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Abstract

We consider the influence of the lattice symmetry and size of the lattice Boltzmann method on the behavior of a pure reaction
diffusion system. We show that the effect of the dispersion relation in the diffusion coefficient can be minimized, by tuning the
fraction of rest particles and the relaxation parameter. For the reaction, we focus on the Selkov model and study the dynamics
of pattern formation due to the Turing Instability. For the chosen reaction parameters, however, no clear influence of the lattice
symmetry is found. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last few years a lot of attention is paid to re-
action diffusion systems. Experimental and numerical
results have shown that these in principle simple sys-
tems show a wide variety of complex behaviors, such
as chemical waves, oscillations and non-homogeneous
patterns [1–3]. These systems are for instance formed
by a number of chemical species which are dissolved
in some fluid and are able to chemically interact with
each other forming new compounds. The macroscopic
equations which govern these phenomena, as well as
the general behavior of these systems, can also be ob-
served in different models and or simulations, e.g.,
population dynamics.
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The chemical species are allowed to react, which
gives rise to a dynamical process to form a steady state
or dynamically stable cycle. By tuning the reaction
parameters, one is able to change this process such
that the final outcome is a homogeneous state, a
stable pattern, formed by domains where different
chemically species are dominant, or an oscillating
state.

In general such a reaction-diffusion system can be
described by the following set of coupled equations:

∂ρs

∂t
−Ds∇2ρs =Rs, (1)

wheret is the time,∇2 the Laplacian operator with
respect to the spatial coordinatex, ρs(x, t) the mass
density andDs is the diffusion coefficient. The sub-
script s is a label for the different chemical species.
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The right-hand side of the equation,Rs , represents the
reaction term and will in general depend on the lo-
cal densities of all chemical species and the reaction
mechanism governing this system. In reality the reac-
tion term should also depend on the temperature, spe-
cially since reaction will produce energy which will
locally heat up the system. However, we will assume
our model to be a-thermal.

In order to model more realistic systems large sys-
tem sizes are required. For that reason we adopt the
lattice Boltzmann formalism to simulate such sys-
tems [4], because this method is ideally suited for par-
allel execution, thus supporting large system sizes [5].
Moreover it is also able to deal with complicated
geometries [6] and changing environments, e.g., ag-
gregation processes [7].

In this article we will investigate how the system
size and the symmetry of the underlying lattice will in-
fluence the behavior of the system. If one is interested
in the steady state solution of a reaction-diffusion sys-
tem only, this is in principle not necessary. Provided
the system size which is modeled is large enough, it is
conceivable that the lattice symmetry is not too impor-
tant any steady state could be obtained.

If one is interested in dynamical modeling of prob-
lems like ground water contamination and bioreme-
diation, however, the lattice symmetry might be im-
portant. The reason is that at a local level and short
time scales the lattice symmetry might influence the
dynamical behavior of reaction diffusion processes. In
order to investigate this influence, we have performed
a series of simulations on the formation of Turing pat-
terns [8] in the Selkov model [9]. The choice for this
particular model is based on its simplicity and the fact
that much is known about it.

The remaining of this article is organized as fol-
lows. In Section 2 we explain the model we used to
simulate the reaction diffusion. In Section 3 we com-
pare the predicted diffusion coefficient with the one
from simulations. In Section 4 the Selkov model is dis-
cussed in some more detail. In Section 5 we present
our results on the size and symmetry dependence of
the simulations. In Section 6 we consider the influ-
ence of the boundaries. In Section 7 we finish with
a discussion of our results and suggestions for future
research.

2. Model

In order to model the reaction-diffusion equations
(1), we will use the lattice-Boltzmann scheme. The
one-particle distribution of speciess at timet , position
Ex and with velocityEei is denoted byfs(Ex, i, t). In case
of a hexagonal lattice the nearest neighbor vectors are
given by

Eei =

(0,0), i = 0,

(cos(θi),sin(θi)), θi = (i − 1)π/3,
16 i 6 6,

(2)

and in the case of a square lattice by

Eei =


(0,0), i = 0,

(cos(θi),sin(θi)), θi = (i − 1)π/2,
16 i 6 4, (3)√

2(cos(θi),sin(θi)), θi = (i − 5)π/2+ π/4,
56 i 6 8.

The lattice Boltzmann equation forfs(Ex, i, t) can be
written as

fs(Ex + Eei, i, t + 1)− fs(Ex, i, t)=Ωs(Ex, i, t), (4)

whereΩs(Ex, i, t) is the collision operator of species
s. This term consists of a reactive termΩR

s and non-
reactive termΩNR

s . For the non-reactive part of the
collision we use the normal single relaxation time
BGK approximation:

ΩNR
s (Ex, i, t)=− 1

τs

(
fs(Ex, i, t)− f eq

s (Ex, i, t)
)
, (5)

where the equilibrium densityf eq
s depends on the lo-

cal densityρs and local velocityEu. In the normal lat-
tice Boltzmann simulation this equilibrium distribu-
tion for is given by

f
eq
s (Ex, i, t)=ws,iρs

(
1+ (Eei · Eu)

c2
s

+ (Eei · Eu)
2

2c4
s

− Eu
2

2c2
s

)
,

(6)

wherecs in the speed of sound. The weightsws,i are
dependent on the lattice symmetry, and result in

ws,i =
{
zs, i = 0,

(1− zs)/6, 16 i 6 6
(7)
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for a hexagonal lattice, wherezs denotes the fraction
of rest particles and can be different for different
species. For a square lattice we find

ws,i =

zs, i = 0,

(1− zs)/5, 16 i 6 4,

(1− zs)/20, 56 i 6 8.

(8)

Since we are modeling a system where the chemical
species are dissolved in a fluid, the velocityEu, can be
replaced by the local velocity of the solvent, which
for low concentrations will hardly be influenced by the
reactants. In what follows, however, we will consider a
pure reaction diffusion system, and hence the average
mean flow will be zero, this leads to the reduction of
the equilibrium distribution function to

f
eq
s (Ex, i, t)=ws,iρs =ws,i

∑
i

fs(Ex, i, t). (9)

For the reactive part of the collision term, we will
follow Dawson et al. [4], and assume thatRs the
change in density of speciess due to a reaction, will be
distributed over the different directions, proportional
to the weights of pure diffusion

ΩR
s =ws,iRs . (10)

The exact form the reaction termRs , still needs to
be specified. It depends on the set of reactions one
is interested in, and can be very complicated. In our
application we will assume that it only depends on
the local densities of the reacting species, however
it should be noted that in reality this might also
depend on the velocity dependent cross-sections for
the reaction.

If we assumef ≈ f eq+ εf (1), ∂/∂t ∝ ε2, ∂/∂ Ex ∝
ε, andRs ∝ ε2, whereε is a small parameter, a Taylor
series offs(Ex + Eei, i, t) aroundfs(Ex, i, t) will lead to
the desired evolution equation (1) forρs [4], and the
diffusion coefficientDs results in

Ds = 1
2(1− zs)

(
τs − 1

2

)
hexagonal lattice, (11)

Ds = 3
5(1− zs)

(
τs − 1

2

)
square lattice. (12)

In the case of pure diffusion, as we intend to use ini-
tially, this fraction can be chosen arbitrary to meet ex-
ternal constraints. If one is interested in the application
including flow, these values are chosen to bezs = 1/2
for the hexagonal andzs = 4/9 for the square lattice,
in order to retrieve the Navier–Stokes equations. Note

that the relaxation parameter has to be chosen larger
than a half, otherwise unphysical behavior is obtained.

3. Diffusion coefficient

In order to measure the diffusion coefficient we use
a non-reactive system in which we impose initially
a concentration wave of a sinusoidal shapeρ(Ex, t =
0)= 1+ε cos(Ek · Ex) for some wave vectorEk. This wave
vector should however be chosen such that it fits on the
lattice, e.g.,Ek = (2πi/Nxx̂,2πj/Nyŷ).

If this density profile is applied to the diffusion
equation we find that it has an exponential decay given
by

ρ(Ex, t)= ρ(Ex,0)e−Dk2t . (13)

In Fig. 1 we have plotted the measured diffusion
coefficient and its relative error as a function of the
relaxation parameter for several wave vectors. In order
to measure the diffusion, the decay of the imposed
amplitude as function of the time is fitted to an
exponential. Although the simulations are performed
on a 256× 256 grid, this is not strictly necessary for
all wave vectors. The only requirement for a given
wave vector is that it should fit an integer number of
times on the lattice, hence, depending on the wave
vector, smaller lattices can be used. The wave vectors
shown here areEk = (i2π/256, j2π/256) with i, j =
0,1,2,4,8.

It can be seen that the behavior of the measured dif-
fusion coefficients for different wave vectors is self-
similar an can, for larger relaxation parameters, be
mapped on each other. However, it is clear that for
τ > 5 the deviations from the predicted diffusion co-
efficient become too large for out purposes. The rel-
ative error of indicates that also for small relaxation
parameters the measured and predicted value disagree
increasingly for larger wave vectors. In first approxi-
mation, however, the curves share a common value for
the relaxation parameter is optimal.

The origin of the deviation of the measured diffu-
sion from the predicted one, lies in the decay of the
amplitude of the imposed density profile. For small
values ofτ & 0.5 the relaxation goes fast, which lead
to numerical instabilities in simulations causing initial
oscillations, rather than a perfect exponential decay.
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(a) (b)

Fig. 1. (a) The measured diffusion coefficientD as function of the relaxation parameterτ . The straight line is the theoretical value. (b) The
relative error in the measured diffusion coefficient as a function of the relaxation parameter for smallτ . The measurements are done on a
256× 256 square lattice with the fraction of rest particlesz is fixed to 4/9. The labeling of a curve(i, j) correspond to the wave vector
2π
256(i, j).

The diffusion coefficient, however, will be given rea-
sonable accurate. For largeτ the measured and pre-
dicted value of the diffusion start to disagree. Due to
the numerical scheme, the amplitude is not decaying
exponentially all the time, but can grow for small pe-
riods.

The discrepancy between the measured and pre-
dicted value of the diffusion coefficient, will put some
constraints on the simulation parameters used. De-
pending on the range of interest, there are a few simple
solutions, of which the simplest would be taking a big-
ger lattice size. To avoid both described effects in the
decay, one should take the relaxation parameter of the
order unity. In order to access larger diffusion coeffi-
cients, one could use multiple time steps.

For pure reaction diffusion however, there is also
another option. Since the equilibrium distribution does
not depend on the local velocity, one can chose
different weights, allowing to set a different value for
the diffusion. This can only be done, because they
were fixed by the requirement to retrieve the Navier–
Stokes equations. In Fig. 2 the relative error of the
diffusion is plotted as a function of the fraction of fixed
particles, forτ = 1 and several wave vectors. Also
here the discrepancy increases for larger wave vectors.

Fig. 2. The relative error in the measured diffusion coefficient
as a function of the fraction of rest particlesz. Different curves
correspond to different wave vectors in magnitude and direction on
a 256×256 square lattice, with the relaxation parameterτ = 1. The
labeling of a curve(i, j) correspond to the wave vector2π256(i, j).

For different values of the fraction of rest particles
z, figures similar to Fig. 1 are obtained. However,
this leads to a shift of the “optimal” value for the
relaxation parameter. In case of the square grid forz=
3/9, 4/9 and 5/9 this value is given by respectively
τ ≈ 1.07, 1.00 and 0.96. Since smallerz and largerτ
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both increase the diffusion coefficient (11), this can be
used to simulate a diffusion coefficient which is less
sensitive to a dispersion relation.

Although the theoretical diffusion coefficient, which
is obtained from the Chapmann–Enskog expansion, is
independent of the wave vector, this is obviously not
true. In order to eliminate this effect as much as pos-
sible the values of the relaxation parameter and the
fraction of rest particles should be chosen appropri-
ately. For the fraction of rest particles, we keep the
values as used for normal LBM simulations. The main
reason for this choice is that in future applications
the incorporation of low flow fields is needed and we
don not pursue the direction of pure reaction-diffusion,
where this value could possibly be optimized. The
same is true for the relaxation parameter, which nor-
mally would be close to unity. However in order the
obtain a sufficient range of diffusion constants, we al-
low it to be chosen in the range(0.55,2.0).

The existence of the dispersion relation, however,
will in general affect the simulations. The deviation of
the diffusion coefficient from the predicted one, will
show up mainly in the larger wave vectors and hence
smaller length scales. Depending on the application
this will influence the outcome of the simulation. In
our case, where we will focus on the formation of
patterns, this could for instance influence the shape of
the spots that appear in the pattern. The relevant length
scale of the pattern is an order of magnitude larger and
will be influenced less.

4. Selkov

The Selkov model consists of a system of three
coupled chemical reactions, involving four species [9]

A
k1

k−1
X, (14a)

X+ 2Y
k2

k−2

3Y, (14b)

Y
k3

k−3
B. (14c)

It is assumed that the densities ofA andB are fixed
by external sources. This results in only two evolution
equations, determined by the densities and the reaction
rateski

∂ρX

∂t
−DX∇2ρX

=RX = k1ρA − k−1ρX − k2ρXρ
2
Y + k−2ρ

3
Y , (15a)

∂ρY

∂t
−DY∇2ρY

=RY = k−3ρB − k3ρY + k2ρXρ
2
Y − k−2ρ

3
Y . (15b)

By solving the equationsRX = RY = 0, we find
that there are at most three fixed points. In order to
determine the linear stability of the fixed point with
densityρ∗X andρ∗Y , we study the exponential decay of
a homogeneous distortionEρ∗ + Eε exp(λt). This gives
a simple eigenvalue problem∂t Eρ = L Eρ, whereLij =
∂Ri/∂ρj and results in the eigenvalue equation

λ2− Tr(L)λ+ |L| = 0. (16)

For a stable solution we require Re(λ±) < 0. In the
case of two complex solutions this means thatL11+
L22< 0, in the case of two real solutions there is an
additional constraint, the determinant of the matrixL
should be positive, otherwise there would exist both a
negative and positive eigenvalue, hence, a stable and
unstable mode. In the last case the simulation will go
directly to the stable fixed point, while in the first case
the density will spiral to that point.

If the ratio of the diffusion coefficientsDX/DY
becomes larger than a critical value, the Selkov model
develops a Turing instability. The fixed point becomes
linearly unstable against perturbations of the form
δ Eρ =∑Eξ EAEξeıEξ ·Ex . For a complete analysis we refer
to [10], while we give here only the main results. The
critical ratio of the diffusion coefficients is given by

DX

DY
= LXXLYY − 2LXYLYX

L2
YY

+ 2
√
LXYLYX(LXYLYX −LXXLYY )

L2
YY

. (17)

If the ratio of the diffusion coefficients is larger than
this critical ratio the Turing instability is guaranteed
for those wave vectorsξ which satisfy|ξ−| 6 |ξ | 6
|ξ+| where|ξ2|± is given by

|ξ2|± = DXLYY +DYLXX
2DXDY |L|

±
√
(DXLYY +DYLXX)2− 4|L|DXDY

2DXDY |L| .

(18)
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Fig. 3. Enlargement of the path followed by the average densities
in time. This is the result of a simulation on a 256× 256 square
grid where the spiraling behavior is ended after approximately 20
thousand time steps.

5. Results

We have performed simulation of various lattice
sizes. We prepare the initial densities of both simulated
species in the Selkov model, by an average density,
corresponding to the homogeneous solution of the
reaction equations, with a random noise of about
one percent. We have chosen he reaction parameters
k1ρA = 2.65667× 10−3, k−1 = 6.65× 10−4, k2 =
k−2 = 1.5 × 10−2, k−3ρB = 5.313334× 10−4 and

k3 = 6.65× 10−3 [4]. The diffusion coefficients are
set toDX = 0.2914 andDY = 0.017, which ensures
that the ratioDX/DY = 17.1412 is above the critical
value 16.2121. Under these conditions most of the
patterns formed in simulations with sizes 32m× 32n
lead to the formation of spots in a hexagonal type
arrangement. If the system size is to small, e.g., 32×
32, homogeneous density distributions are found, and
by narrowing only one of the lattice dimensions a
pattern of stripes is formed. In principle other patterns,
e.g., arrangements with square symmetry, could be
obtained by, initializing the densities of both species
with specific modulations, however, these are easily
distorted.

In Fig. 3 an enlargement of the path of the average
densities followed by both species in time, is shown
for a system on a square lattice with size 256× 256.
It follows an inward spiral towards the stable fixed
point of the reaction equations, as can be expected
on the basis of the stability analysis. However, when
the fixed point is approached after approximately 20
thousand time steps, the solution starts to run away
from this initial goal. What has happened is that the
reaction equations initially hold not only locally but
also on average for the whole system, leading to the
spiral path. In the neighborhood of the fixed point
however, the stable fluctuations are probed, forming

(a) (b)

Fig. 4. The integrated Fourier transform of the density profile of speciesX as function of the simulation time. The three time scales can be
observed, (a) spiraling to the fixed point (. 2×104 timesteps), (b) exponential growth of stable density modulations (. 2×105 timesteps) and
the diffusion of spots in order to form a regular pattern.
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Fig. 5. Density profiles of speciesX in a 256× 256 simulation on a square lattice. The snapshots are taken after, from left to right, 0, 2× 104,
5× 104, 105, 2× 105, 4× 105, 6× 105, 8× 105, and 106 timesteps.

the beginning of patterns. This creates gradients which
enter the reaction equations and cause them to be no
longer valid globally.

In the total simulation there are three time scales
present, as can be seen in Fig. 4, where the integrated
Fourier transform is plotted as a function of the
simulation time. Initially there are oscillations, which
correspond to the inwards spiral to the stable fixed

point of the reaction equations, during which the initial
random noise will diffuse and disappear and will take
about 20–30 thousand time steps.

In the next stage the stable modes are probed from
an almost homogeneous system, leading to a rapid
grow and to the formation of a clear pattern (Fig. 5),
which is reached after about 200 thousand time steps.
The initial pattern which is formed for sufficiently
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Fig. 6. Bond-orientational order of neighboring maxima of species
X as function of time.Q4 andQ2 remain finite, indicating that no
true six-fold symmetry is obtained.

large system, is formed a number of spots, with only
some local order. In the last stage the spots start to
rearrange themselves, forming a regular pattern, in a
diffusion like process.

The characterization of the pattern and its evolution
will depend on the underlying lattice of the simulation,
because only a limited range of wave vectors are
stable and can lead to pattern formation. From this
continuous range, however, only few remain, i.e. those
which will fit on the lattice used in the simulation.
Their number is finite and depends on both the
dimensions of the lattice and its symmetry.

In order to examine this we analyze the patterns in
some more detail. As function of time we determine
the locations of the extrema of the density profiles of
both species. For speciesX we consider the maxima,
while for speciesY we take the minima, which
are found at approximately the same locations in
equilibrium. The shape of the spots is ellipsoidal, and
in order to characterize them we fit the local density
distribution within a distance of 5 lattice units by a
second order polynomial. By doing so we find the
value of the extremum, its off-lattice location, and the
two radii of the ellipsoid. The outcomes are relatively
insensitive to the size of the neighborhood if taken
between 2 and 10 lattice units.

The number of spots shortly after the initialization
is fairly high, and also the number of spots for
speciesY is larger. After about 5000 steps the number
has decreased already to a value close to the final

Fig. 7. The radii, describing the ellipsoidal shape of the maxima
of speciesX, as function of time. The magnitude is a measure
for the steepness of the maximum, the relative difference for the
eccentricity. The circles and squares correspond to the average
maximum and minimum radius, respectively.

one. The relative difference between the magnitude
of the extrema and the average density, however, is
of the order 10−3 and 10−4 for speciesX and Y ,
respectively, and will continue to grow exponentially
during the second time-scale of the process.

In order to analyze the local order of the spots we
determine the location of neighboring spots using the
Voronoi construction. This allows us to calculate the
average distance between neighboring spots and bond-
orientational order parameters

Ql =
{〈cos2(lφ)〉 + 〈sin2(lφ)〉}1/2

, (19)

whereφ is the angle made by the line connecting two
spots with the positivex-direction (Fig. 6).

As can be seen in the evolution of the pattern
(Fig. 5), some spots merge after collision, while others
split. As a consequence the average distance between
spots is only a useful property near equilibrium, when
this number remains fixed. The bond-orientational
order parameters are less sensitive to the number
of spots. Near equilibriumQ6 goes to unity, as is
necessary for a hexagonal pattern of spots. However,
true six-fold symmetry is not obtained, becauseQ4
andQ2 do not go to zero, but remain finite, indicating
that there is still a preferred direction.

This is also made clear by the two radii describ-
ing the ellipsoidal shape (Fig. 7). They differ about
fifteen percent, indicating that a true six-fold symme-
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try is not reached, because in that case it should be
circular. These results are in agreement with the time
evolution of a 256× 296 system on a hexagonal lat-
tice, which in real space has the same dimensions,
and where relaxation parameters are chosen such that
the theoretical diffusion coefficients in both simula-
tions are identical. Although a complete comparison
is not possible, due to the different random initializa-
tion in both cases, it does show that the overall behav-
ior is similar, as it should. The distance between the
extremes of the densities and bond-orientational order
parameters agree within the accuracy of the computa-
tions.

This similarity is to be expected, since the macro-
scopic parameters describing the pattern are deter-
mined by the physical size of the system, which in both
case is almost identical. If there is any influence of the
lattice symmetry, it should be visible for small length
scales. However, the height of the maximum density
of speciesX is 1.374 and 1.372 on the square respec-
tively hexagonal lattice, for speciesY this is 0.265 and
0.270. The shape of the spots on the hexagonal lattice
is slightly more ellipsoidal.

In conclusion, in the final equilibrium state only
minor differences exist due to the lattice symme-
try. The same is observed in other smaller system
sizes. This does not mean that there is no influence
of the lattice symmetry on the equilibrium situation,
but that the size of the spots in units of lattice spac-
ing is sufficiently large. It is obvious that on de-
creasing the size of the spots, the discrepancies be-
tween the two lattice symmetries become more vis-
ible. If for the present simulations a lattice symme-
try dependence does exist, it could only be found
in the evolution of the pattern formation. However,
since the initial density distributions also influence
this evolution, it is not possible to confirm or rule out
the existence of a dependence of the underlying lat-
tice.

6. Boundaries

The results shown in the previous section are all
obtained in simulations using periodic boundary con-
ditions. Periodic boundary conditions are of course a
widely used trick in computer simulations to simulate
small system sizes, and never the less retrieving infor-

mation about much bigger systems. The trick however
does not always give the desired result, as is the case
here.

As we are interested in pattern formation, and want
to obtain information about macroscopic systems, the
periodic boundary conditions work here against us.
There are two reasons, first of all the lattice size in
combination with the lattice symmetry will only allow
for certain length scales to be probed, i.e. those which
fit nicely on a square lattice are(i, j), where 06
i 6M and 06 j 6M are arbitrary integers andM
andN denote the lattice dimensions. The one with
the largest positive growth rate in the infinite system,
will in general not be among those, but can only be
approximated.

There is, however, an additional problem coming
from the periodic boundary conditions. As the Selkov
model experiences a driving force to form a reg-
ular pattern, it encounters the boundary conditions,
which impose constraints on the pattern. To clarify
this, suppose that in an infinite system the optimal
pattern would have stripes and the distance between
two maxima would be 64. If the oscillation would
be in thex-direction this would fit nicely on both a
64× 32 and a 128× 32 lattice. If thex-dimension
of the lattice, however, would be anywhere in be-
tween 64 and 128, it does not fit exactly. Therefore,
although the preferred length scale is present, due
to the periodic boundary conditions, it can not be
probed.

There are two types of boundaries we can impose
which differ from the periodic ones. The one we will
partially deal with here is walls, the other would be
open boundaries. The former is important, since in
most applications some impenetrable parts will be
present, such as container walls or solid objects. The
later could be used to avoid the coupling between the
wave vectors and the lattice size.

The introduction of solid walls to the system,
however, will have a different effect on the system. It
will allow for all length scales present in the lattice,
but the solid walls might act as a source of attractive
force. In Fig. 8, the pattern evolution is shown for a
256× 256 system on a square lattice, where we used
bounce back on the links. The dynamical behavior in
establishing a regular pattern is slower, as can be seen
since the pattern is not yet stabilized after 106 time
steps, while the one with periodic boundaries (Fig. 5),
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Fig. 8. Density profiles of speciesX in a 256× 256 simulation on a square lattice with solid walls. The snapshots are taken after, from left to
right, 0, 2× 104, 5× 104, 105, 2× 105, 4× 105, 6× 105, 8× 105, and 106 timesteps. Note the defect in the last four time-shots, which is not
observed using periodic boundaries, that is slowly diffusing out of the system.

already is after 6× 105. Moreover, the last three time-
shots show a defect, that is slowly diffusing out of
the system, while such a defect is not stable using
periodic boundaries. Although there is no constrained
to the length scales, the shape of the central spots, is
on average still ellipsoidal and the walls seem to attract
the spots.

7. Conclusion

We have performed reaction diffusion simulations
in two dimensions. We used the Lattice Boltzmann
method on various lattice sizes and two lattice sym-
metries, square and hexagonal. Depending on the ap-
plication, care should be taken in the construction of
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such a model, because size and symmetry of the lat-
tice could influence the outcomes seriously.

By focusing on the influence of the underlying
lattice on the formation of Turing patterns in the
Selkov model, it is obvious that some finite size
effects are encountered. The equilibrium results do not
depend much on the symmetry of the lattice. If one
is interested in a dynamical modeling of the system,
this influence might still be present in the pattern
evolution. However, in our simulations, where the
dimension of the spot is of the order of 10 lattice units,
no clear signature of the lattice symmetry is found.

One could of course adjust the simulation parame-
ters in order to obtain smaller spot sizes, by decreas-
ing the diffusion coefficients of both species. However,
as a result the relaxation parameters would come too
close to 0.5.

We indicated some preliminary results of simula-
tions with boundary conditions other than periodic
ones, namely solid walls. The evolution itself takes
longer times to reach a truly equilibrium state. The
removal of the periodic boundary conditions, releases
the constraints on the patterns that can be formed.

However, it also means that the “force” it exerts on
the system to form a regular pattern is lost. Besides,
also these boundaries influence the patterns, albeit in a
different way.
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