Commission of the European Communities

kkhkkkkkkkkkkkkkk*k

ESPRIT I11

PROJECT NB 6756

kkkkkkkhkhkkkkkkkk*k

CAMAS

COMPUTER AIDED MIGRATION OF
APPLICATIONS SYSTEM

kkkkkkkhkkkkkkkkk

CAMASTR-2.2.4.6
F2SAD - prediction capabilities

*kkkhkhkkkhkhkkkdhkhkdhkk
Date: March 1995 — Review 5.0

ACE - Univ. of Amsterdam - ESI SA - ES| GmbH - FEGS - PARSYTEC -
Univ. of Southampton

Authors: Berry A.W. van Halderen
Jan de Ronde

March, 1995

University of Amsterdam,

Faculty of Mathematics and Computer Science
Parallel Scientific Computing and Simulation group
Netherlands

Chapter 1
| ntroduction

This report describes an evaluation of the F2saD tool with several well known basic algo-
rithms. In this report we consider some sorting algorithms. With this report we respond
to the specific request of the review commission to make a more detailed validition of the
prediction capabilities of the UvA workbench tools.

The intention of this document is to provide confidence in the ability of the tools (that
implement the models developed in SAD and PARASOL) to estimate the execution time of
somewell known algorithms. Thealgorithmsdescribed here have a performance behaviour
that is common knowledge. Despite thisfact, we are still able to come up with some points
that are interesting and not plain textbook knowledge.

In this report, various figures depicting measured and predicted execution times of Fortran
programs will pass. The main part of the annotated algorithms has been included in
appendix A.

At the time of the CAMAS review 5 we will present additional results on numerical
relaxation agorithms.

Chapter 2
Sorting algorithms

Sorting algorithms are symbolic algorithms. Rather than performing heavy computations
they compare and manipulate (swap or reorder) data. Sorting algorithms are quite well
understood in their complexity behaviour. Despite this fact, few textbooks do actually
compare the execution time of the algorithms. Two algorithms can be of the same order of
complexity and till differ in their performance because a different number of instructions
is executed.

sorting algorithms

40 7 T T

T
K .~ bubbfésort -+
; selectsort -8--
- quicksort -x-- |
-~ heapsort -4—
mergesort -
X L “ bucketsort-16 -o---

bucketsort-256 -+--
bucketsort-1024 -&--
bucketsort-16384 -x---

total execution time (secs)

1 1 1

0 200000 400000 600000 800000 1le+06 1.2e+06
number of elements

Figure 2.1: This figure shows pure times of the sorting algorithms. The algorithms are applied to
an array of uniform random numbers. It has been included here only to give an indication of the real
execution time, since it is clearly not very informative when comparing the algorithms. All other
figures therefore include either alogarithmic vertical axis and/or the execution time divided by the
number of elements. Thislast type of figureworkswell to view the scal ability of an algorithm and the
crossover points for selecting between algorithms, but the overhead introduced by any algorithm is
rather obscured. The logarithmic vertical axis plots still show the overhead, but the crossover points
and behaviour is less visible. When viewing the other figures one has to keep in mind this figure,
which tells you that the execution time of the sorting algorithms of the same complexity are actually
very similar.

If we classify the sorting algorithms by their average-case time complexity, we can distin-
guish three classes. The exponential order O(n?), the logarithmic based sorting algorithms
nlog(n) and the linear time sorting agorithms O(n). The exponential order algorithms
are sometimes still (unjustifiably) used if a programmer is lazy and works on small arrays
or under the disguise of a parallel computer. Shell-sort is such a variant used on parallel
computers because of its parallel nature.

The most common sorting algorithms are the O(nlogn) order sorting algorithms like
quick-, heap- and mergesort. Although all three have the same average-case order of

2.1. RANDOMLY DISTRIBUTED INPUT DAHAPTER 2. SORTING ALGORITHMS

algorithm | average worst-case | implementation
bubblesort O(nz) @(nz) array (list also possible)
selectsort | O(n?) O(n?) array (list also possible)
quicksort | O(nlogn) | ©(n?) array

heapsort O(nlogn) | ©(nlogn) | array

mergesort | O(nlogn) | ©(n log n) | list

bucketsort | O(n) O(n?) list

Table 2.1: Sorting algorithms; their time complexity as average case
time complexity O(. ..) and worst-case time complexity ©(...). The
implementation can either bein linear array or alinked list form.

performance, they areinherently different. Quicksort hasvery bad worst-case performance,
namely ©(n2). It is amost impossible to implement mergesort on arrays and the natural
way to implement heapsort is on arrays. It is controversial whether quicksort is the fastest
(on average), mergesort or heapsort. Comparing these algorithmsis an interesting test case
for our tool, F2sAD.

The theoretical complexity limit to sorting is O(n log n), but also in this case the practical
knowledge of contraints to the input of the sorting algorithms can be exploited. To this
albeit linear order sorting algorithms have been developed. These include radix, counting
and bucketsort, in which thelatter is sometimes used as aclassifier or find-algorithm. These
sortings algorithms do not base their algorithm on comparisons, like the sorting algorithms
earlier mentioned, but rather on classification or decision trees.

The predicted times in these sections were produced using F2sab which will now also
incorporate the Parasol 11 tool in the same program. The tool produces a time-complexity
formulain which the machine constants and the algorithmic parameters are still abstract.
When not specified, we have used a Sun Classic LX model astest machine.

Menory 32 MB

Model : SPARGCstation LX

At frequency : 50 MHz

CPU : Texas Instrunents TMS390S10 (M croSparc)

Dat a cache : 2 Kb bl ocksize=16 1-way associ ative
Intruction cache : 4 Kb bl ocksi ze=32 1-way associ ative

2.1 Randomly distributed input data

Figure 2.2 shows the measured execution timings of the exponential and O(n logn) per-
formance as well as the predicted execution timing. The input to the sorting algorithmsis
uniformly randomly distributed. Also the parametersin the time complexity formula have
been set in such away that they reflect this condition.

The reason for taking random input data is obvioudly that sorting algorithms will than
expose an almost average-case behaviour. Some a gorithms have a worst-case behaviour
which is of adifferent complexity order or, less dramatic, have different minor termsin the
complexity formula.

How theparametersare set wewill cometo later, but first we have alook at the measured and
estimated execution time and compare them. Figure 2.3 shows the expected and estimated
execution time for the bucketsort algorithm, compared to a mergesort implementation,
while figure 2.2 gives the same data for the other sorting algorithms.

Figure 2.4 shows the error of the predicted versus the expected value.

CHAPTER 2. SORTING ALGORITHMS RANDOMLY DISTRIBUTED INPUT DATA

sorting algorithms sorting algorithms

100000 F T T T T T i Kl 100000 T T T T
bubblesort +—
Selectsort —+-
o
10000 - feeort 10000
mergesort &
1000 | 1 1000
100 p 100
° e o
E a2TE E
H . £
5 10 e EE = El 5 10
H x g
g & g
g 1 R
T <
H g
01 1 01
001 1 001
0.001 1 0.001
0.0001 0.0001 &
1 64 256 laa | oaoo6 l%a 6553 262144 104BSteros 16 64 256 To24 a9 s G553 262144 104aStes0s
number of elements number of elements
sorting algorithms Sorting algorithms
001 - - T T , T - 001 - - r T T
bubblesort ~— bubblesort +—
Selectsort - Selectsort +-
quicksort o quicksort
heapsort x heapsort x
mergesort & mergesort &
& oo 1 8 oo b 1
§ §
5 5
S 3
g g
° o
E E
3 00001 B 3 00001 | 1
g £ bate B
® . i e aAnAea A
R JNe e R KK
PO e
R B
R o
o.ag
1e05 i o5
16 64 256 1024 409 16384 65536 262144 1.04858e+06 16 64 256 1024 4095 16384 65536 262144 1048580406
number of elements number of elements

Figure 2.2: Measured and predicted execution times for the select-, bubble-, quick-, heap- and
mergesort under the constraint that the input data to the sorting program is randomly distributed. The
actual numbers arein given in table ??.

The figures on theleft show the measured execution time, on the right isthe predicted execution time.

2.1. RANDOMLY DISTRIBUTED INPUT DAHAPTER 2. SORTING ALGORITHMS

sorting algorithms sorting algorithms

100000 T T T T T T 3 100000 F T T T T T 3
mergesort ~— mergesort —
bucketsort.16 —+— bucketsort-16 ——
bucketsort:256 -5 bucketsort-256 -8
10000 | bucketsor-1024 - 10000 | buckelsort-1024 -
buckelsort-16384 &~ bucketsort-16384
1000 | g 1000 4
100 100
o o
E E
§ 10 § 10
e} 1 g 1
3 =
g g
01 01
001 001
0.001 0,001
0.0001 0.0001
1 64 256 1024 409 16384 65536 262144 1048580406 16 64 256 1024 409 16384 65536 262144 1.04858e+06
number of elements number of elements
sorting algorithms sorting algoritms.
0.01 T T T T T T T 001 T T T . T T T
ergesort ~— mergesort —
bucketsort-16 —+— bucketsort-16 —+-
bucketsort:256 -5 bucketsort-256 -8
bucketsor-1024 buckelsort-1024
. buckelsort-16364 &~ . bucketsort-16384
N “
7 AN 7 »
& oo01 b ® E 8 o001 s, q
1 . £ ®
5 " 5 R
g \. : u
2 s, g “
g) £ >
§ g . '
3 2 00001 | X a, q
8 8 N
o
° g
“‘n,\ﬁ*if**
SR i -

1e-05 L L L L
16 64 256 1024

L L L 1605 L L
4096 16384 65536 262144 1.04858e+06 16 64 256 1024 4096 16384
number of elements number of elements

Figure 2.3: Measured and predicted execution times for the bucketsort algorithm with different
numbers of buckets (16, 256, 1024 and 16384) compared against the underlying mergesort algorithm.
The input data to the sorting programs is assumed to be uniform randomly distributed. The actual
numbers arein table ??. The figures on the | eft show the measured execution time, on theright isthe
predicted execution time. The upper two graphs plot the time against a logarithmic axis, the lower
graphs show the execution time spend (on average) per element in the array.

80 T T T T T T T 70 T T T T T
A-a selectsort -+ bucketsort-16 —+-
Y By quicksort -8- 60 - bucketsort-256 -8-- 7
- S, mergesort &~ bucketsort-16384 -
f .
40 | P a 7 40
/ a s
/ o8-g e,
2 oy s A e, 1 g F
g o £
] o 0¥ “ma - 2 2
5 v 5
e o / X
“] Wi A £ NS
4 s X A
E O S
L L L L L 30 t L L L L L L
1024 4096 16384 65536 262144 1.04858e+06 16 64 256 1024 4096 16384 65536 262144 1.04858e+06
number of elements number of elements

Figure 2.4: Theerror as a percentage of the expected value for the data shown in figures 2.2 and 2.3.

CHAPTER 2. SORTING ALGORITHMS 2.2. SETTING THE PARAMETERS

2.2 Setting the parameters

For the algorithmic parameters—the number of times|oops and conditions are taken— the
F2sAD/ Parasol 11 toolset has basically two ways actualizing. Oneisby using aprofilefiles
to determinethe parametersand the other is by defining them by hand. The programswhich
have been analyzed in this report have been deliberately analyzed by hand. Below we give
an example of theoretical complexity parametersfor the selection sorting algorithm.

2.2.1 Selection Sort

In appendix A, the algorithm considered here, can be found. The number of times the outer
most loop at line 9 is executed is clearly n — 1, the size of the array to be sorted. The
inner loop at line 12 has different properties. In the first iteration of the outermost loop it
is executed n — 2 times, the second time n — 3 times continuing until it is executed only
once. Thisleadsto the summation:

2

n

i:%(n—?)((n—Z)-l—l):%(n—l)(n—Z)

i=1

Since the outer loop iterates n — 1 times, the inner loop will iterate 1(n — 2) times on
average.

The conditional on line 13 istrue whenever an element a; inthelist ag, a; . .. a,, issmaller
than all its predecessors (a;_1,a;—2 ...aq) For ¢ = 0 the conditional is always true, for
i = 1 with auniform random list thiswill be £, for i = 2 it will be 1. We will not go into
any detail, but the the idea between thislogic is that each predecessor has a probability of
% to be smaller and in this way each predecessor will half the chance that the element a; is
smaller than al its predecessors.

Each element a; will be subject to the conditional ¢ times, which leads to the following
formulafor the chance that the condition evaluatesto true:

1 1
7+m+...frac11

n—1

The nominator approaches 2 thus we get:

n—1 9
Z - =2In(n) +C
—n—i

In which we can ignore C, and since there are n elements we haveto divide thisby n

To recapul ate we are | eft with the following parameters:

N1 n-1 (the outer |oop)
N.2 0.5*(n-2) (the inner |oop)
P.1 2*In(n)/n (the constant)

2.3. ANOTEON LINEAR SORTING

CHAPTER 2. SORTING ALGORITHMS

time

total

100000 F

10000 |

1000

ting algorithms

ecs)

execution time per element (s

0.001 |

0.0001 |

X T
S S S

0001 b g7
B

0.0001 L L
16 64 256

L L L L L Jed L L L L L L L
1024 4096 16384 65536 262144 1.04858e+06 16 64 256 1024 4096 16384 65536 262144 104858406
number of elements. number of elements.

Figure 2.5: For already sorted input data.

We have used herethe notation N. 2z and P. z, for the control flow parameters, whichisalso
used by F2sAD. The numbersafter theN. and P. haveno real meaning, but are distributed
according to the flow of the program. They are the same each time the program is run
through F2sAD.

For sorted data the conditional P. 2 will be nearly 0 (actually it will be 17 L al

n—1)(n-2)’
other parameters remain the same.

Figure 2.5 gives results in the hypothetical case that all input data is sorted. In that case
obvioudy for example the bubblesort algorithm displays a very friendly execution time
behaviour.

2.3 A noteon linear sorting

Aswasmentioned abovethelinear order sorting algorithms use some other sorting algorithm
to sort the classes they have build. As we have seen, the overhead and the usage of an
other algorithm do not make it attractive for sorting purposes, since it is only very dightly
better than the underlying sort. But, the linear order sorting algorithms have aso a very
different purpose. If it is necessary to classify the input in ranges, resulting in alist of only
roughly sorted lists, there is no need for the underlying comparison sort mechanism. And
therefor these algorithms have their separate usefulness, especially in parallel computersin
which data has be redistributed. The bucket method can be used to classify the data, and to
distribute each class to a processor.

Appendix A
Source code

This appendix includes al the source code of the algorithms studied in this report. The
main program is not included since it is generated in order to provice multiple input data
sets.

A.1 Bubblesort

1 SUBROUTI NE bubbl esort (asi ze, a)
2 I MPLI CI T NONE

3 | NTEGER asi ze

4 DOUBLE PRECI SI ON a

5 DI MENSI ON a(*)

6 DOUBLE PRECI SI ON swap

7 I NTEGER i, size

8 LOG CAL fl ag

9

10 size = asize

1 10 flag = . FALSE.

12 DO 20, i=1, size-1

13 IF(a(i) .GI. a(i+1)) THEN
14 PRINT * i, a(i), a(i+1)
15 swap = a(i)

16 a(i) = a(i+1)

17 a(i+1) = swap

18 flag = . TRUE.

19 END | F

20 20 CONTI NUE

size = size - 1
| F(flag) GOTO 10
END

N NN
w N

A.2. SELECTSORT

APPENDIX A. SOURCE CODE

A.2 Sdectsort

© 0 N O g b~ WN PP

NN B R R R R R e e
P O © o~ 0 B~ WNR O

10

20

SUBROUTI NE sel ect sort (size
| MPLICI T NONE

| NTEGER si ze

DOUBLE PRECI SI ON a

DI MENSI ON a(*)
DOUBLE PRECI S| ON smal | est

INTEGER i, j

DO 20, i=1,
i ndex
smal | est

i ndex

size-1

i
a(i ndex)

DO 10, j=i+1, size
if(smallest .GI. a(j)) THEN

i ndex =
smal | est = a(index)

END | F

CONTI NUE

a(index)

a(i)
CONTI NUE
END

l

a(i)

smal | est

10

a)

APPENDIX A. SOURCE CODE A.3. HEAPSORT

A.3 Heapsort

Theheapify routineisthekeytotheheapsort algorithm. Theparameters
tothe heapify routine arean array A and anindex ¢ into that array. The
precondition for the heapify routine is that the left binary subtree and
the right binary subtree are both heaps. A(¢) howevery may be larger
than the elements in both subtrees, thus violating the heap property.
The heapify routine will “ sift down” this element A(i) and by this way
both subtrees and A(z) will become one larger heap.
1+ Left(3)
7 < Right()
if] < HeapSize[A] and A[l] > A[i]

then largest <1

else largest «+ i
if r < HeapSize[A] and A[r] > A[largest]

then largest <t
if largest # 1

then exchange A[i] «+» A[largest]

Heapify(A,largest)

SUBROUTI NE heapi fy(size, a, parent)
I MPLI CI T NONE

| eft (i ndex) = index*2

right(index) = index*2 + 1

DOUBLE PRECI SI ON a

I NTEGER si ze, parent

DI MENSI ON a(*)

INTEGER i, |, r, largest

DOUBLE PRECI SI ON swap

© 0 N O g b~ WN R
o o0

P
= o

12 i = parent
13 10 I =i*2 left(i)
14 r = i*2+1 right(i)
15 IF ((I .LE. size) .AND. (a(l) .GT. a(i))) THEN
16 largest =1
17 ELSE
18 largest =i
19 END | F
20 IF ((r .LE. size) .AND. (a(r) .GI. a(largest))) THEN
21 largest =r
22 END | F
23 IF (largest .NE. i) THEN
Most paramters of the heapsort are
24 a(i) = a(l argest)
25 a(l argest) = swap
26 i = largest
27 G&Oro 10
28 END | F
29
30 END
31

11

A.3. HEAPSORT

APPENDIX A. SOURCE CODE

32

33

35
36
37
38
39
40
il

&S

45

46

47

49
50
51
52
53

55
56
57
58
59
60
61
62
63

65
66

for i «
do Heapify(A,)

Size

% downto 1

SUBROUTI NE bui | dheap(si ze, a)
I MPLICI T NONE

DOUBLE PRECI SI ON a

| NTEGER si ze

DI MENSI ON a(*)

| NTECER i

DO 10, i=size/2, 1, -1
CALL heapify(size, a, i)

10 CONTI NUE
END
BuildHeap(A)

for ¢ « length[A] downto 2

10

do exchange A[1] <> A[4]

decrease HeapSize by 1
Heapify(A,1)

SUBROUTI NE heapsort (asi ze, a)
I MPLICI T NONE

| NTECER asi ze

DOUBLE PRECI SI ON a

DI MENSI ON a(*)

DOUBLE PRECI SI ON swap

| NTEGER i, size

size = asize
CALL bui | dheap(size, a)

DO 10, i=size, 2, -1
swap = a(l)
a(l) = a(i)
a(i) = swap
size = size - 1

CALL heapify(size, a, 1)
CONTI NUE

END

12

SX/ 2

SX-1

APPENDIX A. SOURCE CODE A.4. MERGESORT

A.4 Mergesort

1 SUBROUTI NE nergel sort(a, Istptr, head, tail)
2 I MPLI CI T NONE

3 | NTEGER st acksi ze

4 PARAMVETER (st acksi ze = 256)

5 I NTEGER | stptr, head(*), tail (*)

6 DOUBLE PRECI SI ON a(*)

7 I NTEGER st acki ndex, stack(stacksize)

8 | NTEGER si ze, listl, list2, run, hsize, x, y, 2z
9

10 x =0

11 y =0

12 z =0

13

14 size = 0

15 run = |stptr

16 10 I F(run . GT. 0) THEN

17 size = size + 1

18 run = tail (run)

19 G&Oro 10

20 END | F

21 sv = size

22

23 stack(1) =0

24 stacki ndex = 2

25

26 1 | F(size .LE. 1) GO TO 4

27

28 listl = Istptr

29 list2 = Istptr

30 hsi ze = sizel/2

31 20 | F(hsi ze . GI. 0) THEN

32 hsize = hsize - 1

33 list2 = tail (list2)

34 GOTO 20

35 END | F

36

37 st ack(st acki ndex) = si ze

38 st ack(stacki ndex+1) = list2

39 stack(stacki ndex+2) =1

40 st acki ndex = stackindex + 3

41 si ze = sizel/2

42 | stptr = listl

43 GO TO 1

a4 2 listl = |lstptr

45 st acki ndex = stackindex - 3

46 si ze = st ack(st acki ndex)
47 list2 = st ack(stacki ndex+1)
48

49 st ack(st acki ndex) = si ze

50 st ack(stacki ndex+1) = listl

51 st ack(stacki ndex+2) = 2

52 st acki ndex = stackindex + 3

53 si ze = size - sizel2

54 | stptr =list2

55 GO TO 1

56 3 list2 = |lstptr

57 st acki ndex = stackindex - 3

58 si ze = st ack(st acki ndex)
59 listl = £ ack(st acki ndex+1)

@D
o

A.4. MERGESORT APPENDIX A. SOURCE CODE

61
62
63

65
66
67
68
69
70
71
2
73
74
75
76
v
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93

95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113

I F(a(head(listl)) .LT. a(head(list2))) THEN

I stptr = 1listl
ELSE
I stptr = 1list2
END | F
run = 0
30 IF(listl .GT. O .AND. list2 .GTI. 0) THEN
z =z +1

| F(a(head(listl)) .LT. a(head(list2))) THEN
I F(run . GI. 0) THEN

tail(run) = listl
ELSE
Istptr = listl
END I F
run =listl
listl = tail(listl)
ELSE
I F(run . GTI. 0) THEN
tail(run) = 1list2
ELSE
Istptr = list2
END I F
run =list2
list2 = tail (list2)
END I F
GOTO 30

END | F
IF(listl .GI. 0) THEN
I F(run . GI. 0) THEN
tail(run) =1listl
ELSE
I stptr = listl
ENDI F
ELSE IF(list2 .GI. 0) THEN
I F(run . GI. 0) THEN

tail(run) =1list2
ELSE
| stptr = list2
ENDI F
END | F
4 IF(size .EQ 1) tail(lstptr) =0

F2C isn't able to process vector-if statements, that iswhy the following
IF-statement is commented out and two replacement |F’s are dropped
in.

y=y+1
| F(stack(stackindex-1).EQ 1) GO TO 2
X =x+1

| F(stack(stacki ndex-1).EQ 2) GO TO 3

END

14

APPENDIX A. SOURCE CODE

A.5. QUICKSORT

A5 Quicksort

SUBROUTI NE qui cksort (asize,
| NTEGER st acksi ze
PARAMETER (st acksi ze
| NTEGER asi ze

DOUBLE PRECI SI ON a
DI MENSI ON a(*)
DOUBLE PRECI SI ON aux
| NTEGER start, size, front,
DI MENSI ON st ack(st acksi ze)

256)

© 0 N O U~ WN R

=
o

si ze asi ze
i dx
start
| F(size
front
back

[N
=

=
N

=0
=1
.GT. 1) THEN
= start+1

start+si ze-1

=
w

20

=
[S2 N

=
[«2]

[N
1]

30

=
[ee]

I F(front
IF (a(start) .GTI. a(f
front = front + 1
ELSE | F(a(start) .LE.
back = back - 1
ELSE
aux
a(front)
a(back)
END | F
GOTO 30
END | F

NN NN
w N B O ©

a(front
a(back)
aux

NN NN NN
© O N o g R
Inn

w
o

. NE.

w
[y

I F(front
aux
a(start)
a(front-1)
stack(i dx+1)
stack(i dx+2)
i dx

END | F

si ze size -

start = front

GOTO 20

END | F

st
= a(start)
a(front-
aux

front
start
idx +

w
N

W
w

®

w
(&)

W
o
1

W W
0 N

back + st

ﬁbhbbw
w N P O ©

IF(idx .GI. 0) THEN
i dx idx - 2
si ze = stack(idx+1)
start stack(i dx+2)
GOTO 20

END | F

ey
(&

B
[«

8& &%

END

a
[y

15

a)

back, stack, idx

.LE. back) THEN

ront)) THEN

a(back)) THEN

)

art+1) THEN

1)
- start - 1
2

art - 1

A.6. BUCKETSORT APPENDIX A. SOURCE CODE

A.6 Bucketsort

SUBROUTI NE bucketl sort(a, Istptr, head, tail)

I MPLI CI T NONE

DOUBLE PRECI SI ON a(*)

I NTEGER | stptr, head(*), tail (*)

I NTEGER numbucket s

PARAMETER (numbuckets = 16384)

I NTEGER bucket s(nunbuckets), bucketnum i, aux

© 0 N O g b~ WN PP

10 DO 10, i=1, nunbuckets
1 buckets(i) =0

12 10 CONTI NUE

13 20 | F(I stptr .GI. 0) THEN

14 bucket num = I NT(a(head(l stptr)) * nunmbuckets) + 1
15 aux = tail(Istptr)

16 tail (Istptr) = bucket s(bucket num
17 bucket s(bucket num = Istptr

18 I stptr = aux

19 GO TO 20

20 END | F

21

22 DO 30, i=1, nunbuckets

23 CALL nergel sort(a, buckets(i), head, tail)
24 30 CONTI NUE

25

26 | stptr = 0

27 DO 40, i=1, nunbuckets

28 | F(buckets(i) .GI. 0) THEN

29 IF(Istptr .EQ 0) THEN

30 I stptr = buckets(i)

31 ELSE

32 tail (aux) = buckets(i)

33 END | F

<2 aux = buckets(i)

35 50 I F(tail (aux)) THEN

36 aux = tail (aux)

37 GO TO 50

38 END | F

39 END | F

40 40 CONTI NUE

42 END

16

