
A Logical Framework for Detecting Anomalies in Drug
Resistance Algorithms

L. Caroprese
Dipartimento di Elettronica,
Informatica e Sistemistica
Università della Calabria

Cosenza, Italy
caroprese@deis.unical.it

B. Ó Nualláin
Computational Science

Faculty of Science
University of Amsterdam,

The Netherlands
bon@uva.nl

P.M.A. Sloot
Computational Science

Faculty of Science
University of Amsterdam,

The Netherlands
p.m.a.sloot@uva.nl

E. Zumpano
Dipartimento di Elettronica,
Informatica e Sistemistica
Università della Calabria

Cosenza, Italy
zumpano@deis.unical.it

ABSTRACT
Virology research is nowadays a discipline involving a broad num-
ber of researchers gathered in different institutes and cooperating
on defined issues. An example of such an endeavor is the re-
search tackling anti-HIV treatment problems [7] conducted within
the Virolab project. The main objective of the ViroLab project is
to develop a Virtual Laboratory for Infectious Diseases that facil-
itates medical knowledge discovery and decision support for HIV
drug resistance. Large, high quality in-vitro and clinical patient
databases which can be used to relate genotype to drug-susceptibility
phenotype have become available. The core of the ViroLab Virtual
Laboratory is a rule-based ranking system. More specifically, us-
ing a Grid-based service oriented architecture, Virolab vertically
integrates the biomedical information from viruses (proteins and
mutations), patients and literature (drug resistance experiments),
resulting in a rule-based decision support system for drug ranking.
This paper is a contribution to virologists, epidemiologists and clin-
icians in medical knowledge discovery and decision support. The
final aim is reasoning on the properties of algorithm modeling the
interaction among drugs and HIV virus and detecting its anomalies
such as rules that can never be satisfied and subset of rules that are
in contradiction.

Categories and Subject Descriptors
H.1.m [Information Systems]: Models and Principles—Miscel-
laneous; H.4.m [Information Systems]: Information Systems Ap-
plication—Miscellaneous; J.3 [Computer Applications]: Life and
Medical Science—Health; J.3 [Computer Applications]: Life and
Medical ScienceMedical information systems

"Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. IDEAS 2009, September 16-18, Cetraro, Calabria
[Italy] Editor: Bipin C. DESAI Copyright l’2009 ACM 978-1-60558-402-
7/09/09 $5.00"

General Terms
Theory, Algorithms

Keywords
Bio-medical databases, Anomalies in drug resistance algorithms,
Logic programming, Rule-base system, Decision support system,
Knowledge discovery

1. INTRODUCTION
In future years, genetic information is expected to become increas-
ingly significant in many areas of medicine. This expectation comes
from the recent and anticipated achievements in genomics, which
provide an unparalleled opportunity to advance the understanding
of the role of genetic factors in human health and disease, to allow
more precise definition of the non-genetic factors involved, and to
apply this insight rapidly to the prevention, diagnosis and treatment
of diseases.
The main objective of the ViroLab project is to develop a Virtual
Laboratory for Infectious Diseases that facilitates medical know-
ledge discovery and decision support for, e.g., (Human Immunod-
eficiency Virus) HIV drug resistance [9, 8, 6, 4]. In this scope
the laboratory is prepared to support virologists, epidemiologists
and clinicians investigating the HIV virus and the possibilities of
treating HIV-positive patients. HIV is a retrovirus that can lead
to Acquired Immunodeficiency Syndrome (AIDS), a condition in
humans in which the immune system begins to fail, leading to life-
threatening opportunistic infections. There is no cure for AIDS.
However, there are new treatments that can slow down its progres-
sion.
Once HIV turns into AIDS the risk of death is much higher. Even
so, the risk varies a lot from patient to patient. Some AIDS patient
die shortly after being diagnosed, while others live 12 more years
or longer. Fortunately, patients with AIDS are living longer as new
treatments are discovered.
Large, high quality in-vitro and clinical patient databases which
can be used to relate genotype to drug-susceptibility phenotype
have become available. Such data comes also from a considerable
portion of patients for whom drugs fail to completely suppress the
virus resulting in the rapid selection of drug-resistant HIV and loss
of drug efficacy. Therefore, the primary goal of the data analysis,

23

in Virolab, is to identify patterns of mutations associated with re-
sistance to antiviral drugs and to predict the degree of in-vitro or in-
vivo sensitivity to available drugs from an HIV genetic sequence.
HIV differs from other viruses in that it has very high genetic vari-
ability. This diversity is a result of its fast replication cycle, with
the generation of 109 to 1010 virions every day, coupled with a
high mutation rate of approximately 3 x 105 per nucleotide base per
cycle of replication and recombinogenic properties of reverse tran-
scriptase. This complex scenario leads to the generation of many
variants (mutations) of HIV in a single infected patient in the course
of one day.
The core of the ViroLab Virtual Laboratory is a rule-based ranking
system. More specifically, using a Grid-based service oriented ar-
chitecture, Virolab vertically integrates the biomedical information
from viruses (proteins and mutations), patients (e.g. viral load) and
literature (drug resistance experiments), resulting in a rule-based
decision support system for drug ranking.
The knowledge about the interactions among drugs and the HIV
virus is encoded into sets of rules.
The drug rules are used to associate to a particular drug an effec-
tiveness level over a set of mutations given in input.
A set of rules is called algorithm. An algorithm allows to find the
right combination of drugs for a given set of mutations extracted
from a patient. Therefore, in the presence of a patient affected by
HIV, it is possible to use the knowledge encoded in the algorithm
to establish the right medical care for that particular kind of muta-
tion. Note that, the validity of the first care is essentially for life
expectation of the patient, that is the time he/she will live strongly
depends on the first cocktail of drugs, if this is not correct the virus
became stronger as new mutations will occur and it will be more
difficult to control.
This paper is a contribution to virologists, epidemiologists and clin-
icians in medical knowledge discovery and decision support. The
final aim is reasoning on the properties of algorithm modeling the
interaction among drugs and HIV virus and detecting its anomalies
such as rules that can never be satisfied and set of rules that are in
contradiction.
More specifically, the paper defines techniques that allow to deeply
investigate the properties of each observation and its relationship
with other observations. Virologist would benefit from knowing
whether: i) his/her observation makes sense, technically if the con-
dition in the body of the drug rule can occur; ii) the result of his/her
(in-vivo or in-vitro) experiments is in contradiction with other re-
sults from colleagues, technically if there exists a set of drug rules
which is contradictory.
This paper provides a theoretical investigation of the previous tasks
and contributes to the virology research by providing efficient tools
that, given an algorithm encoding the knowledge about the inte-
raction among drugs and HIV drugs, perform the important issue
of discovering its properties. More specifically, it will propose a
technique that given an algorithm identifies unsatisfiable rules, that
is rules whose body is always false and contradictory set of rules,
that is set of rules that disagree of the final action to perform in the
presence of the same set of mutations.

2. MODELING THE INTERACTION
AMONG DRUGS AND HIV VIRUS

The Algorithm Specification Interface (ASI) [1] is a platform de-
veloped for coding genotypic interpretation algorithms. ASI makes
it possible for drug resistance experts to develop and test genotypic
interpretation algorithms without the assistance of a computer pro-
grammer, thereby allowing HIV drug resistance experts to focus on

developing, testing, and modifying rules rather than on developing
software to encode algorithms.
At the moment there exist three main algorithms using ASI tech-
nology:

• ANRS

• HIVDB [2]

• Rega Institute [3]

Drug resistance algorithms can be specified in an XML document
that adheres to a particular XML Document Type Definition (DTD):
the ASI DTD [5].
At the heart of an algorithm is a drug rule, used to associate to a
particular drug an effectiveness level over a set of mutations given
in input.

EXAMPLE 1. The following object is a drug rule for the drug
’TDT’.
<DRUG>

<NAME>TDT</NAME>

<RULE>

<CONDITION>

SELECT ATLEAST 1 FROM (65MR, 69i)

</CONDITION>

<ACTIONS>

<LEVEL>3</LEVEL>

</ACTIONS>

</RULE>

</DRUG>

In this example, for the drug TDT the algorithm designer would like
the drug to receive a level of 3 (the designer would have previously
specified what was meant by level 3 - in Rega algorithm it means
"Drug is inactive") if either the mutation 65MR is present, that is
the amino acid M or R is present at position 65, or an insertion is
present at position 69 . 2

As shown by the previous statement the language is very much
fairly self-explanatory as it reads similarly to an English sentence.
In general the condition is a conjunction of positive and negative
assertions defining a set of properties that a a given input set of
mutations could have. In the rest of this section, we first define
the concept of input set, and then present the structure of these
assertions. Let AS be the set containing the amino acid symbols
and the symbols ’i’ and ’d’ reporting respectively an insertion and
a deletion.

DEFINITION 1. An input set is a non empty set whose elements
are of the form PA where P is an integer (it represents the posi-
tion of the mutation) and A ∈ AS (it represents an amino acid an
insertion or a deletion).

An assertion can be either a positive assertion or a negative asser-
tion.

DEFINITION 2. A positive assertion is of one of the following
forms:

1. MUTATION:
It is of the form:
PA1 . . . An

where P is an integer and Ai ∈ AS, for i ∈ [1..n] (e.g.
67G, 54i. 219EQ). This assertion is satisfied by an input set
S if S contains at least an element in {PA1, . . . , PAn} (i.e.
S ∩ {PA1, . . . , PAn} 6= ∅).

24

2. INFINITE INTERVAL:
It is of the form:
SELECT ATLEAST l
FROM (M1, . . . , Mn)
where n is a positive integer, 0 < l ≤ n and Mi, for i ∈
[1..n], is a mutation.
This assertion is satisfied by an input set S if S satisfies at
least l mutations belonging to {M1, . . . Mn}.

3. FINITE INTERVAL:
It is of the form:
SELECT ATLEAST l AND NOTMORETHAN m
FROM (M1, . . . , Mn)
where l and m are positive integers, 0 < l ≤ m ≤ n and
Mi, for i ∈ [1..n], is a mutation. This assertion is satisfied
by an input set S if S satisfies at least l and not more than n
mutations belonging to {M1, . . . Mn}.

DEFINITION 3. A negative assertion is of the form: NOT α,
where α is a positive assertion. This assertion is satisfied by an
input set S if S does not satisfy α.

Note that, a mutation PA1 . . . An denotes the presence in posi-
tion P of at least one among the amino acids/insertion/ deletion
{A1 . . . An}. Roughly speaking, in position P more than one of
these values can be present. From a biological point of view, the
simultaneous presence of more values states for more mutations of
the HIV virus.

EXAMPLE 2. Some examples of assertions in the ASI language
are the following:

• 151M

• SELECT ATLEAST 3

FROM (69i, 151M, 65NR, 74IV)

• SELECT ATLEAST 2 AND NOTMORETHAN 2

FROM (69i, 151M)

• 215FY AND NOT 184VI

• SELECT ATLEAST 1

FROM (65NR, 74IV) AND 184IV 2

As previously discussed, the kind of positive assertions that can be
present in the body of a drug rule are either mutation or finite in-
tervals or infinite intervals. We now observe that, without loss of
generality, we can consider just finite intervals, as mutations and
infinite intervals can be modeled by finite intervals. More specifi-
cally,

• The mutation:
PA1, . . . , An can be modeled by the finite interval
SELECT ATLEAST 1 AND NOTMORETHAN n
FROM (PA1, . . . , PAn).

• The infinite interval:
SELECT ATLEAST l
FROM (M1, . . . , Mn)
can be modeled by the finite interval:
SELECT ATLEAST l AND NOTMORETHAN n
FROM (M1, . . . , Mn).

3. A NEW LANGUAGE
In the previous section we have shown that each assertion can be
modeled as a (positive/negative) finite interval. Starting from this
result, in this section we present a new language, , that will be
used to model finite intervals and therefore can be used to model
assertions in the bodies of drug rules. The language will be more
suitable for our theoretical analysis.

3.1 Syntax
The syntax of the language is described in the following using BNF
notation:

〈Interval〉 ::= 〈PositiveInterval〉|
〈NegativeInterval〉

〈PositiveInterval〉 ::= 〈Position〉〈AminoAcid〉|
′[′〈SetOfIntervals〉′]′|
′[′〈SetOfIntervals〉′]′〈Integer〉〈Integer〉

〈NegativeInterval〉 ::= 〈PositiveInterval〉

〈SetOfIntervals〉 ::= 〈Interval〉[′;′ 〈SetOfIntervals〉]

〈Integer〉 ::= 〈Digit〉|〈Integer〉〈Digit〉

〈AminoAcid〉 ::= ′A′|...|′i′|′d′

〈Position〉 ::= ′1′|′2′|...|′500′

〈Digit〉 ::= ′0′|′1′|...|′9′

A positive interval PA is also called atom. A literal is an atom PA
or its negation PA. Observe that the definition of the positive in-
teval is recursive: It is an atom or it is of the form [I1, . . . , In]max

min

where Ii, for i ∈ [1..n], is a positive or negative interval. A nega-
tive interval is of the form I , where I is a positive interval.

EXAMPLE 3. The following strings belong to the language :

[41L]11

41L

[41L; 41M]21

70R

[65R; 70I]21

[67G; 67N]21

[[70E; 70G]21; 151M]21

[184I; 184V]21

[48A; 84V]21

[48A; 84V]11 2

In the language an interval [I1; I2; . . . ; In]11 is equivalent to
[I1; I2; . . . ; In] and [PA]11 is equivalent to PA.

DEFINITION 4. A finite interval I = [I1; I2; . . . ; In]max
min is well-

defined if min ≤ n ≤ max. 2

In the rest of the paper we will always refer to well-defined finite
intervals.

25

3.2 Semantics
The truth value of an interval w.r.t. an input set is defined recur-
sively.

DEFINITION 5. Given an input set S,

• an atom PA is true w.r.t S is PA ∈ S and false otherwise;

• a positive interval I = [I1; I2; . . . ; In]max
min is true w.r.t. S

if at least min and not more than max elements belonging to
{I1, I2, . . . , In} are true w.r.t. S and false otherwise.

• a negative interval I is true w.r.t. S if I is false w.r.t. S, and
false otherwise.

• a conjunction of intervals I1, . . . , In is true w.r.t. S if Ii is
true w.r.t. S for each i ∈ [1..n]. 2

EXAMPLE 4. Let’s provide some example:

• [67G; 67N]21 is true w.r.t. S = {67G, 67N}

• [67G; 67N]21 is true w.r.t. S = {67G, 40B, 65R}

• [67G; 67N]21 is true w.r.t. S = {67N} 2

Obviously, each finite interval in format can be translated into a
correspondent assertion in the ASI language and vice-versa. The
following table reports the example of some translations from into
ASI.

Ł ASI
41L 41L

70R NOT 70R

SELECT ATLEAST 1
[65R; 70I]21 AND NOTMORETHAN 2

FROM (65R,70I)

[67G; 67N]21 67GN

SELECT ATLEAST 1
[[70E; 70G]21; 151M]21 AND NOTMORETHAN 2

FROM (70EG,151M)

[184I; 184V]21 NOT 184IV

SELECT ATLEAST 1
[48A; 84V]21 FROM (48A,84V)

Let us now provide further details on the above translations.
The first interval - 41L - is a shorthand for [41L]11 and corresponds
to the assertion 41L in ASI format. The second interval - 70R - re-
quires the absence of the amino acid R in the position 70 and corre-
sponds to NOT 70R. The third interval - [65R; 70I]21 - requires the
presence of at least one between {65R,70I} and corresponds to the
ASI assertion SELECT ATLEAST 1 AND NOTMORETHAN 2
FROM (65R,70I). The fourth interval - [67G; 67N]21 - corresponds
to the asssertion 67GN in the ASI format. In general, the ASI asser-
tion PA1 . . . An is equivalent to the interval [PA1; . . . ; PAn]n1 .
The fifth interval - [[70E; 70G]21; 151M]21 - is a nested finite in-
terval, that is a finite interval that contains a further finite interval,
and corresponds to the ASI assertion - SELECT ATLEAST 1 AND
NOTMORETHAN 2 FROM (70EG, 151M). The sixth negative in-
terval - [184I; 184V]21- requires the absence of both the amino acid
I and V in position 184 and is translated into NOT 184IV in the
ASI format. Finally, the last interval - [48A; 84V]21 - is equivalent

to the assertion

SELECT ATLEAST 1 AND NOTMORETHAN 2
FROM (48A,84V)

or more synthetically

SELECT ATLEAST 1 FROM (48A,84V).

We observe that, given an interval I = [I1; . . . ; In]max
min , the order

of its sub-intervals I1, . . . , In is immaterial. Therefore, instead of I
we can use any other interval Iπ(·) = [Iπ(1); . . . ; Iπ(n)]

max
min where

π(·) is a permutation of the sub-intervals I1, . . . , In.

DEFINITION 6. An rule is of the form:

D : ACTION← CONDITION (1)

where CONDITION is a conjunction of intervals, defining a set of
properties of an input set S, and ACTION is an integer associating
to the drug D an effectiveness level over S. 2

Obviously, each rule the form (1) is equivalent to a an drug rule in
ASI format and vice-versa.

EXAMPLE 5. The drug rule in ASI format, reported in Example
1, corresponds to the rule:
TDT : 6← [[65M ; 65R]21; 69i]21. 2

3.3 Unpacking Process
Why the need of a new language? As we will explain, each rule
r of the form (1) is equivalent to a set R = {r1, . . . , rn} of rules
whose bodies are conjunctions of literals. A rule is unsatisfiable
when its body is always false (i.e. it is false w.r.t. each possible
input set S). This happens when it requires the presence and the
absence of an amino acid in a certain position at the same time.
Clearly, the rule R is unsatisfiable if each rule in R is unsatisfiable
and it is easy to check whether a rule whose body is a conjunction of
literals is unsatisfiable: It is sufficient to verify if the body contains
two literals of the form A and A.
We introduce a shorthand for a set of rules having the same head,
allowing the disjunction in the body. In particular a set of rules

R = {D : A← C1, . . . , D : A← Cn}

will be denoted a generalized rule of the form:

D : A← C1 ∨ · · · ∨ Cn.

We call the procedure that allows to obtain from an rule D : A←
C the equivalent generalized rule D : A ← C1 ∨ · · · ∨ Cn –
where Ci, for i ∈ [1..n], is a conjunction of literals – the unpacking
process. Using the language we can easily derive and analyze this
process.

EXAMPLE 6. Consider the rule

r = TDT : 6← [67G; 67N]21

Its body is true if at least one mutation in {67G, 67N} is present
in the input set.Therefore, it is true if either 67G is true and 67N is
false - i.e. 67G, 67N is true - or 67N is true and 67G is false - i.e.
67G, 67N is true - or both of them are true - 67G, 67N is true. It
follows that, r is equivalent to

TDT : 6← 67G, 67N ∨ 67G, 67N ∨ 67G, 67N. 2

For the sake of simplicity, in the rest of this section, we will con-
sider just the body of the rules (the only part that is unpacked).

26

DEFINITION 7. [ONE STEP UNPACKING OPERATOR] Let I be
the interval [I1; . . . ; In]max

min . We define the one step unpacking op-
erator U(·):

U(I) =

h_
i=1

[Iπ(1); . . . ; Iπ(m); Iπ(m+1); . . . ; Iπ(n)]

where min ≤ m ≤ max and π(·) is a permutation of the intervals
I1, . . . , In.

U(I) = [I1; . . . ; In]min−1
0 ∨ [I1; . . . ; In]nmax+1

Given a conjunction of intervals C = I1, · · · , It we define U(C)
as the expansion of (i.e. the disjunction of conjunctions obtained
from) U(I1), . . . , U(It).
Given a disjunction of intervals D = I1 ∨ · · · ∨ It we define
U(C) = U(I1) ∨ · · · ∨ U(It). 2

PROPOSITION 1. Let I = [I1; . . . ; In]max
min and U(I) =

Wh
i=1 Ii

its unpacked version. Then h =
Pmax

k=min

`
n
k

´
.

Proof: The number of subsets of cardinality k that can be ex-
tracted from a set of n elements is equal to

`
n
k

´
. Given an interval

I = [I1; . . . ; In]max
min , the value of k ranges from min to max.

Therefore the number of valid-operands are
Pmax

k=min

`
n
k

´
. 2

PROPOSITION 2. Let C = I1, · · · , It, where Ii = [Ii
1, . . . ,

Ii
ni

]maxi
mini

and i ∈ [i..n], and let U(C) =
Wh

i=1 Ji, where Ji are
the conjunctions obtained by applying the U(·) operator, i ∈ [1..h].
Then h = Πt

i=1

Pmaxi
k=mini

`
ni
k

´
.

Proof: Straightforward from Proposition 1. 2

THEOREM 1. Let I be an interval and S an input set. Then, I
and U(I) are equivalent that is I is true w.r.t. S iff U(I) is true
w.r.t. S. 2

EXAMPLE 7. Given I = [46I; 10F ; 71V]32 we have that:

U(I) = 46I, 10F, 71V ∨ 46I, 10F , 71V

∨46I, 10F, 71V ∨ 46I, 10F, 71V.

Observe that, the number of conjunctions of U(I) is
P3

k=2

`
3
k

´
=

4. 2

An important property of the one step unpacking operator is that if
I = [I1; . . . ; In] then U(I) = I . It follows that given a disjunction
D = I1 ∨ · · · ∨ It s.t. Ii = [Ii

1; . . . ; I
i
ni

] for i ∈ [1..n] we have
U(D) = D.

DEFINITION 8. [UNPACKING OPERATOR] Given a conjunction
of intervals C = I1, . . . , In we define:

• U0(C) = U(C)

• U i+1(C) = U(U i(C)). 2

PROPOSITION 3. [FIX POINT] For each conjunction of inter-
vals C = I1, . . . , In there exists a least index i s.t. U i(C) =
U i+1(C). We set U∞(C) = U i(C) (unpacking operator). 2

Therefore, the operator U∞(·) unpack a conjunction of intervals
into a disjunction of conjunctions of literals.

EXAMPLE 8. We report some examples of the unpacking pro-
cess:

U∞([65R; 70I]21) = 65R, 70I ∨ 70I, 65R ∨ 65R, 70I

U∞([[46I; 10F ; 71V]32; 70K]) =

46I, 10F, 71V , 70K ∨ 46I, 10F , 71V, 70K ∨
46I, 10F, 71V, 70K ∨ 46I, 10F, 71V, 70K

U∞([[70E; 70G]21; 151M]21) =

70E, 70G, 151M ∨ 70E, 151M ∨
70G, 151M ∨ 70E, 70G, 151M ∨ 70E, 70G, 151M ∨
70E, 151M ∨ 70E, 70G, 151M ∨ 70E, 70G, 151M
∨ 70E, 70G, 151M . 2

Tree Representation
The unpacking process performed by the operator U∞(·) can be
represented by a tree.

DEFINITION 9. Given a conjunction of intervals C = I1, . . . , In

we define the unpacking tree G(C) = 〈N, E〉 as:

• C ∈ N

• Let X ∈ N and U(X) =
Wn

i=1 Xi the unpacked version of
X . Then Xi ∈ N and (X, Xi) ∈ E for each i ∈ [1..n]. 2

EXAMPLE 9. The unpacking process of the body of the rule
reported in Example 6 ([67G, 67N]21) is represented by the tree in
Fig. 1.

Figure 1: [67G, 67N]21

2

The following example shows a more complex unpacking tree.

EXAMPLE 10. The unpacking process of the interval:

[[70E; 70G]21; 151M]21

corresponding to the ASI assertion

SELECT AT LEAST 1 AND NOTMORETHAN 2
FROM (70EG, 151M)

is represented by the unpacking tree reported in Fig. 2.
2

Thus, the body C of each drug rule is equivalent to the disjunction
of the leaves of the unpacking tree G(C).

27

4. ANOMALIES IN
DRUG RESISTANCE ALGORITHMS

This section provides a theoretical investigation of the problem re-
lated to the detection of anomalies in drug resistance algorithm. In
particular:

• given a drug rule we want to check whether it is unsatisfi-
able that is its body cannot be satisfied by any input set. This
happens when it requires the presence and the absence of an
amino acid in a certain position at the same time. An unsat-
isfiable rule could be introduced in an algorithm by mistake
or because of some anomaly in the experiment which it is
derived from. From a logical point of view this rule can be
deleted, whereas form a medical point of view this analysis
detects anomalies in medical knowledge base.

• we are interested in checking whether an algorithm contains
contradictory sets of rules. Two rules are contradictory if
they refer to the same drug D and for some input set they
return two different effectiveness levels for D.

The following two subsections will face these two problems and
provide a solution that allows to identify the two types of anomalies
and thus can be used to optimize the code of a given algorithm by
removing inconsistencies.

4.1 Unsatisfiable rules
In this section we analyze the problem of checking whether the
body of a drug rule is unsatisfiable. If an interval is a conjunction
of literals it is trivial to check whether it is satisfiable or not.

DEFINITION 10. A conjunction C = L1, . . . , Ln of literals is
unsatisfiable if there exist i, j ∈ [1..n] such that Li = Lj . 2

Now we are ready to define an unsatisfiable body (conjunction of
intervals) and an unsatisfiable rule.

DEFINITION 11. [UNSATISFIABLE RULE]. Let C = I1, . . . , In

a conjunction of intervals and U∞(C) =
Wn

i=1 Ci its unpacked
version. C is unsatisfiable if Ci is unsatisfiable for each i ∈ [1..n].
An rule D : A← C is unsatisfiable if C is unsatisfiable. 2

An equivalent way to check whether a conjunction C is unsatisfi-
able is by using the tree representation of its unpacking process. C
is unsatisfiable if each leaf of the tree G(C) is unsatisfiable.
Although the operator U∞(·) builds an unpacking tree G using
a breadth-first technique (level by level), G can be built using a
depth-first technique that allows to reach the leaves of the tree as
soon as possible. Although the number of leaves is exponential in
the number of original mutations occurring in the body of a drug
rule, this technique makes the checking process pretty fast, due to
two different reasons:

• in the case the body is satisfiable it is sufficient to generate
just one path from the root to a satisfiable leaf;

• in the case the body is unsatisfiable we do not need to com-
plete the unpacking process by generating the whole search
space as the unpacking process of a path can be stopped as
soon as a node is recognized as unsatisfiable (the conjunc-
tion even not completely unpacked contains two literals of
the form L and L).

EXAMPLE 11. Fig. 3 shows how the unpacking tree is used to
verify that the interval [46I; 10F ; 71V]32, 71V , [46I; 10F]11, cor-
responding to the ASI assertion SELECT AT LEAST 2 AND NOT-
MORETHAN 3 FROM (46I, 10F, 71V) AND NOT 71V AND SE-
LECT AT LEAST 1 AND NOTMORETHAN 1 FROM (46I, 10F) is
unsatisfiable.

2

Body simplification.
The unpacking process can be used to simplify the body of a rule by
deleting its unsatisfiable portion. Let us consider a body C = I1,
. . . , In. We know that it is equivalent to the disjunction U∞(C) =Wn

i=1 Ci. Now, let us suppose, without loss of generality, that the
first k conjunctions are satisfiable and the other n − k are unsatis-
fiable. Then, C is equivalent to U∞(C) =

Wk
i=1 Ci as the unsatis-

fiable conjunctions can be dropped.

EXAMPLE 12. Let us consider the conjunction C = [67G,
68N]11, 68N . Its unpacking version is U(C) = 67G, 68N ∨ 67G,
68N, 68N . As the 67G, 68N, 68N is unsatisfiable, C is equivalent
to 67G, 68N . 2

4.2 Contradictory set of rules
The problem of finding sets of contradictory rules is the following:
does an algorithm lead to two or more different levels of effective-
ness of a drug for some input set of mutations? The solution to this
problem can be easily derived from the solution of the previous
problem, related to the management of unsatisfiable rules.
Before formally face the problem, we provide the intuition at the
basis of the proposal using a simple example.

EXAMPLE 13. Consider the following two rules of the lan-
guage both referring to the drug AZT :

AZT : 6← [151M ; 69i]21
AZT : 4← [215F ; 215Y]21, [184I; 184V]21

If the input set contains the mutations 151M and 215F and does
not contain the mutations 184I and 184V the bodies of both rules
are true. In this case, the algorithm assigns to the drug rules both
effectiveness levels 6 and 4 at the same time. Therefore, the two
rules are contradictory. 2

Therefore, in the presence of two different rules referring to the
same drug, an anomaly has to be detected if both rules are satisfied.
Let’s firstly define the concept of coherent and contradictory cou-
ples of rules.

DEFINITION 12. Given two rules:
r1 : DRUG : Level1 ← Body1

r2 : DRUG : Level2 ← Body2

the couple (r1, r2) is coherent if either

• Level1 = Level2 or

• the conjunction C = Body1, Body2 is unsatisfiable.

(r1, r2) is contradictory if it is not coherent. 2

Two rules that refers to the same drug are coherent if they report the
same effectiveness level or - if the levels are different - their bodies
cannot be satisfied at the same time. This test can be performed by
building the conjunction C of the two bodies and verifying whether
C is unsatisfiable.
Therefore, given an algorithm modeling the interaction among drugs
and HIV virus (e.g. Rega) we can generalize the technique so that

28

we can look for a contradictory set of rules. In this case we have to
cluster the rules w.r.t. the drugs and check whether each cluster is
coherent/contradictory.

DEFINITION 13. [CONTRADICTORY SET OF RULES] Given a
cluster CR of rules:
s
r1 : DRUG : Level1 ← Body1

r2 : DRUG : Level2 ← Body2

...
rn : DRUG : Leveln ← Bodyn

CR is coherent if each (ri, rj), with i 6= j, i, j ∈ [1..n], is coher-
ent. CR is contradictory if it is not coherent. 2

An algorithm is satisfiable if each cluster is satisfiable. Let us
present a complete example directly derived from the Rega algo-
rithm.

EXAMPLE 14. Let us consider the cluster of Example 13. It is
contradictory as the conjunction

[151M ; 69i]21, [215F ; 215Y]21, [184I; 184V]21

obtained from the bodies of the rules is satisfiable. 2

5. DISCUSSION AND FUTURE WORK
This paper is a contribution to virologists, epidemiologists and clin-
icians in medical knowledge discovery and decision support. The
final aim is supporting them in the important task of modeling ’cor-
rect’ information derived from in-vivo and in-vitro experiments.
More specifically, we have conducted a theoretical investigation of
drug resistance rules and proposed a technique whose aim is re-
trieving unsatisfiable rules and contradictory set of rules. We have
faced the above mentioned anomalies from a logical perspective. A
drug rule is unsatisfiable if a logical inconsistency occurs: its body
requires, at the same time, the presence and the absence of a value
in a particular position (Ex. 68R, 68R). Anyhow, besides logi-
cal anomalies also biological inconsistencies can lead to unsatisfi-
able rule. A biological inconsistency is a combination of assertions
which are incompatible from a biological perspective.
Our framework can be easily extended to manage biological anoma-
lies. We assume that the biological inconsistencies are modeled by
a set BI = {B1, . . . , Bn} provided ’off-line’ by the experts. Each
Bi – i ∈ [1..n] – is a conjunction of literals that cannot be true for
biological reasons.
Now we can update our definition of unsatisfiability. A conjunction
C of literals is unsatisfiable if:

• it is logically unsatisfiable (it contains two literals A and A)
or

• it is biologically unsatisfiable (it contains at least a conjunc-
tion Bi ∈ BR.

We are currently developing a Knowledge Optimizer (KR) of the
medical knowledge about interactions among drugs and virus mu-
tations, that implements the approach for the management of logi-
cal anomalies here proposed.

6. ACKNOWLEDGMENTS
The authors would like to thank the ViroLab consortium. This re-
search was supported by the European ViroLab grant INFSO-IST-
027446. We thank Sergio Flesca for his valuable insight and con-
tributions to this paper.

7. REFERENCES
[1] Algorithm specification interface (asi).

http://hivdb.stanford.edu/pages/asi/.
[2] Hiv drug resistance database - stanford university.

http://hivdb.stanford.edu/.
[3] Retrogram. http://www.openclinical.org/aisp_retrogram.html.
[4] The virolab project. http://www.virolab.org/.
[5] Xml. http://www.w3.org/XML/.
[6] P.M.A. Sloot. Virolab: from the molecule to the man.

eStrategies Projects, (4):53–55, 2008.
[7] P.M.A. Sloot, P. Coveney, G. Ertaylan, V. Muller, C. Boucher,

and M.T. Bubak. Hiv decision support: From molecule to
man. Phil. Trans. R. Soc. A, 367(1898), 2009.

[8] P.M.A. Sloot, P.V. Coveney, M.T. Bubak, A.M. Vandamme,
B. Ó Nualláin, D. van de Vijver, and C.A.B. Boucher. Virolab:
A collaborative decision support system in viral disease
treatment. Reviews in Antiviral Therapy, Virology Education,
3:4–7, 2008.

[9] P.M.A. Sloot, A. Tirado-Ramos, I. Altintas, M.T. Bubak, and
C.A.B. Boucher. From molecule to man: Decision support in
individualized e-health. IEEE Computer, (Cover feature),
39(11):40–46, 2006.

29

Figure 2: [70EG; 151M]21 ≡ SELECT AT LEAST 1 AND NOTMORETHAN 2 FROM (70EG, 151M)

Figure 3: An unsatisfiable body

30

