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Abstract. Grid technology can provide medical organisations with powerful tools 

through which they can gain coordinated access to computational resources that 

hitherto where inaccessible to them. This paper discusses how several classes of 

medical applications could benefit from the use of Grid technology. We concentrate 

on applications that were put forward by partners in the Dutch VL-e project. After 

describing the difficulties related to the realization of such applications without 

making use of the Grid, we describe an architecture that allows the applications to 

use Grid resources. We demonstrate how this architecture can be integrated into ex-

isting systems to provide flexible and transparent access to Grid services and show 

performance results of a test case. 
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Introduction 

The “Virtual Laboratory for eScience” (VL-e
1
) project was initiated after the successful 

“Grid-enabled Virtual Laboratory Amsterdam” (VLAM-G) project [1]. In the VLAM-G 

project, an experimentation environment was built that allows scientists to construct 
experiments that are composed of geographically distributed computational resources as 

if they are part of the same organisation. The VL-e project will address challenging 

problems, including the manipulation of large scientific datasets, computationally de-

manding data analysis, access to remote scientific instruments, collaboration, and data 

dissemination across multiple organizations. The methods, techniques, and tools devel-

oped within the VL-e project are targeted for use in many scientific and industrial appli-

cations. The project will develop the infrastructure needed to support these and other 

related e-Science applications, with the aim to scale up and validate the developed 

methodology. 

The VL-e philosophy is that any Problem Solving Environment (PSE) based on the 

Grid-enabled Virtual Laboratory will be able to perform complex and multi-disciplinary 

experiments, while taking advantage of distributed resources and generic methodologies 
and tools. In the VL-e project, several PSEs will be developed in parallel, each applied 

to a different scientific area. One of these areas is Medical Diagnosis and Imaging 

which is the focus of this research. 

                                                

1
http://www.vl-e.nl/. 
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This paper discusses how several classes of medical applications can benefit from 

parallel computing through the use of Grid technology and describes an adaptive Grid-

based architecture suitable for all these application classes.  

In Section 1 we introduce three computationally challenging medical applications 
relevant in the context of the VL-e project and perform an algorithmic analysis on each 

of them. In Section 2 we discuss three decomposition patterns that can be used to paral-

lelize the applications described in Section 1. Section 3 proposes a flexible and generic 

architecture suitable for applications that fit the three decomposition patterns, and in 

Section 4 we describe a first case study of a medical application. We perform experi-

ments in a Grid environment with a parallel version of the application and assess its 

performance and scalability. 

1.  Analysis of Medical Applications 

The partners in the VL-e project have selected a number of computationally challenging 

applications. In particular, the clinical use of these applications is hampered by insuffi-

cient computational power. In this section we describe these applications and assess 

whether the underlying algorithms are suitable for parallelization. 

1.1.  White Matter Fiber Tractography 

Recent advances in Magnetic Resonance (MR) research have opened up opportunities 

for gathering functional information about the brain. In addition, the development of 

Diffusion Tensor Imaging (DTI) offers the possibility to go beyond anatomical imaging 

and study tissue structure at a microscopic level in vivo [2]. The method uses a medical 
imaging technique known as Diffusion Weighted Magnetic Resonance Imaging (DW-

MRI) to measure the restricted movement of water molecules along the direction of 

fibers. From these measurements, a tensor is constructed that describes diffusion in mul-

tiple directions. An important application of DTI is fiber tracking (FT). This application 

uses the anisotropic diffusion of water molecules in the brain to visualize the white-

matter tracts and the connecting pathways between brain structures. Combined with 
functional MRI, the information about white-matter tracts reveals important information 

about neuro-cognitive networks and may improve the understanding of brain function. 

Several studies have demonstrated the feasibility of reasonably fast FT in the human 

brain [3]. Other research concentrates on improving the accuracy, the robustness and the 

throughput of the FT [4]. There are several clinical applications where FT is relevant, 

such as psychiatry [5], surgical planning or stroke detection. 

Algorithmic Analysis: There are various solutions to FT, but the common feature is 
that, starting from various points, white matter fibers have to be tracked in the entire 

data domain. The number of detected fibers (and therefore the accuracy of the algo-

rithm) grows with the number of considered starting points. For areas with a high con-

centration of fibers, too many detected fibers may lead to an indistinguishable image, 
which makes selection necessary. Since choosing fewer starting points would not be a 

good option (it would decrease the accuracy), the selection is in general performed after 

the fibers are generated, by specifying a number of regions of interest that the fibers 

have to cross. The execution time of the application depends on the number of starting 

points, the algorithm, and the size of the data set, and can amount to many hours. FT 
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would become clinically relevant if the throughput was increased without decreasing the 

accuracy of the result. This can be achieved by parallelization. 

In order to pay off, the parallel solution has to be scalable and the amount of com-

munication among the processors performing the algorithm has to be kept to a mini-
mum. Fibers are tracked in the entire domain, so directly decomposing the data domain 

among the participating processors would not be viable due to the high need for com-

munication and synchronization among processors. The starting points however can be 

distributed among processors with little extra synchronization and communication. 

Therefore, this problem is suited for computational decomposition, meaning that each 
processor that takes part in the computation receives the entire data domain, but the 

computation domain (i.e., the starting points) is divided among processors. 

1.2.  Functional Bowel Imaging and MR Virtual Colonoscopy 

It takes many years before colon polyps become cancerous. Therefore, periodical 

screening can help in preventing colon cancer. However, current methods to detect co-

lon polyps are very intrusive and are unsuitable for screening. Alternatives exist that use 

Computed Tomography (CT) to image the colon; the images can then be used to per-

form a virtual colonoscopy through scientific visualization techniques [6]. However, the 

ionizing radiation used in CT also makes this alternative unsuitable for screening pur-

poses. Another alternative is to optimize the imaging strategies to exploit the higher 

signal-to-noise ratio of 3 Tesla MRI. In video mode, the MR scanner can generate real-

time images. In combination with high-resolution static anatomical images the data will 

be processed and then viewed in an interactive 3D representation. 

Algorithmic Analysis: In these applications the volume reconstruction for visualiza-
tion is performed using a combination of image processing and isosurface extraction 

algorithms which construct an isosurface from a 3D field of values. The idea of the al-

gorithm is to divide the three-dimensional geometrical space of the problem into a grid 

of cubes. For each cube that crosses the surface, the part of the surface contained by the 

cube is approximated by the appropriate set of polygons. The union of all polygons ap-

proximates the surface and the precision of the approximation is proportional with the 

grid resolution.  

The basic approach is to traverse all cells in the space to find the approximation of 

the surface in each cell. For good accuracy of the result, the data set needs to be quite 

large, which can lead to long execution times. This problem can be parallelized by split-

ting the data domain into a number of sub-domains which are then distributed among 
the available processors. This method is called domain decomposition; each processor 
independently performs the algorithm on its sub-domain. At the end, each processor 

contributes to the final result with the surface generated in its own sub-domain. 

1.3.  Computer Aided Diagnosis and Surgical Planning in Cardiovascular Disease 

Vascular disorders in general fall into two categories: Stenosis, a constriction or narrow-

ing of the artery by the build-up over time of fat, cholesterol and other substances in the 

vascular wall, and aneurysm, a ballooning-out of the wall of an artery, vein or the heart 

due to weakening of the wall. A vascular disorder can be detected by several imaging 
techniques such as X-ray angiography, MRI or CT. 
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A surgeon may decide on different treatments in different circumstances, but all 

these treatments aim to improve the blood flow of the affected area. The purpose of 

vascular reconstruction is to redirect and augment blood flow, or perhaps repair a weak-

ened or aneurysmal vessel through a surgical procedure. Pre-operative surgical planning 
would allow the a priori evaluation of different procedures under various physiologic 

states, such as rest and exercise, thereby increasing the chances of a positive outcome 

for the patient [7,8]. 

Algorithmic Analysis: The current approach for the treatment of patients with vas-
cular disease is to first image the diseased area through angiography, then to plan the 

treatment, possibly followed by surgical intervention. We envision a simulated vascular 

reconstruction environment to provide decision support information to a vascular sur-

geon during treatment planning. To achieve this, our proposed system consists of the 

following: First, the vascular geometry of the patient is acquired through volumetric 

scanning methods (such as CTA or MRA). This scan needs to be of sufficient resolution 

and contrast to allow accurate isolation of the vascular morphology from the scan, in-
cluding the diseased area. Next, image segmentation is used to isolate the vascular mor-

phology from the scan. The resulting morphology is used to construct a computational 

data structure that can be used in a blood flow simulator, which is used to simulate the 

physical properties of blood flow through the vascular geometry. Properties that are of 

interest include pressure, flow velocity and wall shear stress. The results of this simula-

tion are presented to the surgeon through scientific visualization methods. Based on the 

visualization, the surgeon will be able to propose a viable treatment. The surgeon simu-

lates the treatment by interactively altering the computational data structure used in the 

flow simulation. Based on this new data structure, the flow simulator calculates a new 

flow solution and presents the results to the surgeon.  

The system just described consists of several tightly interfaced software compo-

nents [7]. Each of these components has its own unique computational requirements. 
Therefore, they can execute independently from each other in parallel. This decomposi-

tion method is called functional decomposition. 

2.  Decomposition Patterns 

As described in Section 1, the applications that we have presented fit into three classes 

of decomposition patterns which allow them to exploit parallelism. Their algorithms 

exhibit a significant degree of spatial locality in the way they access memory as well as 

time locality in the sequence of operations that are performed. 
It may be expected that the problem sizes will increase in time, requiring increas-

ingly powerful computational resources. Furthermore, with the availability of increasing 

computational power and wide access to (geographically) distributed resources it can be 

expected that new applications will emerge and that some of the existing ones will gain 

importance. In this context, our goal is to provide a general architecture that is suitable 

for a wide range of applications. Besides improving the performance of each applica-

tion, the architecture should be scalable relative to the data volume, and should allow 

changes in the computational algorithm with a minimum of changes in the algorithmic 

structure and no change at all in the architecture itself. By studying the common and 

differentiating features of the application classes that we selected, we are able to design 

an adaptive Grid architecture which can be applied to applications fitting at least one of 

the decomposition patterns. 
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2.1.  Domain Decomposition 

With this decomposition pattern, the data domain of the application is split into disjoint 

partitions among the participating processors. Each processor performs the same algo-

rithm on its own partition of data, preferably with a minimum amount of communica-

tion or synchronization (see Figure 1(a)). When there is no communication among proc-

essors we speak of pure domain decomposition. Examples of algorithms in this group 

are the image processing and isosurface extraction algorithms used for the purpose of 
volume reconstruction as described in the previous section. When the processors need to 

exchange data during the execution of the application we speak of domain decomposi-

tion with data exchange. The communication may occur at few isolated instances or 

may have an iterative nature. In this class of applications are various image processing, 

scientific visualization and computational simulation algorithms. 

2.2.  Computational Decomposition 

With computational decomposition, each processor performs the same set of computa-
tions on a disjoint part of the domain but needs access to the entire data set (see Fig-

ure 1(b)). The computational domain of the application is split among the processors, 

while the data domain is shared. This paradigm applies to the FT application described 

in the previous section. This application will be described in more detail in Section 4. 

2.3.  Functional Decomposition 

For this decomposition pattern it is characteristic that several algorithms are performed 

on several data sets in fixed succession. It is in fact a specialization of activities among 

processors: Each processor is responsible for the execution of one algorithm, then the 
data set is passed to another processor for performing the next algorithm (see Fig-

ure 1(c)). The current processor then moves on to the next data set, resulting in a pipe-

lined execution. An example of an application that fits this paradigm is the vascular 

reconstruction application described in Section 1; here image processing algorithms 

provide input to a flow simulation algorithm, which in turn provides input to a scientific 

vvisualization algorithm. 
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Figure 1. Decomposition patterns; (a) domain decomposition, (b) computational decomposition, (c) func-
tional decomposition. 
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3. GAMA: Grid Architecture for Medical Applications 

The three decomposition patterns described in the previous section can all be modeled 

within a general framework. Figure 2 depicts our adaptive architecture designed to si-

multaneously support several applications fitting at least one of the decomposition pat-

terns. As this figure shows, we chose for the client-server architecture; the server can 

simultaneously provide different sets of services for each of the application clients. Our 

primary intention is to make this framework minimally invasive, in the sense that the 
influence on the end-user is as small as possible. Instead of being enforced, the Grid-

based solution will either be offered as an option to the user, or the client application 

will automatically choose whether to use external Grid resources or not. In the event 

that insufficient resources are available, the applications should automatically fall back 

to their local version. 

Currently, the applications (situated in the hospital) run on Windows-based worksta-

tions. At the other end, Grid technology is centered around Globus, a software interface 

that provides the Grid “middleware” [9]. Globus is based on the Unix operating system. 

Therefore, in order to enable such applications to use the Grid for their execution, the 

compute-intensive part of the application has to be removed from the rest of the applica-

tion and placed in the Grid environment. To provide an interface from the Windows 
environment to a Grid infrastructure that is designed around Globus, a Linux machine 

 

Figure 2. General architecture for solving compute-intensive medical applications using Grid technology. 
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called the “Grid Access Point” (GAP) receives the requests from the hospital side, 

which we call the client side, and allocates the processors on the Grid, passing on the 

requests and returning the results to the client. The GAP may use Globus for submitting 

the requests to the Grid nodes, thereby exploiting the security and execution facilities 

offered by it. Globus is entirely Unix based, so it could not be used if we chose for di-

rectly connecting the client side to the Grid nodes. The overall performance of the ap-

plication benefits from keeping the client side as little involved in the computational 
algorithm as possible and from restricting the communication with the rest of the system 

to job-submission requests only. This is because in most cases the client side will be 

connected to the rest of the system via slow network links. For high throughput, the 

GAP should be connected to the Grid infrastructure via a fast network. 

4.  Test Case: Fiber Tracking 

As a first case study, we apply the GAMA architecture to the FT application (see Fig-

ure 3). The Grid-enabled FT application should gain performance by distributing its 

computational part, the FT algorithm, across Grid computational resources. We devel-
oped a parallel version of the FT algorithm and assessed its performance for several sets 

of application parameters and different numbers of processors. The purpose of this ex-

periment is to check whether this type of application can benefit from our Grid-based 

architecture. 

 

Figure 3. Applying the GAMA architecture to the fiber tracking application. 
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4.1.  The Environment 

The sequential FT application was built with the Philips Research Imaging Develop-

ment Environment (PRIDE) on a Windows NT-based machine using the Interactive 

Data Language (IDL)
2
. 

The sequential FT application is based on a prototype application running on a sin-

gle Windows workstation. It was modified to generate data sets, parameters and results. 

We ported this application to Unix and parallelized it. Our experiments with the parallel 

version of FT were performed on the second-generation Distributed ASCI Supercom-
puter (DAS-2)

3
. The DAS-2 is a wide-area computer system located at five Dutch uni-

versities. It consists of 200 nodes split into five clusters, one with 72 nodes, the other 

four with 32 nodes each. Programs are started on the DAS-2 using the PBS batch queu-

ing system, which reserves the requested number of nodes for the duration of a program 

run. We submitted the jobs to the DAS-2 using Globus and used MPI to implement par-

allelism. The outputs of the executions of the sequential FT application on the single 

workstation and of the parallel FT application on the DAS-2 system were compared in 

order to verify the correctness of the distributed solution. 

4.2.  Results 

In this section we present results of experiments performed with our parallelized version 

of FT. With full volume fiber tracking (FVFT), the starting points are evenly distributed 

in the entire domain. Compared to other solutions, e.g. placing starting points only in 

the regions of interest (ROIs), FVFT has higher computational needs but also higher 

accuracy, detecting a larger number of fibers and also detecting splitting and crossing 

fibers. 

When comparing the performance of the sequential FT application to the distrib-

uted FT, we scaled the values to take into account the difference in CPU speed between 

the DAS-2 nodes and the workstation running the sequential version. However, these 

two applications run on different architectures and the comparison is only relevant as an 
indication of the potential performance gain through parallelization. 

Our first experiments show that tracking long fibers takes noticeably longer than 

tracking short fibers, or checking areas with no fibers. It is also the case that fibers are 

in general grouped in large bundles. Since in our solution jobs are rigid (i.e. all tasks 

start and end at the same time), the longest task determines the execution time. This 

implies that simply splitting the computational domain into a number of sub-domains 

equal to the number of processors is not an efficient solution: Processors receiving parts 

of the domain with many long fibers perform a large amount of work, while processors 

receiving parts of the domain with no fibers spend most of the time waiting. As an al-

ternative, we designed a solution which splits the domain on one of the axes in slices of 

width equal to the size of the voxel. These slices are then distributed among the proces-
sors using Round Robin, and that yields a better workload balance. 

The fraction of the algorithm that tracks a fiber from a starting point is inherently 

sequential and limits the speedup. For identical data sets, we compare two cases differ-

entiated by the step size for tracking the fibers. 

                                                

2
 http://www.rsinc.com/idl/. 

3
 http://www.cs.vu.nl/das2. 
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We first studied the scalability of the application for a large step size. In this case 

the computation time for a single fiber is short compared to the total execution time. 

The execution time of the sequential FT algorithm was the equivalent of 440s, while the 

parallel FT algorithm took 1065s to complete on a single processor. We compared the 

execution time for one, two and four ROIs. The results showed that for FVFT the num-

ber of ROIs has almost no influence on performance. We ran the application on up to 64 

processors and concluded that the speedup is almost linear for up to 32 processors (see 

Figure 4(a)). 

The minimum execution time is limited by the slice of starting points requiring the 

longest time to compute and by the initialization time, communication time, and time 

required to store the results to disk. For more than 32 processors the performance im-

provement is very small: The computation time is still reduced by further splitting the 
computational domain (the limit of the inherently sequential part of the algorithm is not 

reached yet), but the execution time is increasingly dominated by the initialization and 

the communication time. The time for storing the results is constant (only one of the 

processors writes to the disk), while the communication time increases proportionally 

with the number of processors (from 0.12s for 2 processors to 5.7s for 64 processors). 

For 64 processors, about 20% of the execution time is spent in communication. 

For the same data set, we performed experiments with a very small step size. This 

change significantly increased the execution time to the equivalent of more than 18 

hours for the sequential version of the algorithm. Figure 4(b), shows the speedup ob-

tained in this case. Similarly to the previous case, the scalability is very good for up 

to 32 processors. The communication time is not influenced by the increase in computa-
tion time but only by the number of processors performing the algorithm, so it has simi-

lar values to the previous case.  

Executing the application on more than 32 processors does not seem to pay off. 

More investigation is needed to identify the reasons for this limitation in performance 

and to discern whether it would similarly affect other applications fitting computational 

decomposition. Since we are aiming at an adaptive framework, any solution to further 

improve the performance should be independent on the algorithmic details of the appli-

cation, so that it could suit other applications in the same decomposition class. 
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Figure 4. The speedup of the FVFT algorithm for large step (a) and small step (b) for tracking fibers. 
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5.  Conclusions and Future Work 

The fiber tracking test case described in the previous section illustrates an example of 

one of the three decomposition paradigms described in Section 2. Our future work in-

cludes the connection of the parallelized FT application through the GAP to its Win-

dows interface, and the extension of the GAMA architecture to applications fitting the 

other two decomposition paradigms that we have presented.  

Other applications with different decomposition characteristics will also be investi-

gated in the future, including (but not limited to) image processing, image registration, 
scientific visualization and computer graphics algorithms. 

If GAMA were to be used in a hospital environment today, the communication 

overhead from transferring images to the computing back-end may be significant 

enough to kill the performance gain obtained from parallelization. GAMA benefits from 

an architecture where data is stored “closer” (in terms of time required to communicate) 

to the computing back-end so that communication overhead is minimized. Such a situa-

tion could occur when hospitals store medical data on remote storage resources; having 

the data close to the computational resources would decrease the communication over-

head that now occurs in GAMA. One such situation is currently under investigation and 

explores the possibility of adapting SDSC’s SRB
4
 so that it functions as a PACS server. 
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