DynamicPVM

Dynamic Load Balancing on Parallel Systems*

Leen Dikken!, Frank van der Linden2, Joep Vesseur? and Peter Sloot?**

! Shell Nederland Informatieverwerking
Rijswijk
% Parallel Scientific Computing and Simulation Group,
Faculty of Mathematics and Computer Science,
University of Amsterdam
Kruislaan 403, 1098 SJ, Amsterdam

Abstract. This paper describes DynamicPVM, an extension to PVM
(Parallel Virtual Machine) [1] . PVM enables users to write parallel appli-
cations using message passing primitives and statically places the parallel
tasks on a collection of nodes. System schedulers schedule atomic jobs
over a predefined number of nodes. DynamicPVM addresses the prob-
lem of scheduling parallel tasks over a set of nodes. It therefore has to
integrate a process checkpointing, migration and restart restart mecha-
nism with the PVM runtime support system. DynamicPVM facilitates
an efficient use of existing computational resources for computational
jobs consisting of parallel subtasks. Typical target HPC platforms for
DynamicPVM are multi user, multi tasking, loosely coupled processors.

Introduction

The number of workstations in industrial and academical institutions has grown
tremendously over the past years. A migration from centralized mainframes to
collections of these high-performance workstations connected by LANSs is taking
place. These new loosely coupled parallel systems require new programming
environments that provide the user with the tools to explore the full potential
of the distributed resources.

Although these parallel programming systems provide the user with large
amounts of processing power, the behaviour of these systems under changes
of the environment dramatically influences the usability and efficiency of the
system.

Environmental changes (e.g. increase of demand for processing power or a
decrease of the number of available processors) impose the necessity to migrate
tasks between nodes in order to improve the resource utilization. DynamicPVM

* Appeared in “High-Performance Computing and Networking”, proceedings 1994,
volume 797, pp. 273-277.

** All correspondence with regard to this work can be addressed to this author at
peterslo@fwi.uva.nl

aims to add system scheduling mechanisms on top of tasks running in parallel
on this new type of parallel system.

Our primary objective is to study models describing systems like Dynam-
icPVM that dynamically adapt to changes in the environment. To validate these
models, experiments with actual implementations of such dynamic systems are
required. The work described here presents a pilot implementation of Dynam-
icPVM.

The choice for PVM is motivated by the fact that at the time of writing it is
in use by more than 10,000 users and thus is considered as the de facto standard
environment for parallel programming. The process migration primitives used in
DynamicPVM are based on the checkpoint-restart mechanisms found in a well
established global scheduling system, Condor [2].

In Table 1, several different aspects of load managing for the three systems
discussed in this paper are shown.

Condor PVM | DynamicPVM
intended usage longer running parallelized distributed
background jobs application programs
unit of execution job task
load managing load distribution| load decom- both
objective position
schedule policy dynamic load cyclic allo- | dynamic load
sharing cation balancing
schedule objective resource utili- |application re- both
zation sponse time
performance objective efficiency effectiveness both

Table 1: Aspects of load managing in Condor, PVM and DynamicPVM.

Parallel Virtual Machine: Runtime Support System for Parallel Programs
PVM offers primitives for remote task creation and inter process communication
(IPC) to the user. Both point to point communication and broadcasts are sup-
ported. Newly created tasks are assigned to the available nodes using a cyclic
assignment policy; PVM does not integrate any load information of the nodes
into the assignment policy. Once a job is started, it runs until completion.

PVM as such does not support operations on files but PVM tasks can share
files through the Network File System (NFS). Terminal I/O is transparently
redirected to the terminal where the job was initiated, the PVM console.

At startup time each processor in the PVM pool runs a PVM-daemon rep-
resenting that node. Requests to create a new PVM task onto a host are sent
to the host’s daemon which executes the requested binary. The daemon also
takes care of IPC generated by or addressed to tasks on the host: tasks direct
their communication to their local daemon which takes care of delivery to the
daemon of the destination task. The remote daemon delivers the message to the
destination task.

PVM uses XDR [4] as eXternal Data Representation, therefore messages can
easily be sent between different architectures, thereby facilitating the use of

heterogeneous processor pools. Apart from IPC using the PVM daemons, users
are also able to initiate their own communication channels (TCP connections)
which require no intervention of the PVM daemons.

Condor: Runtime Support for Job Scheduling

Condor stems from the observation that many of the—constantly increasing
number of—workstations in academic institutions are lightly loaded on the av-
erage. Most workstations are intended for personal usage, which has a typical
activity pattern where machines are only used for a small part of the day. As a
consequence many cycles are idle or unused during the day. Typical figures of
large pools of workstations have a mean idle time of 80% [2].

To address this problem, Condor implements a global scheduling based on
dynamic load balancing by job migration. Condor monitors the nodes in its
pool keeping track of their load. New jobs are spawned on lightly loaded nodes
and tasks from heavy loaded machines can be migrated to lighter loaded ones.
When Condor detects interactive usage of a workstation all jobs are evacuated
in order to retain the sympathy of the workstation’s owner. To implement this
job migration Condor creates checkpoints on a regular basis. These checkpoints
can be restarted on another machine.

The Condor scheduler consists of both a centralized and a distributed part.
Each node in the pool runs a small daemon that gathers statistics about the
node and forwards this information to the central scheduler. This information is
used optimize the available processing power.

System calls made by a Condor process are redirected to the host that initi-
ated the job. In this way the user is freed from the complications of the check-
pointing mechanism since it is completely transparent to the job.

Using Condor, it is not possible to migrate jobs consisting of parallel tasks
that cooperate to complete a job since Condor does not provide any IPC prim-
itives and the standard UNIX IPC primitives are host-addressed and therefore
not suited for migrating tasks.

Combining PVM with an extended version of Condor’s checkpoint-restart
facility makes it possible to apply global scheduling to parallel tasks.

DynamicPVM: Runtime Support System for Job
Scheduling of Parallel Tasks

In DynamicPVM we add checkpoint-restart primitives to the PVM environment.
Most of PVM’s features are compatible with the checkpoint-restart mechanism
we use, with the exception of the inter process communication. We present a
protocol that ensures that no messages get lost whenever a task is migrated.
This protocol involves a special role for the PVM-daemon that initiated the
computation, the Master-daemon. We also present an extension to the PVM
IPC routing mechanism in order to redirect messages to the new host after a
task has migrated.

DynamicPVM’s task migration facility consists of four principal components:

A global scheduler that initiates job migration (not addressed in this paper)
Task checkpointing including a method to indicate checkpoint save moments
Actual Task migration

Task restart and updating of routing tables to indicate the task’s new loca-

- LN

tion.

Task Checkpointing

Checkpoints are created using the standard Condor checkpoint code. This code
creates a core-dump of the task onto a shared file system (NFS). Condor appends
extra information to the core in order to be able to restore the state of the process
when it is restarted again.

Checkpointing cooperating tasks introduces new conditions compared with
checkpointing stand-alone tasks. Checkpoints should be avoided, e.g., when a
task is communicating with another task. To enable DynamicPVM to determine
which situations are save to checkpoint, we have introduced the concept of critical
sections. When a task is inside such a critical section, any checkpoint request
is postponed until the task leaves the critical section. All PVM communication
routines are contained in critical sections.

In the absence of a global scheduler, the task itself initiates any possible
checkpoint requests by calling a new routine pvm_move.

As soon as the task initiates a checkpoint it sends a message to all tasks with
which it shares a communication channel. These remote tasks will then close the
channel and issue an accept call in order to re-establish the connection as soon
as the task is restarted.

Task Migration

The main objective of the DynamicPVM task migration protocol is to guarantee
migration transparency, i.e. to allow the movement of tasks within the system
without affecting the operation of tasks in the system. With respect to a PVM
task selected for migration this implicates transparent suspension and resump-
tion of execution. With respect to the total of cooperating PVM tasks in an
application communication may be delayed but not fail due to the migration of
one of the tasks.

First we create a new task context at the new node by sending a message
to the remote PVM daemon. The task’s new daemon is now able to receive any
packets for the migrated task.

Next, the new routing information is sent to the task’s new daemon, the
Master PVM daemon and finally updated in the routing tables of the task’s old
PVM daemon. All messages directed to the migrating task will from now on be
send to the new node.

At this point the task is actually checkpointed and written to disk.

Task Restart

As soon as the checkpoint is finished, the task’s new daemon is notified. It then
restarts the task which restores any saved state information including the re-
establishment of any communication channels that were closed at checkpoint

time. The daemon then delivers any messages that arrived during the creation
of the task’s checkpoint.

Any future messages that are directed to the task’s old daemon will fail.
Whenever this happens, the sending daemon will contact the Master daemon to
obtain the task’s new location to which the message will be directed next.

Current Status and Ongoing Research

DynamicPVM is currently implemented on a cluster of IBM RS/6000, AIX32
machines [3]. Due to a conflict between Condor’s restart mechanism and PVM’s
startup code, we are currently not able to checkpoint tasks that perform file-1/O.

Tests performed with the pilot implementation strongly support the usability
of our integrated approach. In the very near future we will design additional
experiments for quantitative testing of the behaviour of DynamicPVM.

Our final goal is to use probabilistic models of jobs in a dynamic environ-
ment and validate them by experiments with an actual implementation. We have
added several primitives to PVM that allow us to monitor PVM tasks. Using
these primitives we will implement a scheduler based on our models. Simulations
using our models will gain us insight in the behaviour of DynamicPVM and will
be used to improve the scheduling mechanism. The scheduler is a topic of future
research, and it is expected to be dealt with in the coming months.

References

1. V. S. Sunderam. PVM: A framework for parallel distributed computing, Concur-
rency: Practice and Experience, vol. 2(4), pp. 315-339, December 1990.

2. M. J. Litzkow, M. Livny. Condor — A hunter of idle workstations, 8th Interna-
tional Conference on Distributed Computing Systems, San Jose, California, June
1988.

3. L. Dikken, DynamicPVM: Task Mzigration in PVM, Technical Report, Shell Re-
search, ICS/155.1, November 1993.

4. Sun Microsystems, XDR: External Data Representation standard, Sun Microsys-
tems, Inc., 1987, RFC 1014.

