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Summary This work addresses the calibration of the distributed rainfall-runoff model LIS-
FLOOD and, in particular, the realistic quantification of parameter uncertainty and its effect
on the prediction of river discharges for large European catchments. LISFLOOD is driven by
meteorological input data and simulates river discharge in large drainage basins as a function
of spatial information on topography, soils and land cover. Even though LISFLOOD is physically
based to a certain extent, some processes are only represented in a lumped conceptual way. As
a result, some parameters lack physical basis and cannot be directly inferred from quantities
that can be measured. In the current LISFLOOD version five parameters need to be determined
by calibration. We employ the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimi-
sation algorithm to automatically calibrate the model against daily discharge observations. The
resulting posterior parameter distribution reflects the uncertainty about the model parameters
after taking into account the discharge observations, and forms the basis for making probabi-
listic flow predictions. To overcome the computational burden the optimisation has been imple-
mented using parallel computing. As an illustrative example, we demonstrate the methodology
for the Meuse catchment upstream of Borgharen, covering approximately 21,000 km2. Results
demonstrate the capabilities of the SCEM-UA algorithm to efficiently evolve to the target
posterior distribution and to identify, except for the lower groundwater zone time constant,
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the LISFLOOD calibration parameters using daily discharge observations. It should be noted that
the posterior parameter distributions are based on the assumption of independent errors. Anal-
ysis of the residuals revealed there is a strong evidence to reject this assumption. This will
impact on the parameter posterior distributions and also lead to underestimation of the predic-
tion limits.
ª 2006 Elsevier B.V. All rights reserved.
Introduction

During the past decade, several catastrophic floods have oc-
curred in Central Europe (including Odra, Rhine, Danube,
Elbe and Vistula), causing several fatalities and huge dam-
ages. Within this regard, the Joint Research Centre of the
European Commission is developing the European Flood
Alert System (EFAS). The aim of EFAS is to provide the
national hydrological services with continuous real-time
river discharge forecasts across Europe with a lead-time of
3–10 days, complementary to the forecasting at national le-
vel typically done for the first day(s). The system currently
runs on a pre-operational basis using a grid resolution of
5 km for all European river basins larger than 2000 km2.
The predictions of river discharge are obtained with LIS-
FLOOD, a distributed, (partly) physically based rainfall-run-
off model that was designed to simulate rainfall-runoff
processes in large catchments (De Roo et al., 2000, 2001).
The accuracy of the real-time forecasts depend on the abil-
ity of the model to capture the dominate hydrological pro-
cesses that transfer precipitation into river runoff at the
catchment scale, and on its ability to reproduce historical
time series of observed river discharges.

A crucial step which contributes significantly to the accu-
racy of the EFAS discharge forecasts is the calibration of the
LISFLOOD model for all European catchments. Owing to the
general nature of the LISFLOOD model its application to any
given river basin requires that certain parameters of con-
ceptual functions be identified for the particular basin. In
the process of calibration, the values of unknown model
parameters are tuned such that the model matches the ob-
served predictions as closely as possible. This can be done
by manually adjusting the parameters while visually inspect-
ing the agreement between the observed and simulated dis-
charges. However, the subjective and time-consuming
nature of the trial-and-error method renders this method
unappealing for use on a European scale. The large number
of catchments for which the model needs to be calibrated
within EFAS calls for an automatic parameter estimation
procedure. Besides shortening the implementation time this
will also enhance the reliability of the calibrated parame-
ters due to a more exhaustive exploration of the parameter
space.

The application of automatic parameter estimation tech-
niques has received considerable attention over the last dec-
ades (e.g., Sorooshian and Dracup, 1980; Kuczera, 1983;
Duan et al., 1992; Thyer et al., 1999; Vrugt et al., 2003). Sev-
eral studies have reported difficulties in obtaining unique
global parameter estimates because of the presence of mul-
tiple local optima, non-linear interaction between model
parameters, and the shape and roughness of the response
surface defined by the selected objective function. This
has led to the development of global optimisation tech-
niques such as the Shuffled Complex Evolution mehtod (Duan
et al., 1992) and simulated annealing (Sumner et al., 1997).

Often, the optimal parameter estimates are used with-
out taking due account of the uncertainty in the parameter
estimates in subsequent predictions. However, without a
realistic assessment of parameter uncertainty it is not pos-
sible to undertake with any confidence tasks such as evalu-
ating prediction/confidence limits on future hydrological
responses, assessing the significance of deviations in
split-sample tests, and assessing the value of regional rela-
tionships between model parameters and catchment char-
acteristics (Kuczera and Parent, 1998).

Several approaches have been developed to assess
parameter uncertainty and its effect on subsequent predic-
tions. These include the use of multinormal approximations
(Kuczera and Mroczkowski, 1998), simple uniform random
sampling (URS) over the feasible parameter space (Uhlen-
brook et al., 1999), parametric bootstrapping and Markov
chain Monte Carlo (MCMC) methods (Kuczera and Parent,
1998; Campbell et al., 1999; Bates and Campbell, 2001;
Vrugt et al., 2003). Traditional statistical theory based on
first-order approximations and multinormal distributions is
typically unable to cope with the non-linearity of complex
hydrological models. The URS method allows easy explora-
tion of the parameter space but is computationally ineffi-
cient. Unless a large number of random samples are drawn
from the highly dimensioned parameter space, uniform
sampling can produce seriously misleading results. MCMC
methods on the other hand generate samples from a Markov
chain that adapts to the stationary posterior parameter dis-
tribution, and can be applied to complex inference, search
and optimisation problems. The posterior parameter distri-
bution quantifies the uncertainty about the model parame-
ters after considering the observed catchment responses,
and forms the basis for making probabilistic predictions.

Other methods have been developed that focus on
assessing global uncertainty in rainfall-runoff modelling,
such as the generalised likelihood uncertainty (GLUE) meth-
od (Beven and Binley, 1992) and the meta-Gaussian ap-
proach (Krzysztofowicz and Kelly, 2000; Montanari and
Brath, 2004). These methods estimate the aggregated mod-
el uncertainty without attempting to separate the individual
effects of input, parameter and model uncertainty. We spe-
cifically focus on estimating confidence limits for the rain-
fall-runoff model parameters to quantify the effect of
parameter uncertainty on river flow simulation.

In this work, we employ the Shuffled Complex Evolution
Metropolis (SCEM-UA) algorithm (Vrugt et al., 2003) to infer
the posterior distributions for the parameters of the LIS-
FLOOD model. The SCEM-UA algorithm is a modified version
of the original SCE-UA global optimisation algorithm (Duan
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et al., 1992). The algorithm is Bayesian in nature and oper-
ates by merging the strengths of the Metropolis algorithm,
controlled random search, competitive evolution, and com-
plex shuffling to continuously update the proposal distribu-
tion and evolve the sampler to the posterior target
distribution. The SCEM-UA algorithm has been successfully
applied to calibrate the five-parameter conceptual rain-
fall-runoff model HYMOD for a 1944 km2 watershed (Vrugt
et al., 2003) and to estimate vadose zone properties for a
small watershed using the distributed fully coupled surface
– vadose zone – groundwater model MODHMS (Vrugt et al.,
2004).

LISFLOOD is a hybrid between a conceptual and fully
physically based distributed rainfall-runoff model that sim-
ulates the spatial and temporal patterns of catchment re-
sponses in large (European) river basins. These type of
models have the potential to evaluate the effects of land
use or climate changes on catchment behaviour or to meet
the request for more accurate spatial predictions. To date,
the capabilities of such models have not yet been fully
exploited, primarily due to their computational, distributed
input and parameter estimation requirements. However,
the rapid increase in computer power, the development of
efficient computational methods, the availability of sophis-
ticated Geographical Information Systems, and the increas-
ing wealth of spatial data of different types facilitate the
proper calibration of these models, and consequently their
use in making reliable predictions. The aim of this paper is
to explore the capacity of SCEM-UA to identify the posterior
parameter distributions for the LISFLOOD model applied to a
large catchment (>20,000 km2), and to evaluate the effect
of parameter uncertainty on the predictive capabilities of
the model. To handle the significant CPU time needed to
perform the large number of model iterations the SCEM-
UA method has been implemented using parallel computing.

The paper is organised as follows. Section ‘‘Methodol-
ogy’’ presents details on the Bayesian inverse methodology
and the SCEM-UA algorithm used to infer the posterior
model parameter distributions. Sections ‘‘The hydrological
model’’ LISFLOOD is presented. Sections ‘‘Case study’’
and ‘‘Model parameterisation’’ describe the study area
and model parameterisation, respectively. Results are pre-
sented in section ‘‘Results’’ and we end with conclusions.

Methodology

In this section we describe the Bayesian inference method
adopted for the calibration and parameter uncertainty
assessment of the LISFLOOD rainfall-runoff model. First, a
generic mathematical formulation of the Bayesian proce-
dure for hydrological inversion is provided. The second part
of this section details the SCEM-UA optimisation code used
to perform the computations. We also provide some details
on the parallel implementation of SCEM-UA.

In Bayesian inference knowledge and uncertainty about
variables is summarised in probability distributions. In what
follows, we use the notation p() for probability density func-
tions, L() for likelihood functions, and a vertical bar to indi-
cate conditioning. Arguments on the left side of the vertical
bar denote the variables of the density; arguments on the
right side of the bar denote the fixed values on which the
density is conditioned.
Bayesian framework for hydrological parameter
estimation

Calibration or inverse problems arise anywhere data are col-
lected that are related to the unknown quantities by a
mathematical model. The unknown quantities here are the
hydrological properties of the river basin under study
(e.g., hydraulic properties of the soil, storage or surface
routing properties), with the collected data given by ob-
served responses of the system (e.g., river stage or dis-
charge, soil moisture content, groundwater table
elevation). The Bayesian approach to the non-linear calibra-
tion or inverse problem is the transfer of information from
the observed system responses to the unknown quantities,
hereby updating the probability density functions that de-
scribe the uncertainty about the unknown variables.

The functional form, here the non-linear hydrological
model LISFLOOD, relating the system responses with the un-
known quantities can be written as

yF ¼ Fðh; nÞ ð1Þ
where yF ¼ ðyF;1; yF;2; . . . ; yF;ny Þ

T is the functional output,
h 2 H � Rnh is the vector of model parameters representing
the unknown hydrological river basin properties, and
n 2 N � Rnn comprises the forcing inputs to the hydrological
model, such as precipitation or ET0 rates, recharge or dis-
charge fluxes at boundaries, and withdrawal/injection
rates.

Omitting from the notation the inputs n to the hydrolog-
ical model that are assumed to be known and fixed, the rela-
tion between the observed system responses
y ¼ ðy1; y2; . . . ; yny Þ

T and the model predictions is given by

y ¼ yF þ eyðhÞ ð2Þ

where ey ¼ ðey;1; ey;2; . . . ; ey;ny Þ
T is the vector of modelling

residuals, which contains various sources of potential pre-
diction errors. The functions we employ, even the most
elaborate physically based models, cannot reflect the true
complexity and are necessarily simplifications of the pro-
cesses occurring in the field. Aggregation and lumping of
processes in space and time leads to parameter identifica-
tion errors. Also, observations of system responses are
prone to measurement errors.

To implement Bayesian inference, a probability density
function with parameters w 2 W � Rnw needs to be specified
for the residuals that is consistent with the available infor-
mation about the errors. The joint conditional distribution
p(ey|h,w) describes the distribution of the residuals, given
h and the parameters w of the assumed error model. This
expression, seen as a function of h and w, is called the like-
lihood function, and expresses the likelihood of observing
the residuals given h and w. Since the structure of F(h) is
known, the likelihood function is actually proportional to
the probability distribution of the observed system re-
sponses, i.e., L(h,w|y) � p(y|h,w). Parameter values that
closely reproduce the observed system responses will be
characterised by high likelihood values.

The information contained in the observed system re-
sponses, by means of the likelihood function L(h,w|y), is
used to update the prior information of the parameters h,
expressed by the prior distribution p(h), and the prior
information about the error model, expressed by the prior
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distribution p(w). The prior distributions may be defined
based on other data sets or a modeller’s experience and
physical intuition. Assuming conditional independence be-
tween p(h) and p(w), Bayes’ theorem gives

pðh;wjyÞ ¼ C�1y Lðh;wjyÞpðhÞpðwÞ ð3Þ

where Cy ¼
R

H

R
W Lðh;wjyÞpðhÞpðwÞohow is the normalising

constant, provided the integral exists. The marginal poster-
ior distribution p(h|y) is then obtained by integrating the
joint posterior distribution p(h,w|y) over the nuisance
parameters w of the error model

pðhjyÞ ¼
Z

W
pðh;wjyÞow ð4Þ

The conditional distribution p(h|y) reflects the uncertainty
about the model parameters after the observations of the
system responses have been considered. It forms the basis
for making predictions about the system responses with
the model. For any future time step ti the predictive distri-
bution of the system responses is then given by the
expression

pðyti jyÞ ¼
Z

H
pðyti jy; hÞpðhjyÞoh ð5Þ

Summarising statistics about the flow predictions, such as
measures of the central tendency or spread, or the probabil-
ity of exceeding a user-defined threshold, are readily ob-
tained from this probability density function.
Shuffled complex evolution metropolis algorithm

Typically, for hydrological problems the joint posterior
parameter distribution p(h|y) is highly dimensional and
complex, with strong non-linear parameter interdepen-
dences. Hence, p(h|y) is not easily amenable to direct
sampling or analytical integration and it is necessary to re-
sort to Monte Carlo methods to approximate the distribu-
tion. Since we do not know the form of the joint
posterior distribution in our context, we adopt a Markov
chain Monte Carlo (MCMC) approach to compute p(h|y).
In particular, we employ the Shuffled Complex Evolution
Metropolis (SCEM-UA) algorithm (Vrugt et al., 2003), which
uses the Metropolis-Hastings (Metropolis et al., 1953; Has-
tings, 1970) search strategy to generate a sequence of
parameter sets {h1, h2, . . .,hn} that adapts to the target
posterior distribution.

The SCEM-UA algorithm starts with generating an initial
population of s parameter sets sampled from the joint prior
parameter distribution p(h). The latter constrains the
parameter space and represents the belief about the param-
eters before any data are collected. Independent uniform
prior parameter distributions between realistic lower and
upper bounds are typically adopted for each parameter in
h. This implies that the information in the data, expressed
by the likelihood function, should dominate the form of
the resulting posterior distribution. Note that the assump-
tion of prior independence among the parameters is by no
means necessary and can be relaxed only at the cost of mak-
ing computations more burdensome.

Assuming that the residuals ey ¼ ðey;1; ey;2; . . . ; ey;ny Þ
T are

mutually independent, normally distributed with a constant
variance re, the likelihood of each parameter set h given the
observations y is computed using (Box and Tiao, 1973)

Lðh;wjyÞ ¼ exp � 1

2

Xny
i¼1

tiðhÞ
re

����
����
2

" #
ð6Þ

where

tiðhÞ ¼ GðyF;iÞ � GðyiÞ ð7Þ

The transformation G(.) of the simulated and observed
system responses allows to handle non-normality, lack of
variance homogeneity and autocorrelation of error terms
in the residuals. The parameter of the error model, i.e.,
w = re, is treated as a hyperparameter whose uncertainty
is accounted for by marginalisation. Assuming a non-infor-
mative prior p(re) � 1/re, and given the uniform prior
parameter distributions adopted, the posterior density for
each parameter set h given the observations y is obtained
using (Box and Tiao, 1973)

pðhjyÞ ¼ C�1
XN
i¼1

tiðhÞj j2
" #�1

2ny

ð8Þ

where C ¼
R PN

i¼1 tiðhÞj j2
h i�1

2N

dh is the normalising constant.
Once the posterior density has been computed for the s

parameter combinations of the initial sample using Eq.
(8), the population is partitioned into q complexes. In each
complex a parallel sequence is launched from the point with
the highest posterior density. New candidate points are gen-
erated employing a multivariate normal distribution centred
around the current draw of the sequence or the mean of the
points in the complex augmented with the covariance struc-
ture induced between the points in the complex. Eq. (8) is
used to compute the posterior density of new candidate
points, which are added (by random replacement) to the
current sequence based on the Metropolis-annealing
(Metropolis et al., 1953) criterion. After a predefined num-
ber of iterations the complexes are shuffled to share infor-
mation gained independently in the parallel sequences. For
a variety of problems of increasing complexity, including a
parameter identification problem for a five-parameter con-
ceptual rainfall-runoff model, Vrugt et al. (2003) showed
empirical evidence that this series of operations yields a ro-
bust MCMC sampler that efficiently and effectively searches
the parameter space and converges to the target distribu-
tion for a sufficiently large number of iterations (typi-
cally > 5000 iterations).
Implementation of SCEM-UA using parallel
computing

Due to the computational demands of the LISFLOOD model
and the large number of iterations typically needed to ob-
tain a stable posterior parameter distribution it was re-
quired to implement the SCEM-UA algorithm using parallel
computing. We employed a Local Area Multicomputer –
Message Passing Interface (LAM/MPI) distributed computing
interface for the Octave programming environment (Vrugt
et al., 2006). LAM/MPI is a high-quality open-source imple-
mentation of the Message Passing Interface specification
that includes a rich set of features for parallel computing.
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GNU Octave (Eaton, 1998, 2001) is a high-level language,
compatible with MATLABTM, that is intended primarily for
numerical computations. It provides a convenient command
line interface for the numerical solution of linear and non-
linear problems, and for performing numerical experiments.
A detailed description and explanation of the software ap-
pear in Fernández et al. (2003, 2004). The parallel imple-
mentation scheme of the SCEM-UA algorithm is presented
Input:
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q = nr complexes
s = population size

Compute nr points/complex (m = s/q)

Sample s points in feasible parameter
space defined by prior distributions

Split s parameter combinations between T
slaves and broadcast s/T points to each slave

Receive and sort s points in order of
decreasing posterior density. Store them in D

Initialize q parallel sequences S starting at
the q points with highest posterior density

Partition D into q complexes Ck, k=1,2,…,q of m points

Replace Ck, k=1,2,…,q into D and sort D
in order of decreasing posterior density

Master processor

start SCE
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new candidate points using the SEM algorithm (Vrugt
et al., 2003). Broadcast q candidate points to slaves
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convergence criteria
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in order of decreasing posterior density
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new candidate points using the SEM algorithm (Vrugt
et al., 2003). Broadcast q candidate points to slaves
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Figure 1 Flow chart of parallel
in Fig. 1. The calculations reported in this paper were per-
formed using 11 Pentium IV 3.40 GHz processors of the LISA
Linux cluster belonging to the SARA parallel computing
centre (SARA Computing and Networking Services, the Neth-
erlands). The CPU time required for the stochastic calibra-
tion of the LISFLOOD model for a 3-year simulation period
with a daily time step and 10,000 SCEM-UA generated
parameters combinations was approximately 35 h.
Receive parameter combinations

On each slave independently
compute posterior density of
s/T parameter combinations

Collect results and send s
posterior densities to master

Slave processors

M-UA

M-UA

Compute posterior density of
each of the q points and send
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Receive parameter combinations

On each slave independently
compute posterior density of
s/T parameter combinations

Collect results and send s
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Slave processors

M-UA

M-UA

Compute posterior density of
each of the q points and send

results to master

implementation of SCEM-UA.
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The hydrological model

In this study we employ LISFLOOD (De Roo et al., 2000,
2001), a rainfall-runoff model that has been devised to pre-
dict floods in large European river basins. To meet this
objective the model (i) is distributed, (ii) has physical basis,
(iii) uses readily available inputs and (iv) is computationally
efficient. The model is raster based and is embedded in a
dynamic modelling GIS-environment (PCRaster), which
facilitates the handling of large European spatial data sets
such as the CORINE Land Cover and the European Soils
Database.

A schematic outline of the model with its different com-
ponents is presented in Fig. 2. The model is driven by mete-
orological input time series such as precipitation,
temperature, wind speed, sunshine duration, cloud cover
and actual vapour pressure. Processes simulated for each
grid cell include snowmelt, soil freezing, interception of
rainfall by vegetation, evaporation from the soil surface,
infiltration into the soil, water uptake and transpiration by
plants, surface runoff, redistribution of soil moisture within
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Figure 2 Schematic overview of the LISFLOOD model.
P = precipitation; Int = interception; EWint = evaporation of
intercepted water; Dint = leaf drainage; ESact = evaporation
from soil surface; Tact = transpiration (water uptake by plant
roots); INFact = infiltration; Qsr = surface runoff; Dus,ls = drainage
from upper to lower soil zone; Dls,ugw = drainage from lower soil
zone to upper groundwater zone; Dpref,gw = preferential flow to
upper groundwater zone; Dugw,lgw = drainage from upper to
lower groundwater zone; Qugw = outflow from upper groundwa-
ter zone; Qlgw = outflow from lower groundwater zone;
Qloss = loss from lower groundwater zone. (Note that snowmelt
is not included in the figure, even though it is simulated by the
model.)
the soil profile, drainage of water to the groundwater sys-
tem, preferential flow, groundwater flow and 1D channel
routing.

Case study

We present our analysis and results for the Meuse catchment
upstream of Borgharen (see Fig. 3). This part of the Meuse
catchment covers an area of approximately 21,000 km2

and is situated in Belgium, France and the Netherlands.
The Meuse is fed mainly by rain all year round; hence flows
are generally highest in winter, with relatively low flows
during the summer. The topography of the area is hilly with
the elevation varying from 50 m to 700 m. The substrata are
largely impervious, resulting in precipitation that is dis-
charged quickly into the river. The predominant land use
types are forest, agriculture (cultivated patterns and pas-
ture), moor and heath.

In the model, the area was discretised in 5 by 5 km grid
blocks. Daily observed discharges are available for the Bor-
gharen gauging station. The model was run with a daily time
step. The simulation period in the calibration spanned 1/10/
1992 to 30/09/1995. The first year was used as a warming-
up period, hence only predicted discharges for the last 2
years were used for the calibration. For validating the mod-
el, observations from 10/1/1990 to 30/9/1992 were used.

Model parameterisation

Distributed models require a vast amount of data to repre-
sent the spatial distribution of the meteorological and
Figure 3 Location of the Meuse catchment, with grey-scale
overlay of the topography.
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hydrological characteristics of large river basins. A rigorous
parameterisation procedure is crucial to avoid methodolog-
ical problems during model calibration. Spatial patterns of
the parameter values have to be specified such that param-
eters reflect only significant and systematic spatial varia-
tions inherent in the available data. As such, the
parameterisation process can effectively reduce the num-
ber of free parameters to be adjusted during calibration
(Refsgaard, 1997).

To avoid problems of over-parameterisation and to re-
duce the dimensionality of the model calibration, input
parameters and variables of LISFLOOD are estimated a priori
from available data bases as much as possible. For example,
soil physical properties are derived from the European Soil
Geographical Database (King et al., 1994). The HYPRES
database (Wösten et al., 1999) is used to estimate porosity,
saturated hydraulic conductivity and moisture retention
properties for each texture class. Vegetation and land use
information are obtained from the CORINE Land Cover data-
base (EEA, 2000). Meteorological parameters are extracted
from the MARS Meteorological Database. Digital elevation
data are obtained from the Catchment Information System,
which has a spatial resolution of 1 km (Hiederer and De Roo,
2003).

Although LISFLOOD is based on physics to a certain ex-
tent, some processes are only represented in a lumped
conceptual way. As a result, some parameters lack physi-
cal basis and cannot be directly obtained from field data.
In the current version of LISFLOOD, there remain five
parameters that need to be estimated by calibration
against measured stream flow records. The calibration
parameters are tabulated in Table 1, with the upper and
lower bounds of the prior distributions used in the inverse
procedure. The Upper Zone Time Constant (UZTC) and
Lower Zone Time Constant (LZTC) reflect the residence
time of water in the upper and lower groundwater zone,
respectively. As such, they control the amount and timing
of outflow from the respective groundwater reservoirs.
The Groundwater Percolation Value (GWPV) controls the
flow from the upper to the lower groundwater zone. The
Xinanjiang parameter b (Xb) is an empirical shape parame-
ter in the Xinanjiang model (Zhao and Liu, 1995) that is
used to simulate infiltration. It controls the fraction of sat-
urated area within a grid cell that is contributing to runoff,
hence it is inversely related to infiltration. The Power Pref-
erential Bypass Flow parameter (PPBF) is an empirical
shape parameter in the power function relating preferen-
tial flow with the relative saturation of the soil.
Table 1 Calibration parameters of the LISFLOOD model
with upper and lower bounds of the prior uniform
distributions

Parameter Lower
bound

Upper
bound

Upper zone time constant (UZTC) 1 10
Lower zone time constant (LZTC) 10 5000
Ground water percolation value (GWPV) 0 0.5
Xinanjiang parameter b (Xb) 0.05 0.5
Power preferential bypass flow (PPF) 5 15
Results

Several important assumptions underlie the use of Eq. (8) as
a likelihood function in the derivation of the posterior
parameter distribution, namely that the residuals are uncor-
related in time and normally distributed with constant var-
iance. If these assumptions are not met, the posterior
parameter distribution may not adequately describe param-
eter uncertainty, and the derived predictive uncertainty
bounds may be erroneous. The transformation G(.) in Eq.
(7) of the simulated and observed system responses allows
to handle non-normality, lack of variance homogeneity
and autocorrelation of error terms in the residuals. In this
work, we only account for non-normality and heteroscedas-
tic errors by applying a Box–Cox transformation with k = 0.4
to the observed and simulated discharge series. The validity
of these assumptions is evaluated later in this section using
diagnostic checks. Correlation of the residuals in time can
be accounted for by fitting an autoregressive (AR), moving
average (MA) or mixed (ARMA) error model to the residuals
(see e.g., (Sorooshian and Dracup, 1980; Kuczera, 1983;
Bates and Campbell, 2001).

The SCEM-UA algorithm was run with a population size
s = 250 and q = 10 complexes, or 25 points in each complex.
Convergence of the MCMC sampler to a stationary distribu-
tion was evaluated using the Scale Reduction score ð

ffiffiffiffiffiffi
SR
p
Þ

defined by Gelman and Rubin (1992). If the scale reduction
score is less than 1.2, the Markov chain is considered to be
converged; otherwise, more runs are needed. In Fig. 4 cal-
culated values of

ffiffiffiffiffiffi
SR
p

are plotted against the number of
MCMC iterations. The line plots indicate that for all param-
eters the parallel sequences converged to the target distri-
bution after approximately 3000 iterations.

The rapid convergence is confirmed by the evolution of
the samples generated in the q = 10 sequences presented
in Fig. 5. Initially, parameter values are sampled from the
feasible parameter space defined by the prior parameter
distributions. After this initial exploration of the parameter
space, the sampler discards parameter regions with low pos-
terior probabilities. For the UZTC, GWPV, Xb and PPF
parameters, the SCEM-algorithm rapidly occupies only a
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Figure 4 Evolution of the Gelman and Rubin Scale Reduction
score for LISFLOOD calibration parameters.
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Figure 5 Markov chain Monte Carlo samples generated in the q = 10 sequences for the LISFLOOD calibration parameters.
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small range of the initial parameter ranges. For the LZTC no
clear defined region of attraction exists.

Fig. 6 presents the marginal posterior probability distri-
butions for the LISFLOOD calibration parameters con-
structed using 7000 samples generated after convergence
of the SCEM-UA algorithm. Note that for all parameters
but the LZTC the limits of the x-axis in Fig. 6 do not corre-
spond to the range specified for the respective prior uniform
distributions. The summarising statistics of the posterior
parameter distributions together with the most likely
parameter combination are presented in Table 2. The pos-
terior density for the UZTC and PPF approximate a normal
distribution centred around the optimal parameter values;
hence, the posterior mean is close to the optimal parameter
value. The well defined region of small values for UZTC re-
flects the short residence times in the upper groundwater
zone. This means that water that has passed the soil zone
is quickly discharged into the river channel, which can be
related to the impervious subsoil strata present in large
parts of the catchment. The high values for the PPF indicate
that the contribution of preferential flow bypassing the soil
zone is only significant under wet conditions. For the Xb
parameter the posterior density also approximates a normal
distribution, but it is truncated at the lower boundary of the
prior distribution. The low posterior values for the Xb
parameter show that runoff in the catchment is small unless
the soil is nearly fully saturated. The posterior density for
the GWPV parameter is concentrated on very low values,
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Figure 6 Marginal posterior probability distributions of the 5 LISFLOOD calibration parameters.

Table 2 Summarising statistics of the posterior parameter distribution (optimal parameter set, posterior mean, standard
deviation and correlation coefficients between the generated samples)

Parameter Optimal Mean Standard deviation UZTC LZTC GWPV Xb PPF

UZTC 2.04 2.11 0.19 1 �0.07 0.07 0.71 �0.45
LZTC 3142 2837 1251 – 1 –0.03 �0.01 0.01
GWPV 0.03 0.03 0.01 – – 1 0.07 0.00
Xb 0.11 0.12 0.04 – – – 1 �0.34
PPF 11.8 11.6 0.62 – – – – 1
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indicating that the amount of flow from the upper to the
lower groundwater zone is limited. Indeed, analysis of the
different components contributing to the total discharge
showed that the outflow of the lower groundwater zone only
accounts for 1.6%. The nearly negligible contribution of the
lower groundwater zone also explains the approximately
flat response surface for the LZTC parameter. The posterior
distributions and standard deviations depict that the cali-
bration parameters of the LISFLOOD model, except for the
lower zone time constant, are well identifiable for the
Meuse catchment using 2 years of measured daily
discharges.

Fig. 7 presents scatter plots in two dimensions of the
parameter space of the 7000 parameters sets sampled from
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the posterior parameter distribution. The top two plates are
representative for the two parameters (LZTC and GWPV)
that determine the slow groundwater response of the
model. Due to the small contribution of the lower ground-
water zone, these parameters show no correlation with
the other calibration parameters, which is confirmed by
the summarising correlation coefficients presented in Table
2. The bottom three scatter plots and the corresponding
correlation coefficients reveal that the parameters that af-
fect the fast response of the model (UZTC, Xb, and PPF),
either through surface runoff or fast groundwater contribu-
tion, are correlated. This correlation can be explained as
follows. A decrease in the value of Xb results in (i) more
infiltration, hence an increase in soil moisture content and
a higher flux out of the soil zone to the groundwater zone
and (ii) less surface runoff. The increased flux to the
groundwater zone through infiltration can be compensated
for by increasing the value of PPF, resulting in less preferen-
tial flow to the groundwater zone for the same moisture
content (i.e., infiltration and preferential flow are ‘compet-
ing’ processes that recharge the upper groundwater zone).
A decrease in surface runoff on the other hand is offset by
smaller residence times in the upper groundwater zone, or
lower values for the UZTC.

To ensure that the posterior parameter distribution ade-
quately describes parameter uncertainty we perform some
diagnostic checks on the modeling residuals. Simulations
of the hydrograph were obtained by running the LISFLOOD
model for 7000 parameter combinations sampled from the
posterior parameter distribution. For each simulation the
transformed residuals were obtained as the difference be-
tween the Box–Cox transformed observed and simulated
discharge series. The normal probability plot of the mean
transformed residuals (transformed residuals averaged over
the 7000 simulations) shown in Fig. 8 reveals that the resid-
uals closely conform to a normal distribution. This was con-
firmed by the Kolmogorov–Smirnov and Lilliefors tests at a
5% significance level. The plot of the mean transformed
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Figure 9 Plot of mean transformed residuals against the
transformed predicted runoff obtained with the most likely
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residuals versus the transformed predicted runoff obtained
with the most likely parameter set is shown in Fig. 9, and
does not display a strong dependence of the variability of
the residuals on predicted runoff. However, the plot reveals
that there is a tendency for small discharges to be overesti-
mated. Fig. 10 presents the autocorrelation function (ACF)
of the mean transformed residuals. Autocorrelation is a
measure of the serial dependency of the error residuals be-
tween model predictions and corresponding data. Ideally,
this measure should be centred around zero at all lags,
implying a lack of bias (systematic errors). Close inspection
of this plot, however, reveals that there is a significant
autocorrelation between the error residuals at various lags,
questioning the reliability of the SCEM-UA derived parame-
ter PDFs of the LISFLOOD model for accurate discharge sim-
ulation. This autocorrelation is primarily caused by errors in
the forcing data and the presence of structural inadequacies
in the LISFLOOD model. Various methods have been pro-
posed in the hydrologic literature to properly handle these
errors during parameter estimation, including approaches
that use a modified likelihood function to explicitly account
for correlation between the error residuals (e.g., Sorooshian
and Dracup, 1980) or combined parameter and state estima-
tion methods (Vrugt et al., 2005), that treat input, output,
and model structural error by continuously updating the
model states as new observations become available. Such
implementations probably impact the posterior parameter
PDFs. However, this is beyond the scope of the current pa-
per, and will be explored in future studies.

Probabilistic predictions of the hydrograph were ob-
tained from the discharge series simulated by the LISFLOOD
model for 7000 parameter combinations sampled from the
posterior parameter distribution. Results for the calibration
(10/1/1993 to 9/30/1995) and validation (10/1/1990 to
9/30/1992) period are presented in Figs. 11 and 12, respec-
tively. The top plates in these figure show a plot of the
observed discharges (dark line), the 95% prediction uncer-
tainty associated with only parameter uncertainty (dark
shaded area), and the 95% prediction uncertainty associated
with the total error in terms of modeling residuals (light
shaded area). The latter are computed as follows. The stan-
dard deviation of the error model, which is assumed con-
stant in the transformed space, is obtained from the RMSE
between the transformed observed discharges and the
transformed simulated discharges using the most likely
parameter set. For each of the 7000 simulations a constant
error term equal to ±1.96*RMSE is added to the transformed
discharges at each time step. The obtained prediction
uncertainty limits in the transformed space are then trans-
formed back to the original output space, which explains
the varying width of the total prediction uncertainty limits
with time. The bottom plates in Figs. 11 and 12 show the ob-
served discharges (dark line) and prediction uncertainty ex-
pressed as a deviation from the hydrograph simulated with
the most likely parameter set.

The results show that the model predictions reproduce
the observed discharges reasonably well during the calibra-
tion and validation period. The noticeable over-prediction
for the summers of 1991 and 1992 is likely caused by the
extraction of water upstream of Borgharen, which can
amount to 40 m3/s and is not represented in the model.
The 95% total prediction uncertainty bounds brackets the
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observations most of the time. For some periods the total
prediction uncertainty is quite large, indicating that the
model and/or measurement uncertainty is considerable.
The 95% uncertainty region associated with parameter
uncertainty is narrow and does not always bracket the
observations, indicating that the model structure or the
model input data may be in need of further improvement.
Summary and conclusions

Within the framework of the European Flood Alert System
the calibration of the LISFLOOD model is an important and
huge task. It involves tuning parameters that can not be ob-
tained by direct measurements against observed discharges
for all catchments in Europe, and assessing the parameter
uncertainty and its effect on river flow predictions. In this
work we demonstrated the capability of SCEM-UA, an auto-
matic Bayesian parameter inference algorithm based on
Markov chain Monte Carlo methods, to calibrate the LIS-
FLOOD model for the 21,000 km2 Meuse catchment up-
stream of Borgharen. Results showed that the SCEM-UA
algorithm was able to efficiently and effectively explore
the feasible parameter space and to converge to the target
posterior parameter distributions after less than 2500 itera-
tions. The calibration parameters of the LISFLOOD model
were well identifiable using 2 years of measured daily dis-
charges, except for the lower zone time constant parameter
due to the small contribution of slow groundwater response.
The three calibration parameters that affect the fast re-
sponse of the model showed to be correlated. Hydrograph
predictions based on the posterior parameter distributions
demonstrated that LISFLOOD is able to reproduce the ob-
served discharges with reasonable accuracy for the Meuse
catchment. The narrow parameter uncertainty bounds did
not always bracket the results, indicating that improve-
ments in the model or input data may result in more accu-
rate predictions. It should be noted that the posterior
parameter distributions were inferred based on the assump-
tion of independent errors. Analysis of the residuals re-
vealed there is a strong evidence to reject this
assumption. This will impact on the parameter posterior dis-
tributions and also lead to underestimation of the predic-
tion limits. Future research will aim to address this issue.
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