
From Grid to Healthgrid 127

T. Solomonides et al. (Eds.)

IOS Press, 2005

© 2005 The authors. All rights reserved.

A Grid Architecture for Medical

Applications

Anca BUCUR

a
, René KOOTSTRA

a
 and Robert G. BELLEMAN

b

a
 Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, the Netherlands

{anca.bucu,rene.kootstra}@philips.com
b

 Universiteit van Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, the Netherlands
robbel@science.uva.nl

Abstract. Grid technology can provide medical organisations with powerful tools

through which they can gain coordinated access to computational resources that

hitherto where inaccessible to them. This paper discusses how several classes of

medical applications could benefit from the use of Grid technology. We concentrate

on applications that were put forward by partners in the Dutch VL-e project. After

describing the difficulties related to the realization of such applications without

making use of the Grid, we describe an architecture that allows the applications to

use Grid resources. We demonstrate how this architecture can be integrated into ex-

isting systems to provide flexible and transparent access to Grid services and show

performance results of a test case.

Keywords. Grid-computing, adaptive architecture, compute-intensive medical
applications, fiber tracking, decomposition, speedup

Introduction

The “Virtual Laboratory for eScience” (VL-e
1
) project was initiated after the successful

“Grid-enabled Virtual Laboratory Amsterdam” (VLAM-G) project [1]. In the VLAM-G

project, an experimentation environment was built that allows scientists to construct
experiments that are composed of geographically distributed computational resources as

if they are part of the same organisation. The VL-e project will address challenging

problems, including the manipulation of large scientific datasets, computationally de-

manding data analysis, access to remote scientific instruments, collaboration, and data

dissemination across multiple organizations. The methods, techniques, and tools devel-

oped within the VL-e project are targeted for use in many scientific and industrial appli-

cations. The project will develop the infrastructure needed to support these and other

related e-Science applications, with the aim to scale up and validate the developed

methodology.

The VL-e philosophy is that any Problem Solving Environment (PSE) based on the

Grid-enabled Virtual Laboratory will be able to perform complex and multi-disciplinary

experiments, while taking advantage of distributed resources and generic methodologies
and tools. In the VL-e project, several PSEs will be developed in parallel, each applied

to a different scientific area. One of these areas is Medical Diagnosis and Imaging

which is the focus of this research.

1
http://www.vl-e.nl/.

128 A. Bucur et al. / A Grid Architecture for Medical Applications

This paper discusses how several classes of medical applications can benefit from

parallel computing through the use of Grid technology and describes an adaptive Grid-

based architecture suitable for all these application classes.

In Section 1 we introduce three computationally challenging medical applications
relevant in the context of the VL-e project and perform an algorithmic analysis on each

of them. In Section 2 we discuss three decomposition patterns that can be used to paral-

lelize the applications described in Section 1. Section 3 proposes a flexible and generic

architecture suitable for applications that fit the three decomposition patterns, and in

Section 4 we describe a first case study of a medical application. We perform experi-

ments in a Grid environment with a parallel version of the application and assess its

performance and scalability.

1. Analysis of Medical Applications

The partners in the VL-e project have selected a number of computationally challenging

applications. In particular, the clinical use of these applications is hampered by insuffi-

cient computational power. In this section we describe these applications and assess

whether the underlying algorithms are suitable for parallelization.

1.1. White Matter Fiber Tractography

Recent advances in Magnetic Resonance (MR) research have opened up opportunities

for gathering functional information about the brain. In addition, the development of

Diffusion Tensor Imaging (DTI) offers the possibility to go beyond anatomical imaging

and study tissue structure at a microscopic level in vivo [2]. The method uses a medical
imaging technique known as Diffusion Weighted Magnetic Resonance Imaging (DW-

MRI) to measure the restricted movement of water molecules along the direction of

fibers. From these measurements, a tensor is constructed that describes diffusion in mul-

tiple directions. An important application of DTI is fiber tracking (FT). This application

uses the anisotropic diffusion of water molecules in the brain to visualize the white-

matter tracts and the connecting pathways between brain structures. Combined with
functional MRI, the information about white-matter tracts reveals important information

about neuro-cognitive networks and may improve the understanding of brain function.

Several studies have demonstrated the feasibility of reasonably fast FT in the human

brain [3]. Other research concentrates on improving the accuracy, the robustness and the

throughput of the FT [4]. There are several clinical applications where FT is relevant,

such as psychiatry [5], surgical planning or stroke detection.

Algorithmic Analysis: There are various solutions to FT, but the common feature is
that, starting from various points, white matter fibers have to be tracked in the entire

data domain. The number of detected fibers (and therefore the accuracy of the algo-

rithm) grows with the number of considered starting points. For areas with a high con-

centration of fibers, too many detected fibers may lead to an indistinguishable image,
which makes selection necessary. Since choosing fewer starting points would not be a

good option (it would decrease the accuracy), the selection is in general performed after

the fibers are generated, by specifying a number of regions of interest that the fibers

have to cross. The execution time of the application depends on the number of starting

points, the algorithm, and the size of the data set, and can amount to many hours. FT

 A. Bucur et al. / A Grid Architecture for Medical Applications 129

would become clinically relevant if the throughput was increased without decreasing the

accuracy of the result. This can be achieved by parallelization.

In order to pay off, the parallel solution has to be scalable and the amount of com-

munication among the processors performing the algorithm has to be kept to a mini-
mum. Fibers are tracked in the entire domain, so directly decomposing the data domain

among the participating processors would not be viable due to the high need for com-

munication and synchronization among processors. The starting points however can be

distributed among processors with little extra synchronization and communication.

Therefore, this problem is suited for computational decomposition, meaning that each
processor that takes part in the computation receives the entire data domain, but the

computation domain (i.e., the starting points) is divided among processors.

1.2. Functional Bowel Imaging and MR Virtual Colonoscopy

It takes many years before colon polyps become cancerous. Therefore, periodical

screening can help in preventing colon cancer. However, current methods to detect co-

lon polyps are very intrusive and are unsuitable for screening. Alternatives exist that use

Computed Tomography (CT) to image the colon; the images can then be used to per-

form a virtual colonoscopy through scientific visualization techniques [6]. However, the

ionizing radiation used in CT also makes this alternative unsuitable for screening pur-

poses. Another alternative is to optimize the imaging strategies to exploit the higher

signal-to-noise ratio of 3 Tesla MRI. In video mode, the MR scanner can generate real-

time images. In combination with high-resolution static anatomical images the data will

be processed and then viewed in an interactive 3D representation.

Algorithmic Analysis: In these applications the volume reconstruction for visualiza-
tion is performed using a combination of image processing and isosurface extraction

algorithms which construct an isosurface from a 3D field of values. The idea of the al-

gorithm is to divide the three-dimensional geometrical space of the problem into a grid

of cubes. For each cube that crosses the surface, the part of the surface contained by the

cube is approximated by the appropriate set of polygons. The union of all polygons ap-

proximates the surface and the precision of the approximation is proportional with the

grid resolution.

The basic approach is to traverse all cells in the space to find the approximation of

the surface in each cell. For good accuracy of the result, the data set needs to be quite

large, which can lead to long execution times. This problem can be parallelized by split-

ting the data domain into a number of sub-domains which are then distributed among
the available processors. This method is called domain decomposition; each processor
independently performs the algorithm on its sub-domain. At the end, each processor

contributes to the final result with the surface generated in its own sub-domain.

1.3. Computer Aided Diagnosis and Surgical Planning in Cardiovascular Disease

Vascular disorders in general fall into two categories: Stenosis, a constriction or narrow-

ing of the artery by the build-up over time of fat, cholesterol and other substances in the

vascular wall, and aneurysm, a ballooning-out of the wall of an artery, vein or the heart

due to weakening of the wall. A vascular disorder can be detected by several imaging
techniques such as X-ray angiography, MRI or CT.

130 A. Bucur et al. / A Grid Architecture for Medical Applications

A surgeon may decide on different treatments in different circumstances, but all

these treatments aim to improve the blood flow of the affected area. The purpose of

vascular reconstruction is to redirect and augment blood flow, or perhaps repair a weak-

ened or aneurysmal vessel through a surgical procedure. Pre-operative surgical planning
would allow the a priori evaluation of different procedures under various physiologic

states, such as rest and exercise, thereby increasing the chances of a positive outcome

for the patient [7,8].

Algorithmic Analysis: The current approach for the treatment of patients with vas-
cular disease is to first image the diseased area through angiography, then to plan the

treatment, possibly followed by surgical intervention. We envision a simulated vascular

reconstruction environment to provide decision support information to a vascular sur-

geon during treatment planning. To achieve this, our proposed system consists of the

following: First, the vascular geometry of the patient is acquired through volumetric

scanning methods (such as CTA or MRA). This scan needs to be of sufficient resolution

and contrast to allow accurate isolation of the vascular morphology from the scan, in-
cluding the diseased area. Next, image segmentation is used to isolate the vascular mor-

phology from the scan. The resulting morphology is used to construct a computational

data structure that can be used in a blood flow simulator, which is used to simulate the

physical properties of blood flow through the vascular geometry. Properties that are of

interest include pressure, flow velocity and wall shear stress. The results of this simula-

tion are presented to the surgeon through scientific visualization methods. Based on the

visualization, the surgeon will be able to propose a viable treatment. The surgeon simu-

lates the treatment by interactively altering the computational data structure used in the

flow simulation. Based on this new data structure, the flow simulator calculates a new

flow solution and presents the results to the surgeon.

The system just described consists of several tightly interfaced software compo-

nents [7]. Each of these components has its own unique computational requirements.
Therefore, they can execute independently from each other in parallel. This decomposi-

tion method is called functional decomposition.

2. Decomposition Patterns

As described in Section 1, the applications that we have presented fit into three classes

of decomposition patterns which allow them to exploit parallelism. Their algorithms

exhibit a significant degree of spatial locality in the way they access memory as well as

time locality in the sequence of operations that are performed.
It may be expected that the problem sizes will increase in time, requiring increas-

ingly powerful computational resources. Furthermore, with the availability of increasing

computational power and wide access to (geographically) distributed resources it can be

expected that new applications will emerge and that some of the existing ones will gain

importance. In this context, our goal is to provide a general architecture that is suitable

for a wide range of applications. Besides improving the performance of each applica-

tion, the architecture should be scalable relative to the data volume, and should allow

changes in the computational algorithm with a minimum of changes in the algorithmic

structure and no change at all in the architecture itself. By studying the common and

differentiating features of the application classes that we selected, we are able to design

an adaptive Grid architecture which can be applied to applications fitting at least one of

the decomposition patterns.

 A. Bucur et al. / A Grid Architecture for Medical Applications 131

2.1. Domain Decomposition

With this decomposition pattern, the data domain of the application is split into disjoint

partitions among the participating processors. Each processor performs the same algo-

rithm on its own partition of data, preferably with a minimum amount of communica-

tion or synchronization (see Figure 1(a)). When there is no communication among proc-

essors we speak of pure domain decomposition. Examples of algorithms in this group

are the image processing and isosurface extraction algorithms used for the purpose of
volume reconstruction as described in the previous section. When the processors need to

exchange data during the execution of the application we speak of domain decomposi-

tion with data exchange. The communication may occur at few isolated instances or

may have an iterative nature. In this class of applications are various image processing,

scientific visualization and computational simulation algorithms.

2.2. Computational Decomposition

With computational decomposition, each processor performs the same set of computa-
tions on a disjoint part of the domain but needs access to the entire data set (see Fig-

ure 1(b)). The computational domain of the application is split among the processors,

while the data domain is shared. This paradigm applies to the FT application described

in the previous section. This application will be described in more detail in Section 4.

2.3. Functional Decomposition

For this decomposition pattern it is characteristic that several algorithms are performed

on several data sets in fixed succession. It is in fact a specialization of activities among

processors: Each processor is responsible for the execution of one algorithm, then the
data set is passed to another processor for performing the next algorithm (see Fig-

ure 1(c)). The current processor then moves on to the next data set, resulting in a pipe-

lined execution. An example of an application that fits this paradigm is the vascular

reconstruction application described in Section 1; here image processing algorithms

provide input to a flow simulation algorithm, which in turn provides input to a scientific

vvisualization algorithm.

1‚

4‚

2‚

3‚

1‚ 2‚

3‚4‚

1‚

4‚

2‚

3‚

A

D

B

C

A

C D

B

Figure 1. Decomposition patterns; (a) domain decomposition, (b) computational decomposition, (c) func-
tional decomposition.

132 A. Bucur et al. / A Grid Architecture for Medical Applications

3. GAMA: Grid Architecture for Medical Applications

The three decomposition patterns described in the previous section can all be modeled

within a general framework. Figure 2 depicts our adaptive architecture designed to si-

multaneously support several applications fitting at least one of the decomposition pat-

terns. As this figure shows, we chose for the client-server architecture; the server can

simultaneously provide different sets of services for each of the application clients. Our

primary intention is to make this framework minimally invasive, in the sense that the
influence on the end-user is as small as possible. Instead of being enforced, the Grid-

based solution will either be offered as an option to the user, or the client application

will automatically choose whether to use external Grid resources or not. In the event

that insufficient resources are available, the applications should automatically fall back

to their local version.

Currently, the applications (situated in the hospital) run on Windows-based worksta-

tions. At the other end, Grid technology is centered around Globus, a software interface

that provides the Grid “middleware” [9]. Globus is based on the Unix operating system.

Therefore, in order to enable such applications to use the Grid for their execution, the

compute-intensive part of the application has to be removed from the rest of the applica-

tion and placed in the Grid environment. To provide an interface from the Windows
environment to a Grid infrastructure that is designed around Globus, a Linux machine

Figure 2. General architecture for solving compute-intensive medical applications using Grid technology.

 A. Bucur et al. / A Grid Architecture for Medical Applications 133

called the “Grid Access Point” (GAP) receives the requests from the hospital side,

which we call the client side, and allocates the processors on the Grid, passing on the

requests and returning the results to the client. The GAP may use Globus for submitting

the requests to the Grid nodes, thereby exploiting the security and execution facilities

offered by it. Globus is entirely Unix based, so it could not be used if we chose for di-

rectly connecting the client side to the Grid nodes. The overall performance of the ap-

plication benefits from keeping the client side as little involved in the computational
algorithm as possible and from restricting the communication with the rest of the system

to job-submission requests only. This is because in most cases the client side will be

connected to the rest of the system via slow network links. For high throughput, the

GAP should be connected to the Grid infrastructure via a fast network.

4. Test Case: Fiber Tracking

As a first case study, we apply the GAMA architecture to the FT application (see Fig-

ure 3). The Grid-enabled FT application should gain performance by distributing its

computational part, the FT algorithm, across Grid computational resources. We devel-
oped a parallel version of the FT algorithm and assessed its performance for several sets

of application parameters and different numbers of processors. The purpose of this ex-

periment is to check whether this type of application can benefit from our Grid-based

architecture.

Figure 3. Applying the GAMA architecture to the fiber tracking application.

134 A. Bucur et al. / A Grid Architecture for Medical Applications

4.1. The Environment

The sequential FT application was built with the Philips Research Imaging Develop-

ment Environment (PRIDE) on a Windows NT-based machine using the Interactive

Data Language (IDL)
2
.

The sequential FT application is based on a prototype application running on a sin-

gle Windows workstation. It was modified to generate data sets, parameters and results.

We ported this application to Unix and parallelized it. Our experiments with the parallel

version of FT were performed on the second-generation Distributed ASCI Supercom-
puter (DAS-2)

3
. The DAS-2 is a wide-area computer system located at five Dutch uni-

versities. It consists of 200 nodes split into five clusters, one with 72 nodes, the other

four with 32 nodes each. Programs are started on the DAS-2 using the PBS batch queu-

ing system, which reserves the requested number of nodes for the duration of a program

run. We submitted the jobs to the DAS-2 using Globus and used MPI to implement par-

allelism. The outputs of the executions of the sequential FT application on the single

workstation and of the parallel FT application on the DAS-2 system were compared in

order to verify the correctness of the distributed solution.

4.2. Results

In this section we present results of experiments performed with our parallelized version

of FT. With full volume fiber tracking (FVFT), the starting points are evenly distributed

in the entire domain. Compared to other solutions, e.g. placing starting points only in

the regions of interest (ROIs), FVFT has higher computational needs but also higher

accuracy, detecting a larger number of fibers and also detecting splitting and crossing

fibers.

When comparing the performance of the sequential FT application to the distrib-

uted FT, we scaled the values to take into account the difference in CPU speed between

the DAS-2 nodes and the workstation running the sequential version. However, these

two applications run on different architectures and the comparison is only relevant as an
indication of the potential performance gain through parallelization.

Our first experiments show that tracking long fibers takes noticeably longer than

tracking short fibers, or checking areas with no fibers. It is also the case that fibers are

in general grouped in large bundles. Since in our solution jobs are rigid (i.e. all tasks

start and end at the same time), the longest task determines the execution time. This

implies that simply splitting the computational domain into a number of sub-domains

equal to the number of processors is not an efficient solution: Processors receiving parts

of the domain with many long fibers perform a large amount of work, while processors

receiving parts of the domain with no fibers spend most of the time waiting. As an al-

ternative, we designed a solution which splits the domain on one of the axes in slices of

width equal to the size of the voxel. These slices are then distributed among the proces-
sors using Round Robin, and that yields a better workload balance.

The fraction of the algorithm that tracks a fiber from a starting point is inherently

sequential and limits the speedup. For identical data sets, we compare two cases differ-

entiated by the step size for tracking the fibers.

2
 http://www.rsinc.com/idl/.

3
 http://www.cs.vu.nl/das2.

 A. Bucur et al. / A Grid Architecture for Medical Applications 135

We first studied the scalability of the application for a large step size. In this case

the computation time for a single fiber is short compared to the total execution time.

The execution time of the sequential FT algorithm was the equivalent of 440s, while the

parallel FT algorithm took 1065s to complete on a single processor. We compared the

execution time for one, two and four ROIs. The results showed that for FVFT the num-

ber of ROIs has almost no influence on performance. We ran the application on up to 64

processors and concluded that the speedup is almost linear for up to 32 processors (see

Figure 4(a)).

The minimum execution time is limited by the slice of starting points requiring the

longest time to compute and by the initialization time, communication time, and time

required to store the results to disk. For more than 32 processors the performance im-

provement is very small: The computation time is still reduced by further splitting the
computational domain (the limit of the inherently sequential part of the algorithm is not

reached yet), but the execution time is increasingly dominated by the initialization and

the communication time. The time for storing the results is constant (only one of the

processors writes to the disk), while the communication time increases proportionally

with the number of processors (from 0.12s for 2 processors to 5.7s for 64 processors).

For 64 processors, about 20% of the execution time is spent in communication.

For the same data set, we performed experiments with a very small step size. This

change significantly increased the execution time to the equivalent of more than 18

hours for the sequential version of the algorithm. Figure 4(b), shows the speedup ob-

tained in this case. Similarly to the previous case, the scalability is very good for up

to 32 processors. The communication time is not influenced by the increase in computa-
tion time but only by the number of processors performing the algorithm, so it has simi-

lar values to the previous case.

Executing the application on more than 32 processors does not seem to pay off.

More investigation is needed to identify the reasons for this limitation in performance

and to discern whether it would similarly affect other applications fitting computational

decomposition. Since we are aiming at an adaptive framework, any solution to further

improve the performance should be independent on the algorithmic details of the appli-

cation, so that it could suit other applications in the same decomposition class.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of processors

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of processors

Figure 4. The speedup of the FVFT algorithm for large step (a) and small step (b) for tracking fibers.

136 A. Bucur et al. / A Grid Architecture for Medical Applications

5. Conclusions and Future Work

The fiber tracking test case described in the previous section illustrates an example of

one of the three decomposition paradigms described in Section 2. Our future work in-

cludes the connection of the parallelized FT application through the GAP to its Win-

dows interface, and the extension of the GAMA architecture to applications fitting the

other two decomposition paradigms that we have presented.

Other applications with different decomposition characteristics will also be investi-

gated in the future, including (but not limited to) image processing, image registration,
scientific visualization and computer graphics algorithms.

If GAMA were to be used in a hospital environment today, the communication

overhead from transferring images to the computing back-end may be significant

enough to kill the performance gain obtained from parallelization. GAMA benefits from

an architecture where data is stored “closer” (in terms of time required to communicate)

to the computing back-end so that communication overhead is minimized. Such a situa-

tion could occur when hospitals store medical data on remote storage resources; having

the data close to the computational resources would decrease the communication over-

head that now occurs in GAMA. One such situation is currently under investigation and

explores the possibility of adapting SDSC’s SRB
4
 so that it functions as a PACS server.

Acknowledgements

Part of this work was carried out in the context of the Virtual Laboratory for e-Science

project (http://www.vl-e.nl/). This project is supported by a BSIK grant from the Dutch

Ministry of Education, Culture and Science (OC&W) and is part of the ICT innovation

program of the Ministry of Economic Affairs (EZ). The sequential FT application that

constitutes the basis for our parallel FVFT was provided by Philips Medical Systems.

References

[1] H. Afsarmanesh, R.G. Belleman, A.S.Z. Belloum, A. Benabdelkader, J.F.J. van den Brand, G.B. Eijkel,

A. Frenkel, C. Garita, D.L. Groep, R.M.A. Heeren, Z.W. Hendrikse, L.O. Hertzberger, J.A. Kaandorp,

E.C. Kaletas, V. Korkhov, C.T.A.M. de Laat, P.M.A. Sloot, D. Vasunin, A. Visser, and H.H. Yakali.

VLAM-G: A grid-based virtual laboratory. Scientific Programming Journal, 10(2):173–181, 2002.

[2] S. Mori and P.C. van Zijl. Fiber tracking: principles and strategies - a technical review. NMR Biomed,

15(7-8):468–480, 2002.

[3] D. Xu, S. Mori, M. Solaiyappan, P.C. van Zijl, and C. Davatzikos. A framework for callosal fiber distri-

bution analysis. Neuroimage, 17(3):1131–1143, 2002.

[4] N. Kang, J. Zhang, and E.S. Carlson. Fiber tracking by simulating diffusion process with diffusion ker-

nels in human brain with DT-MRI data. Technical Report, Dept. of Comp.Science, Univ. of Kentuchy,

428-05, 2005.

[5] J. Zhang, L.J. Richards, P. Yarowski, P.C. van Zijl H. Huang, and S. Mori. Three dimensional anatomi-

cal characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage,

20(3):1639–1648, 2003.

[6] F.M. Vos, R.E. van Gelder, I.W.O. Serlie, J. Florie, C.Y. Nio, A.S. Glas, F.H. Post, R. Truyen, F.A.

Gerritsen, and J. Stoker. Three-dimensional display modes for CT colonography: conventional 3D vir-

tual colonoscopy versus unfolded cube projection. Radiology, 228:878–885, 2003.

4
 The SDSC Storage Resource Broker (SRB). http://www.npaci.edu/dice/srb/.

 A. Bucur et al. / A Grid Architecture for Medical Applications 137

[7] R.G. Belleman and P.M.A. Sloot. Simulated vascular reconstruction in a virtual operating theatre. In

H.U. Lemke, M.W. Vannier, K. Inamura, A.G. Farman, and K.Doi, editors, 15th International Congress

and Exhibition, Computer Assisted Radiology and Surgery (CARS 2001), number 1230 in Excerpta

Medica, International Congress Series, pages 938–944, Amsterdam, the Netherlands, June 2001. El-

sevier Science B.V. ISBN 0-444-50866-X.

[8] Joy P. Ku, Mary T. Draney, Frank R. Arko, W. Anthony Lee, Frandics P. Chan, Norbert J. Pelc, Chris-

topher K. Zarins, and Charles A. Taylor. In Vivo validation of numerical prediction of blood flow in ar-

terial bypass grafts. Annals of Biomedical Engineering, 30:743–752, 2002.

[9] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. J. Supercomputer

Applications, 11(2):115–128, 1997.

