapify routine are an array � and an index � into that array. The
precondition for the heapify routine is that the left binary subtree and
the right binary subtree are both heaps. � ��� 	 howevery may be larger
than the elements in both subtrees, thus violating the heap property.
The heapify routine will “sift down” this element A(i) and by this way
both subtrees and � ��� 	 will become one larger heap.�����	��

� ��� 	� ��� ����� � ��� 	
if
������������� ��� �! �#" and � � "%$&� �'"

then
�(� � � �*)+�,���

else
�(� � � �*)+�,� �

if � ����������� �-� �. �#" and � � "/$&� �(� � � �*)+� "
then

�(� � � �*)+�,�0�
if
�1� � � �*)+�324 �

then exchange � ��"�5�� �(� � � �*)+� "
Heapify(� ,

�(� � � �*)6�)
1

2 SUBROUTINE heapify(size, a, parent)
3 IMPLICIT NONE
4 c left(index) = index*2
5 c right(index) = index*2 + 1
6 DOUBLE PRECISION a
7 INTEGER size, parent
8 DIMENSION a(*)
9 INTEGER i, l, r, largest

10 DOUBLE PRECISION swap
11

12 i = parent
13 10 l = i*2 left(i)
14 r = i*2+1 right(i)
15 IF ((l .LE. size) .AND. (a(l) .GT. a(i))) THEN
16 largest = l
17 ELSE
18 largest = i
19 END IF
20 IF ((r .LE. size) .AND. (a(r) .GT. a(largest))) THEN
21 largest = r
22 END IF
23 IF (largest .NE. i) THEN

Most paramters of the heapsort are
24 a(i) = a(largest)
25 a(largest) = swap
26 i = largest
27 GOTO 10
28 END IF
29

30 END
31

11

A.3. HEAPSORT APPENDIX A. SOURCE CODE

32

for � ����������� 	�
� downto 1
do Heapify(� , �)

33 SUBROUTINE buildheap(size, a)
34 IMPLICIT NONE
35 DOUBLE PRECISION a
36 INTEGER size
37 DIMENSION a(*)
38 INTEGER i
39

40 DO 10, i=size/2, 1, -1
41 CALL heapify(size, a, i) SX/2
42 10 CONTINUE
43

44 END
45

46

BuildHeap(A)
for � � � ��
 � � � � " downto 2

do exchange � �� " 5 � ��"
decrease

��������� �-� � by 1
Heapify(� ,

�
)

47 SUBROUTINE heapsort(asize, a)
48 IMPLICIT NONE
49 INTEGER asize
50 DOUBLE PRECISION a
51 DIMENSION a(*)
52 DOUBLE PRECISION swap
53 INTEGER i, size
54

55 size = asize
56 CALL buildheap(size, a)
57 DO 10, i=size, 2, -1 SX-1
58 swap = a(1)
59 a(1) = a(i)
60 a(i) = swap
61 size = size - 1
62 CALL heapify(size, a, 1)
63 10 CONTINUE
64

65 END
66

12

APPENDIX A. SOURCE CODE A.4. MERGESORT

A.4 Mergesort

1 SUBROUTINE mergelsort(a, lstptr, head, tail)
2 IMPLICIT NONE
3 INTEGER stacksize
4 PARAMETER (stacksize = 256)
5 INTEGER lstptr, head(*), tail(*)
6 DOUBLE PRECISION a(*)
7 INTEGER stackindex, stack(stacksize)
8 INTEGER size, list1, list2, run, hsize, x, y, z
9

10 x = 0
11 y = 0
12 z = 0
13

14 size = 0
15 run = lstptr
16 10 IF(run .GT. 0) THEN
17 size = size + 1
18 run = tail(run)
19 GOTO 10
20 END IF
21 sv = size
22

23 stack(1) = 0
24 stackindex = 2
25

26 1 IF(size .LE. 1) GO TO 4
27

28 list1 = lstptr
29 list2 = lstptr
30 hsize = size/2
31 20 IF(hsize .GT. 0) THEN
32 hsize = hsize - 1
33 list2 = tail(list2)
34 GOTO 20
35 END IF
36

37 stack(stackindex) = size
38 stack(stackindex+1) = list2
39 stack(stackindex+2) = 1
40 stackindex = stackindex + 3
41 size = size/2
42 lstptr = list1
43 GO TO 1
44 2 list1 = lstptr
45 stackindex = stackindex - 3
46 size = stack(stackindex)
47 list2 = stack(stackindex+1)
48

49 stack(stackindex) = size
50 stack(stackindex+1) = list1
51 stack(stackindex+2) = 2
52 stackindex = stackindex + 3
53 size = size - size/2
54 lstptr = list2
55 GO TO 1
56 3 list2 = lstptr
57 stackindex = stackindex - 3
58 size = stack(stackindex)
59 list1 = stack(stackindex+1)
60

13

A.4. MERGESORT APPENDIX A. SOURCE CODE

61

62 IF(a(head(list1)) .LT. a(head(list2))) THEN
63 lstptr = list1
64 ELSE
65 lstptr = list2
66 END IF
67

68 run = 0
69 30 IF(list1 .GT. 0 .AND. list2 .GT. 0) THEN
70 z = z + 1
71 IF(a(head(list1)) .LT. a(head(list2))) THEN
72 IF(run .GT. 0) THEN
73 tail(run) = list1
74 ELSE
75 lstptr = list1
76 END IF
77 run = list1
78 list1 = tail(list1)
79 ELSE
80 IF(run .GT. 0) THEN
81 tail(run) = list2
82 ELSE
83 lstptr = list2
84 END IF
85 run = list2
86 list2 = tail(list2)
87 END IF
88 GOTO 30
89 END IF
90 IF(list1 .GT. 0) THEN
91 IF(run .GT. 0) THEN
92 tail(run) = list1
93 ELSE
94 lstptr = list1
95 ENDIF
96 ELSE IF(list2 .GT. 0) THEN
97 IF(run .GT. 0) THEN
98 tail(run) = list2
99 ELSE

100 lstptr = list2
101 ENDIF
102 END IF
103

104

105 4 IF(size .EQ. 1) tail(lstptr) = 0
106

F2C isn’t able to process vector-if statements, that is why the following
IF-statement is commented out and two replacement IF’s are dropped
in.

107 y = y + 1
108 IF(stack(stackindex-1).EQ.1) GO TO 2
109 x = x + 1
110 IF(stack(stackindex-1).EQ.2) GO TO 3
111

112 END
113

14

APPENDIX A. SOURCE CODE A.5. QUICKSORT

A.5 Quicksort

1 SUBROUTINE quicksort(asize, a)
2 INTEGER stacksize
3 PARAMETER (stacksize = 256)
4 INTEGER asize
5 DOUBLE PRECISION a
6 DIMENSION a(*)
7 DOUBLE PRECISION aux
8 INTEGER start, size, front, back, stack, idx
9 DIMENSION stack(stacksize)

10

11 size = asize
12 idx = 0
13 start = 1
14 20 IF(size .GT. 1) THEN
15 front = start+1
16 back = start+size-1
17

18 30 IF(front .LE. back) THEN
19 IF (a(start) .GT. a(front)) THEN
20 front = front + 1
21 ELSE IF(a(start) .LE. a(back)) THEN
22 back = back - 1
23 ELSE
24 aux = a(front)
25 a(front) = a(back)
26 a(back) = aux
27 END IF
28 GOTO 30
29 END IF
30

31 IF(front .NE. start+1) THEN
32 aux = a(start)
33 a(start) = a(front-1)
34 a(front-1) = aux
35 stack(idx+1) = front - start - 1
36 stack(idx+2) = start
37 idx = idx + 2
38 END IF
39 size = size - back + start - 1
40 start = front
41 GOTO 20
42 END IF
43

44 IF(idx .GT. 0) THEN
45 idx = idx - 2
46 size = stack(idx+1)
47 start = stack(idx+2)
48 GOTO 20
49 END IF
50

51 END

15

A.6. BUCKETSORT APPENDIX A. SOURCE CODE

A.6 Bucketsort

1

2 SUBROUTINE bucketlsort(a, lstptr, head, tail)
3 IMPLICIT NONE
4 DOUBLE PRECISION a(*)
5 INTEGER lstptr, head(*), tail(*)
6 INTEGER numbuckets
7 PARAMETER (numbuckets = 16384)
8 INTEGER buckets(numbuckets), bucketnum, i, aux
9

10 DO 10, i=1, numbuckets
11 buckets(i) = 0
12 10 CONTINUE
13 20 IF(lstptr .GT. 0) THEN
14 bucketnum = INT(a(head(lstptr)) * numbuckets) + 1
15 aux = tail(lstptr)
16 tail(lstptr) = buckets(bucketnum)
17 buckets(bucketnum) = lstptr
18 lstptr = aux
19 GO TO 20
20 END IF
21

22 DO 30, i=1, numbuckets
23 CALL mergelsort(a, buckets(i), head, tail)
24 30 CONTINUE
25

26 lstptr = 0
27 DO 40, i=1, numbuckets
28 IF(buckets(i) .GT. 0) THEN
29 IF(lstptr .EQ. 0) THEN
30 lstptr = buckets(i)
31 ELSE
32 tail(aux) = buckets(i)
33 END IF
34 aux = buckets(i)
35 50 IF(tail(aux)) THEN
36 aux = tail(aux)
37 GO TO 50
38 END IF
39 END IF
40 40 CONTINUE
41

42 END
43

16

